
ACM

Sy:mposium. on
Operating Syste:m
Principles

October 1· 4, 1967 Gatlinburg, Tennessee

VIRTUAL MEMORY, PROCESSES, AND SHARING IN MULTICS

Robert C. Daley
Jack B. Dennis
Project MAC, MIT
Gambridge, Massachusetts

M0094

Association for Computing Machinery 211 East 43 Street New York, N.Y. 10017

-.1·

* VIRTUAL MEMORY, PROCESSES, AND SHARING IN MULTICS

Robert c. Daley
Jack B. Dennis

Project MAC, MIT
Cambridge, Massachusetts

Summary

The value of a computer system to its users
is greatly enhanced if a user can, in a simple and
general way, build his work upon procedures devel­
oped by others. The attainment of this essential
generality requires that a computer system possess
the features of equipment-independent addressing,
an effectively infinite virtual memory, and pro­
visJ.on for the dynamic linking of shared procedure
and data objects. The paper explains how these
features. are realized in the Multics system.

Introduction

In Multics 1(Multiplexed Jnformation and .£om­
puting Service), fundamental design decisions were
made so-the system would effectively serve the com­
puting needs of a large community of users with
diverse interests,operating principally from re­
mote terminals. Among the objectives were these
thre·~:

1) To give the system responsibility for
managing the distribution of information
among the levels of the physical storage
hierarchy.

The efficient multiprogramming of many c;omputa­
tiom. makes this essential, but of greater impor­
tance is the fact that users are relieved of the
burden of preplanning the transfer of information
between storage levels, and programs become inde­
pendent of the nature of the auxiliary storage
devices in the system.

2) To permit a degree of programming
generality not previously practical.

This includes the ability of one procedure to use
anoth•~r procedure knowing only its name, and with ..
out knowledge of its requirements for storage, or
the additional procedures upon which it may in
turn eall.

*Work :reported herein was supported in part by Pro­
ject HAC, and M.I.T. research project sponsored by
the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Con­
tract Nonr-4102(01). Reproduction of this report,
in whole or in part, is permitted for any purpose
of thE! United States Government.

This paper is based on notes prepared by J. Dennis
for the University of Michigan Summer Conference
on Computer and Program Organization, June, 1966,

3) To permit sharing of procedures and
data among users subject only to pro­
per authorization.

Sharing of procedures in core memory is extremely
valuable in a multiplexed system so that the
cluttering of auxiliary storage with myriad copies
of routines is avoided, and so unnecessary infor­
mation transfers are eliminated. The sharing of
data objects in core memory is necessary to per­
mit effecient and close interaction between pro­
cesses.

These obje.ctives led to the design of a com­
puter system6 (the General Electric Model 645)
embodying the concepts of paging8 and segmenta­
tion3 on which the initial implementation of
Multics will run.

This paper explains some of the more funda­
mental aspects of the Multics design. The con­
cepts of "process" and "address space" as imple­
mented in Multics are defined, some details of
the addressing mechanism are given, and the mech­
anism by which "dynamic linking" is accomplished
is explained.

The Multics Concepts_££ Process and!~ Space

Several interpretations of the term "process"
have come into recent use. The most common usage
applies the term to the activity of a processor
in carrying out the computation specified by a
program.4,5 In Multics, the concept of process is
intimately connected with the concept of address
space. Multics processes stand in one-to-one
correspondence with virtual memories. Each pro­
cess runs in its own address space which is
established independently of other address spaces.
Processes are run on a processor of the Multics
system at the discretion of the traffic controller
module of the Multics supervisor-.--·-·

The virtual memory (or address S?ace) of a
Multics process is an ordered set of as many as
214 segments each consisting of as many as 2l8
36-bit ~· The arguments for providing a geR­
erous address space having this structure have
been given by Dennis.3 Briefly, the motivation
is to avoid the necessity of procedure overlays,
or the movement of data within the address space,
which generally lead to naming conflicts and
severe difficulties in sharing information among
many processes.

Each segment is a logically distinct unit of
information having attributes of length and access
privilege. For present purposes, we consider two
segment types:

1) data
2) procedure

A segment is treated as procedure if it is inten•
ded to be accessed for instruction fetch by a pro­
cessor. Other segments (including e.g. a source
program file) are considered to be data. Instruc•
tion fetch references to procedure segments are
allowed, as are internal data reads. Writing into
a procedure segment is normally considered invalid
and is prohibited by the system. (In certain
cases, reading of a procedure segment by another
procedure may also be prohibited while e~ecution
is allowed.) Thus procedure segments are non­
selfmodifying or pure procedures. Instruction
fetches from data segments are invalid, and any
data segment may be write protected. The overall
design of Multics protection mechanisms is dis­
cussed by Graham.7

The size of address space provided to ~1ltics
processes makes it feasible to dispense with files
as a separate mechanism for addressing information
heli in the computer system. No distinction need
be drawn between files and segments!

The Multics directorx structure2 is a hier­
archial arrangement of ditectories that associates
at least one symbolic name (but perhaps many) with
each segment. These names have meaning that is
invariant over all processes in existence. Figure
1 portrays the Multics concept of a process as a
virtual memory made up of segments selected from
the directory structure.

Addressing~ MulticB

.!.!!!; generalized address. Each word in the
address space of a process is identified by a
generalized address. As shown in Figure 2, a
generalized address consists of two parts- a~­
ment number and a word number. The address'ing
mechanisms of the ~essor are designed so that
a process may make effective reference to a word
by means of its generalized address when the word
has an assigned location in main memory. Together
with supervisor software, these mechanisms make
reference by generalized address effective regard­
less of where the word might reside in the storage
hierarchy by placing it in main memory when needed.
Thus the generalized address is a location­
independent means of identifying information. In
the following paragraphs we explain how general­
ized addresses are formed in the processor and
give a brief discussion of how they are made effec­
tive.

Address formation. Each processor of the
computer system (Figure 3) has an accumulator A,
a multiplier/quotient Q, eight inex registers

XO, Xl, .•• , X7,

segments

virtual
memory

directory
structure

...

Fig. 1. Virtual memory of a Multics process.--""

~

segment number word number

Fig. 2. The generalized address.

and a program counter PC which serve conventional
functions. For the implementation of generalized
addressing and intersegment linking, a descriptor
~ register, a procedure ~ register and four
~ pair registers are included in each processor.
The function of the descriptor base register will
be discussed in a later paragraph since it does
not participate in generalized address formation.
The procedure base register always contains the
segment number of the procedure being executed.
Each of the four base pair registers (called
simply base registers in the sequel) holds a com­
plete generalized address (segment number/word
number pair) and is named according to its sped -.....,.
function in Multics: ~

IPBR

lxo (AP

I BP

I LP

lx7 I SP

lQ IDBR

Fig. 3. Processor registers for address formation.

address external flag

segment tag operation code addressing mode

Fig. 4. Instruction format.

generalized address

Fig. 5. Address formation for instruction fetch.

segment
t:lg

generalized address

.[index reg.

Fig. 6. Address form3tion for data access.

base pair

0
1
2
3

designation

ap
bp
lp
sp

-~-

function

argument pointer
base pointer
linkage pointer
stack pointer

The functions of these pointers will become clear
when the linkage mechanism is explained.

The instruction format of the processor is
given in Figure 4. Instructions are executed
sequentially except where a transfer of control
occurs. Hence, the program counter is normally
advanced by one during the execution of each in•
struction.

When the processor requires an instruction
word from memory, the corresponding generalized
address is thP se2mPnt number in thA nrocedure
base register coupled with the word number in
the program counter (Figure)), For data refer­
ences, a field in the instruction format called
the segment j!! selects one of the base registers
if the external flag is on. The effective address
computed from the address field of the instructio1
by the usual indexing procedure is added to the
word number portion of the selected base to obtai1
the desired generalized address. This operation
is illustrated by Figure 6 and is used to refer­
ence all information outside the current procedur4
segment. If the external flag is off, then the
generalized address is the segment number taken
from the procedure base register coupled with an
effective word number computed as before. This
mechanism is used for internal reference by a
procedure to fetch constants or for transfer of
control.

Indirect addressing. As will be seen when
the linkage mechanism is discussed, a method of
indirect addressing in terms of generalized
addresses is very valuable. In the processor the
addressing mode field of instructions may indieat4
that indirect addressing is to be used. In this
case, the generalized address, formed as explaine4
above for data references, is used to fetch a pai1
of 36-bit words which is interpreted as shown in
Figure 7. If the address mode field of the first
word contains the code its (.!ndirect jo _!!egment)
the segment number and word number fields are com·
bined to produce a new generalized address. This
address is augmented by indexing according to the
mode field of the second word .of the pair. Furth4
indirect addressing may also be specified,

~ descriptor segment, Implementation of a
memory access specified by a generalized address
calls for an associative mechanism that will
yield the main memory location of any word within
main memory when a segment number/word number com·
bination is supplied. A direct use of associativ'
hardware was impossible to justify in view of the
other possibilities available.

The means chosen to implement the generalized
address for a process is essentially a two-step
hardware table look-up procedure as illustrated by
Figure 8. The segment number portion of the
generalized address is used as an index to perform
a table look-up in an array called the descriptor
segment of the associated process. This descrip•
tor segment contains a descriptor for each segment
that the process may reference by generalized ad­
dress. Each descriptor contains information that
enables the addressing mechanism to locate the seg­
ment, and information that establishes, the appro­
priate mode of protection of the segment for this
process.

The descriptor base register is used by the
processor to locate the descriptor segment of the
process in execution. Note that since segment
numbers and word numbers are non-location depen­
dent data, the only location dependent information
contained in the processor registers ~hown in
Figure 3 is in the descriptor base register. This
fact greatly simplifies the bookkeeping required
by the system in carrying out reallocation activity.
In fact, switching a processor from one process to
another involves little more than swapping pro­
cessor register status and substituting a new des­
criptor base.

In practice this implementation requires that
segment numbers be assigned starting from zero and
continuing successively for the segments of proce­
dure and data required by each process. An imme­
diate consequence is that the same segment will,
in general, be identified by different segment
numbers in different processes.

Paging. Both information segments and des­
criptor segments may be sufficiently large that
paging is desireable to simplify storage alloca­
tion problems in main memory. Paging is imple­
mented by means of page tables in main memory
which provide for trapping in case a page is not
present in main memory. The page tables also con­
tain control bits that record access and modifica­
tion of pages for use by storage allocation proce­
dures. A small associative memory is built into
each processor so that most references to page
tables or descriptor segments may be bypassed.

Intersegment Linking~ Addressing

The ability of many users to share access to
procedure and data information, and the power of
being able to construct complex procedures by
building on the work of others are two prime desid­
erata of multiprocess computer systems. The poten­
tial value of these features to the advancement of
computer applications should not be underestimated.
The design of a system around the notion of a
generalized, location-independent address is an
essential ingredient in meeting these objectives.
It remains to show how the sharing of data and pro­
cedure segments, and the building of programs out
of component procedure segments can be implemented

-+-

generalized address

word number ------- mode

Fig. 7. Interpretation of word pair as
indirect address.

I segment number I word number

X y

descriptor
segment

information
segment

v y

X I ' -
- I

Fig. 8. Addressing by generalized address.

within the framework of the Multics addressing
mechanisms just described, In particular we must
show how references to external data (and proce­
dure) segments occuring within a shared procedure
segment can be correctly interpreted for each of
possibly many processes running concurrently.

Requirements. Necessary properties of a
satisfactory intersegment addressing arrangement
include the following:

1) Procedure segments must be pure, that
is, their execution must not cause a
single word of their content to be
modified.

Pure procedure is a recognized requirement for
general sharing of procedure information. ,-...,'<1/f/1111

2) It must be possible for a process to
call a routine by its symbolic name
without having made prior arrangements
for its use.

This means that the subroutinP (which could in­
voke in turn an arbitn1ri ly large collection of
other procedures) must be able to provide space
for its data, must be able to reference any need­
ed data object, and must be able to call on fur­
ther routines that may bt' unknown to its caller.

3) Segments of procedure must be invarient
to the recompilation of other segments.

This requirement has the following implication:
Th·= values of identifiers that denote addresses
within a segment which may change with recompila­
tion must not appear in the content of any other
segment.

Making.!! segment ~· Meeting condition
(1) requires that a segment be callable by a pro­
cess even if no position in the descriptor seg­
ment of the process has been reserved for the seg­
ment. Hence a mechanism is provided in the system
for assigning a position in the descriptor seg­
ment (a segment number) when the process first
makes reference to the segment by means of its
sym;Jolic name.. We call this operation making the
se~nent known to the process. Once a segment is
kn01ro., the process may reference it by its seg­
ment number.

The pattern of descriptor segment assignment
will. be different for each process. Therefore it

.-. is not possible, in general, for the system to
,.....-.. assign a unique segment number to a shared routine

or data object. This fact is a major considera­
tion in the design of the linking mechanism. In
the following paragraphs we describe a scheme for
implementing the linkage of segments that meets
the requirements stated above.

It is worth emphasizing that this discussion
has 'lothing to do with the memory management pro­
blem that the supervisor faces in deciding where
in the storage hierarchy information should re­
side.. All information involved in the linkage
mechanism is, as will be seen, referenced by
generalized addresses which are made effective by
the mechanisms described earlier. The fact that
pages of the segments referred to in the following
discussion may be in or out of main memory at the
time a process requires access to them, is
irrelevant.

_Linkage ~· Before a segment becomes
known to a process the segment may only be refer­
enced by means of a symbolic path ~2 which
permanently identifies the segment within the
directory structure. Since the segment number
used to reference a particular segment is process
dependent, segment numbers may not appear inter­
nally in pure procedure code. For this reason, a
segment is identified within a procedure segment

,..... by a ~:ymbolic segment reference ~· Before a
procedure can complete an external segment
reference, the reference name must be translated
into c;1 path name by means of a directory searching

-5-

algorithm and the desired segment made known to
the process. Once the segment has become known
to the process, we wish to substitute the effi­
cient addressing mechanism based on the general­
ized address for the timl:'·consuming operation of
searching the directory structure.

Consider a procedure St'gment P that mal<es
reference to a word at location x within data
segment D, as illustrated in Figure 9. In assem­
bly language this would be written as

OPR < D>j (x]

The angle brackets indicate that the enclosed
character string is the reference name of some
segment. This name will be used to search the
directory structure the first time segment P is
referenced by a process. The square brackets
indicate that the enclosed character string is a
symbolic address within an external segment.
Since by requirement (3) \ve wish segment P to be
invariant to recompilation of D, only the S)~bolic
address [x] may appear in P. Furthermore, we \•'ish
to delay the evaluation of [x) until a reference
to it is actually made in the running of a pro­
cess.

p D

X

------~------~1

Fig. 9. An intersegment reference by proceJurc P.

The fo llmvi.ng problem arises: Ini ti.a lly pro­
cess c!' in executing pro,~edure P may reference
<o> ![x] only by symbolic segment name and sym­
bolic external address. After segment D has been
made known to process n, and a first refenmce
has been effected, \ve \vish to make further refer­
ences by the gcneralizeJ addrcss d.#cll x. The qu<>s­
tion is: How can we make the transition from
symbolic reference to generalized addressing with­
out altering the content of segment P?

It should be clear that a change must be made
som(>. place that can effect the change in address­
ing mechanism. Further, the data that is changed
must participate in every refen>.nce to tl1e infor­
mation, We will call the infonnation that is
altered in value to make this transition the link
~ for linking segment P to symbolic addres;---

<Tho 1 [x] in process a.

The collection of link data for all external
references originating in segment P is 9alled the
linkage section of procedure P.

Link data is private data of its process
because whether P is linked to D!x for process a
is entirely independent of whether the same is
true for any other process. Therefore, whenever
a procedure segment is made known to a process a
copy of the procedure's linkage section is made
as a segment within that process. In certain
cases the linkage sections of several procedures
are combined into a single linkage segment pri­
vate to the process.

Linking. Figure 10 shows segments P,D and
the linkage section Lafor P in process a. To
implement reference to D!x from within segment
P will require two references by generalized
address -- one to access the pertinent link data.
in La,and one to fetch the word addressed in
segment D. Realization of this minimum number
of references implies use of the indirect address­
ing feature of the processor. Thus the link data
for an established link will be an indirect word
pair containing the generalized address D#0 Jx
(Figure lla). Before the link is established,
an attempt by a process of computation a to re­
ference Dlx through the link must lead to a trap
of the process and transfer of control to the
system routines that will establish the link and
continue operation of the process. For this pur­
pose a special form of indirect word pair is
used which causes the desired trap. In Figure
llb this is indicated by the code ft in the
addressing mode field of the pair.---The segment
number and word number fields of the indirect
word can then be used to inform supervisory rou­
tines of the place to look to find the symbolic
address <D.> 1 [x] associated with the link. This
address must be translated into a generalized
address to establish the link. The operation of
changing the link data to establish a link is
called linking.

-lo~

p

a)

b)

L
d

>'< indictt,,~

i ndi r,,ct
~tddn'sliin~

DI:,I

X

ft

< D >\ [x]

I'" l m:~:

Fig. 11. States of the link data.

•

D

It is desirable to keep the procedure seg­
ment P self contained if at all possible. Con­
sequently the symbolic. address ,_ D > 1 [x] pointed
to by the unestablished link should be part of
the procedure segment P. Two look-up operations
are required on the part of supervisory routines
to establish the link. The symbolic reference
name D must be associated w·ith a specific seg­
ment through a search in the directory structure,
and this segment must be made known to the pro­
cess if a segment number has not already been
assigned.

The word number corresponding to the sym•
bolic word name x must also be determined. The
set of associations between symbolic word names
and word numbers for a segment is its ~mb~
~ and is part of the segment. Thus, in
our example, a list of word numbers corresponding

"'

=I
X

J

..,./

to symbolic word names that may appear in refer--~.
ences to segment D from other segments is inc lu ~
as part of segment D at a standard position known
to the system. This list is searched by a systl'm
routine to find the word number requin'd to
cstuhlish A link.

The~ pointer. A remaining question is:
How does a process produce the generalized address
Lj'ta jw required to access the link data? One
ml.ght suppose that word address w could be fixed
pE!rmanently at the time procedure segment P was
c:teated, This is not possible because the set of
segments required by each process that might share
use of procedure P will in general beunrelated: If
the linkage sections of several procedures were
pV1ced in a single segment, assigning a fixed
position to a link for all processes would produce
intolerable conflicts. On the other hand, the code
by which a inter segment reference is represented
in segment P must be fixed and identical for all
coo.putations to meet the pure procedure constraint.
Any data that allows different addresses to be
formed from fixed code must reside in processor
registers. By this argument we see the necessity
of .:tssociating a linkage pointer with each pro­
cesa. The linkage pointer is a generalized
address that resides in a dedicated base register
(designated lp), As shown in Figure 12, it is
the origin ~~s of the portion of a linkage seg­
ment that contains the links for intersegment
references made from the segment being executed,

Referencesto external segments are coded
relative to the link pointer and have the form
sh~1 in Figure 12. The displacement k is deter­
mined by the coding of P and is invariant with
respE!Ct to the process using P.

Procedure Call and Return. The coding used
to transfer control ~a subprocedure and the
subsequent return of control must meet the re­
quirenents of programming generality, In par­
ticul.ar, no assumptions may be made regarding
the do~tailed coding of either the calling or
called procedure other than those aspects
unifoJ:mly established by convention, Conventions
for four aspects of subroutine calling are re­
latiVE!ly familiar:

1) Transmission of arguments
2) Arranging for return of control
3) Saving and restoring processor state
4) Allocating private storage for the

called procedure.

Item (4) is necessary in Multics because of the
pure P"ocedure requirement, and the generality
requirE!ment which forbids prior arrangement of a
called procedure's storage needs. This private
storage' is supplied by associating the~
se&ment with each process in which a ~ of
private storage is reserved at each procedure call.
The frame is released upon return of control,
This mechanism is implemented by the stack pointer
(designated ~) which is the generalized address
of the stack frame origin for the procedure in
operati,,n, The use of the stack segment makes

p

<D> I [xJ

k

-7

.!.£ ._,..,.. J------f-1-

OPR

linkage
section
for P

k

Fig. 12. Addressing the link data.

every procedure in Multics automatically re­
cursive by associating separate stack frames
with successive entries into the same procedure,
Due to the pure procedure requirement, only
fixed arguments that do not depend on segment
numbers may appear in procedure segments. Point­
ers and variable arguments must be placed in the
stack segment, the linkage segment, or elsewhere.
So that the language designer may have his choice
of implementation, the argument pointer (desig•
nated ~) is at procedure entry the generalized
address of the list of arguments for the called
procedure.

In addition to these conventional require­
ments, the method of dynamic linking just des­
cribed introduces one new problem: When process
a, in executing procedure P, transfers control to
procedure Q, the value.of linkage pointer must

changed to the generalized address of the
linkage section for procedure Q, Since the new
value of the linkage pointer contains a segment
number, it is private data of process a and
cannot be placed in segment P or Q,

'
-~

'~ ...
linkage linkage

p section section Q
for P for Q

,.--.,.

lpp .J e

~~~~ [ e ]-rl--_..:;;.__
1 

I l.lE. k TRA lp --> 12. Q 
TRA y,* 

Fig. 13. Linkage mechanism for procedure entry. 

This problem requires a somewhat modified 
form of intersegment linkage from that used for 
data references, Since it is desireable that the 
machine code necessary to load the linkage pointer 
for a procedure segment be associated with that 
segment, the following solution was adopted. For 
each external entry point within a procedure seg­
ment two additional instructions are placed in the 
procedure's linkage section at compilation time. 
The first instruction loads the linkage pointer 
with the appropriate value at procedure entry, and 
the second instruction transfers control to the 
entry point in the called procedure segment. Thus 
in establishing the link for an external procedure 
call, the generalized indirect address placed in 
the calling procedure's link data points to the 
corresponding instruction pair in the linkage sec­
tion of the procedure being called, When control 
passes to the linkage segment during an external 
procedure call, the segment number portion of the 
desired linkage pointer is easily obtained from the 
procedure base register, since the process is now 
executing in the desired linkage segment. 

Figure 13 depicts the linkage mechanism re­
quired for an external procedure call from proce­
dure P to segment Q at entry point e. The solid 
lines indicate the individual steps taken through 
indirect addresses while the dashed lines indicate 
resulting flow of control. 

In executing a call to an external procedure, 
the caller's machine conditions, including the pro­
cedure base register and program counter, are saved 
in the stack segment by the caller. Return from 
the called procedure can thus be effected by simply 
restoring the caller's machine conditions from the 
stack segment. 

Acknowledgement 

The evolution of the concepts presented in 
this paper represents the efforts of many members 
of the Multics programming staff. However, the 
authors wish to express particular appreciation of 
the work of F .J. Corbat6 and R.M. Graham in devel­
oping the basic design of the Multics Linkage . 

References 

1. Corbato, F.J., and Vyssotsky, V.A., Introduc­
tion and overview of the Multics system, 
AFIPS Conference Procedings Vol. 28, Spartan 
Books, Baltimore, 1965, p. 185-197. 

2. Daley, R.C., and Neumann, P.G., A general pur­
pose file system for secondary storage, AFIPS 
Conference Procedings, Vol. 28, Spartan Books, 
Baltimore, 1965, p. 213-229. 

3. Dennis, J.B., Segmentation and the design o~ 
multiprogrammed computer systems, Journal 
of the ACM, Vol, 12, No. 4, (October 1965), 
p: 589-602. 

4. Dennis, J.B., and Van Horn, E.C., Programming 
semantics for multiprogrammed computations, 
Communications of the ACM, Vol. 9, No. 3, 
(October 1966), p. 143-155. 

5. Dijkstra, E.W., Cooperating sequen~ial process­
es, Technological University, Eindhoven, The 
Netherlands. 

6. Glaser, E.L., Couleur, J.F., and Oliver, G.A., 
System design of a computer for time sharing 
applications. AFIPS Conference Procedings, 
Vol. 28, Spartan Books, Baltimore, 1965, 
p. 197-202. 

7. Graham, R.M., Protection in an information pro­
cessing utility. To be presented at the ACM 
Symposium on Operating System Principles, 
Gatlingurg, Tenn., October 1-4. 

8. Kilburn, T., Edwards, D., Lanigan, M., and 
Sumner, F., One level storage system, IRE 
Transactions!£:..!.!, 2, (Apri.l 1962), p. 22'3-235, 

--.., 

9. Saltzer, J.H., Traffic control in a multiple~ 
computer system. Technical Report No. MAC­
TR-30 (Ph.D. thesis), Project MAC, NIT, 
Cambridge, Mass., 1964. 


