
ACM

Syn1posiUD1. on
Operating BysteDl
Principles

October 1· 4, 1987 Gatlinburg, Tennessee

P'ROTECTION IN AN INFORMATION PROCESSING UTILITY

Robert M. Graham
Massachusetts Institute of Technology
Cambridge, Massachusetts

M0095

AE;sociation for Computing Machinery 211 East 43 Street New York, N.Y. 10017
•

.. j

PROTECTION IN AN INFORMATION PROCESSING UTILITY

Robert M. Graham
Massachusetts Institute of Technology

Cambridge, Massachusetts

One of the critical problems in the design
of an information processing utility which permits
flexible sharing of user information is that of
privacy. This paper discusses one solution for
this problem.

..!E,!roduc tion

In this paper we will define and discuss a
solution to some of the problems concerned with
protection and security in an information pro
ces:>ing utility. This paper is not intended to
be an exhaustive study of all aspects of protec
tion in such a system. Instead, we concentrate
our attention on the problems of protecting both
usel~ and system information {procedures and data)
durlLng the execution of a process. We will give
spedal attention to this problem when shared
pro<~edures and data are permitted.

We will first give a brief resume' of those
properties of an information processing utility ·
which make protection necessary and non-trivial
to implement. After a discussion of the desira
bility and necessity of protection we define a
number of properties we feel are essential to any
satisfactory protection scheme. We then describe
an abstract model of the typical hardware used to•
day for an information processing utility, and
augment this model with an additional feature
necessary for a satisfactory solution to the pro
tection problem. Using this model we describe
the properties required of the companion software.
Lastly, we highlight certain additional complex
Hie:; forced into the implementation of this pro
tect:lon scheme due to permitting shared informa
tion in a multi-processor system.

~environment

The characteristics and properties of an in
formation processing utility have been described
in cc•nsiderable detail elsewhere, the most com
prehe,nsive being Corbato' and Vyssotsky .1
We wi.ll touch only on

** WO?k"" l'eported herein was supported in part by Pro
ject MAC, an M.I.T. research project sponsored by

~ the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Con
tract Nonr-4102(01). Reproduction of this report,
in whole or in part, is permitted for any purpose
of the United States Government.

1-

those properties which are pertinent to the pro
blems of protection during execution. An infor
mation processing utility (IPU) will have a large
community of users, many of whom are using the
system simultaneously. The system will_. of
course, operate in a multi-programming mode and
have more than one central processor. The com
munity of users will certainly have diverse in
terests; in fact, it will Rrobably include users
who are competitive commercially. The system will
be used for many applications where sensitive
data such as company payroll records, will need
to be stored in the system. On the other hand,
there will be users in the community who wish to
share with each other data and procedures. There
will even be groups of users working cooperatively
on the same project. Service bureaus, software
producing companies, and other service organiza
tions will have procedures which they wish. to
rent. Some groups may rent access to data bases.
Finally, there will be public libraries of pro
cedures supplied by the information processing
utility management. Indeed, a prUnary goal of
such a system is to provide flexible, but con
trolled access by a number of different users to
shared data and procedures.

Why Protection?
Although protection is not necessary for pri

vacy reasons in the case of a single uaer with his
own private machine, it is certainly d~sirable.
Protection in this situation aids debu&ging by
~imiting the propagation of errors, thus localizing
the source of the original error. Even in fully
debugged programs protection minUnizes the effects
of a human mishap or a machine malfunction. As
soon as the machine is shared among more than one
user, even if only one user at a tUne uses the
system, protection is required so that the manage
ment may guarantee the highest possible relia
bility of operations as well as equity in charges
to the users. For example, even the simplest
mult-i-user system contains at least one data base
which is shared by all users, namely the super
visor program itself. In addition, most contain
information maintained by the supervisor regard
ing the allocation of resources and a record of
resource usage for the purpose of charging users.
Even though this data base may be used only via
the supervisor, it is nevertheless shared by ~
users and so must be protected. Without ade-
quate protection, a dishonest user might alter
the accounting procedures or data thereby causing
inequitable charges. A malicious user might even
alter the system itself, causing it to act in an
unreliable or destructive fashion. As soon as
more than one user may have information stored in

the system at the same time, as in an information
processing utility where the users store many
files of information within the system for long
periods of time, a user's privacy must be assured
by the system and protection becomes even more
critical. Without adequate protection in an IPU,
a clever user, perhaps due to a single break or
loophole in the privacy machinery, may be able to
snoop in a competitor's data files obtaining in
formation which gives him some material advantage.
Such snooping would be difficult, if not impossf
ble, to detect.

Properties of a Satisfactory Protection Mechanism

Excluding the running of all programs inter
pretively, any effective protection scheme must
have some hardware assistance. In the past, the
common hardware features for protection have been
a mode switch for instruction execution and a
memory bounds register. The mode switch specifies
one of two modes of execution: master or slave.
In mastermode any instruction may be executed,in
cluding a subset of the instructions called the
privileged instructions. In slave mode an attempt
to execute a privileged instruction causes a
fault. The privileged instructions include the
input and output instructions as well as the in
structions for changing the mode switch and the
memory bounds register. This effectively blocks
users from accessing information written on the
various storage media thus protecting inactive
information in the system. Use of the mode switch
alone does not protect information which is active
and resident in working memory. This is the func
tion of the memory bounds register. I_n parti
tions the working memory into two parts, one of
which may not be accessed when executing in slave
mode. Protection based on this type of hardware
feature is an all-or-nothing type solution. If
a program has any privileges it has ~· If a
program has any access, it has completely ~
stricted access. We feel that this is unsatis
factory as a protection mechanism for an IPU. In
a system where users may share data in working
memory the ability to have more control over
access is essential. What is needed is the abil
ity to have a variety of access rights for each
separate logical block of information (called a
segment). Current machines which have been modi
fied for use in IPUs have hardware features which
allow memory to be subdivided into a large number
of parts called segments. Each segment has a nu~
ber of access control switches which specify var
ious access privileges such as write/no-write,
slave/master, and execute/no-execute. This hard
ware extension makes possible varying degrees of
access to each segment which may differ from seg
ment to segment. If this control is a part of
the physical subdivision of memory, any user who
has access at all, has the same access as every
other user who may access the segment. The owner
of a data segment needs write access if he is to
maintain or update the segment with more timely
information, but on the other hand it is necessary

that other users of the data not be able to
change it. Rather than being an exception, this
is the rule in IPU. Thus the most advanced Ii'

chines have hardware featurt~S such that the ~s'-'
may be varied on the logical segment rather than
the physical segment, thus permitting different
access by different users to the same physical
segment.

In the de.sign of a protection mechanism, an
excellent guiding principle is the military
security principle of "need to know", Applying
this in the design of a protect ion mechani~1:~ in
an IPU results in the property that ead1 prL,ce
dure has the min~num access needed to get its job
done. A procedure has access to only those pro
cedures and data segments necessary to dL1 its
task, and then only the type of access required
for the job, This can be visualized by recalling
the military system of clearances, The higher the
clearance, the more documents one may access. On
the other hand, the higher the clearance, the
fewer the individuals that hold such a clearance.
In an IPU the critical functions (i.e., those
whose failure have disasterous consequences effect
ing the entire system) are segregated to the most
protected area, This type of protection further
improves the reliability of the system from that
of the earlier two mode systems by further mini
mizing the extent of damage caused by hardware
or software failure. Further, it aids maintenance.
An IPU is a real-time system and the behavior -c ~
real-time systems is difficult, if not imposs~,
to repeat. The more compartmentalization and pro
tection present in the system, the easier it is
to isolate and locate the source of unwanted be
havior. If the system has a general facility for
layers of protection (analogous to layers of
security'clearance) then this service can be ex
tended to users of the system, This permits res
tricted classes of users who use subsystems
supplied by other users. A subsystem which has
been designed and implemented by a user may then
enjoy the same sort of layered protection with
respect to its users as the operating system en
joys with its users. Such a service can be
achieved easily by any user without any special
administrative procedures on the part of the sys
tem management or any special coding by the user.
Two noteworthy examples of the usefulness of such
a service are a subsystem designed by an instruc
tor for use by his students and a service bureau
selling access to a specialized system.

In summary, a satisfactory protection mech
anism should have the following properties. It
should be possible to completely isolate one pro
cess from another; that is, a user should be
able to deny any access whatsoever by other users
to all of his segments, On the other hand, it
should be easy and convenient for a user to a I· ·
controlled access to any of his segments, with~
different access privileges for different users.
Further, within a single process layers of pro-

tection should be available for use by both the

.. sys tern and a user so that the "need to know''
philosophy can be applied to any degree deemed
reasonable. Finally, it is extremely desirable
that procedures may be called across the layers of
protection without any special programming on the
part of the calling procedure. If the grouping of
pro·:::edures into protection layers is not coded in
to the procedure this organization is easily
changeable by an administrative program.

~Abstract Model

In this section we will describe an abstract
model of hardware features which will permit a
satisfactory solution to the protection problems
described earlier. This solution is but one of
possibly several solutions of the general problem.
It will illustrate each of the properties we con-
side·.r essential to any satisfactory solution. We
begin by describing a model which is essentially
that of Dennis.2 A key component of this model is
a segment. A segment is a contiguous block of
wordEI whose length may vary during the execution
of a process. Hardware for realizing segments is
often called segment addressing hardware. Most
computers suitable for use in an IPU also have
paging hardware. While a segment is a logical
unit of information of which a user is cognizant,
a page is a unit of information which is useful to
the system for storage management and is thus invi
sible to the user. Thus pages are not relevant to
this discussion and will not be mentioned further.
In a t:omputer with segment addressing each word
is addressed by an ordered pair of integers (S, W).
S is the segment number and W is the word number
within the segment. Segment numbers range from 0
to thE! maximum allowable number of segments in a
process and the word number ranges from 0 to the
current length of the segment to which it refers.
Associated with each segment is a segment descrip
tor. The segment descriptor contains the absolute
location of the beginning of the segment, the
current size of the segment, and the access con
trol indicator.

length

Descriptor

access
indicator

This access indicator specifies whether the
segment may be accessed in slave mode, written,
or executed. Further, if the segment is a proce
dure (i.e., execute indicator on), it specifies
whether the procedure is to execute in master mode
rather than in slave mode. Finally, it includes a
fault bit which when non-zero, causes a fault (or
trap or interrupt) on any attempt to reference the
segment,, even when in master mode.

If the write indicator is on but the execute
indicator is off, the segment h writeable data.
If the Elxecute indicator is on and the write in•
dicator off, the segment is a pure procedure (i.e.,

one which does not modify itself). If the slave
indicator is on, any procedure may access the seg
ment, otherwise only a master mode s~gment (one
with the master indicator on in its descript~)
may access it. If the fault code is non-zero, no
access at all is permitted. A non-ze,ro fault code
overrides the setting of all the other indicators.
For every segment which a process may access (or
potentially access), the corresponding descriptor
resides in a distinguished segment called the des
criptor segment. The segment number used in an
address is, in fact, the indexwithin the descrip
tor segment of the descriptor for that segment.
In any system there will be a large number of des
criptor segments,one for each process. Whenever
a process is executing a hardware processor re
gister called the descriptor base register con
tains the absolute loca~ion of the descriptor
segment for the executing process. Thus, the con•
tents of the descriptor base register indirectly
define that set of segments to which an executing
process has potential access.

In order to implement layered protection we
augment the location counter and each descriptor
with a field which will contain a ring number.

beginning
of segment

ring
number

acces,
indicator

Descriptor

procedure
segment number

Location Counter

ring
number

word
number

We define rings to be ordered, disjoint sets
of segments, numbered from 0 to some maximum.

Each segment is assigned to one and only one
ring. The lower the ring number a procedure is
executing in, the greater its access privileges.
A procedure executing in ring i has no access
whatever to any segment in ring j, where j~i. On
the other hand, a procedure executing in ring i
has access to a segment in ring k if k> i, subject
to the access restrictions specified by the in
dicators in its descriptor. However, to enforce
this restriction, the system must be aware of the
passage of control from one ring to another. In
order to detect a "change of ring" in control, we
further restrict the access rights of procedure
segments. When a procedure executing in ring i
attempts to transfer control to a procedure in
any ring, other than ring i, a fault occurs.
This fault is directed to the supervisor so that
it may carry out appropriate housekeeping. We
will discuss the kind of housekeeping necessary
in some detail later in the paper. The assign
ment of each segment to a unique ring is suffi
cient to implement a solution of the protection
problem. However, relaxing the disjointness re
quirement for the large class of chameleon-like
shared service routines will result in a con
siderable increase in efficiency. This class of
procedures need as much access privilege as their
caller but no more. In this case the procedure
will operate correctly in whatever ring control
is in at the time it was called. Hence, we relax
the condition that the rings are disjoint and
allow a procedure segment to be assigned to a con
secutive set of rings called its access bracket.
The ring field of the descriptor will then con
tain two integers specifying the lowest ring and
highest ring in the access bracket. Now a trans
fer by a procedure in ring i to a procedure with
access bracket (nl, n2) with nl~ i ~ n2, does not
cause a fault and does not cause control to
change rings, i.e., control remains in ring i.
This means the value of the ring field of the lo
cation counter does not change. A reasonable and
useful interpretation of the access bracket can
be made for data segments. Given a data segment,
D, with access bracket {nl,n2), then a procedure
in ring i may write into D if i ~nl (proviqed of
course that the descriptor of D has the write in
dicator on), it may only read D if nl<. ni ~ n2
(even if the write indicator in D's descriptor is
on), and may not access it at all if i ,.nz.

Software Support

The preceding section described a model of
hardware features which will allow a satisfactory
imp_lementation of execution time protection.
This section will describe the software support
necessary to complete the job. We begin with the
problem of permitting controlled entry into an
inner ring from an outer (higher numbered) ring.
Recall that when a procedure in ring i attempts
to transfer to a procedure with access bracket
(nl,n2) and i> n2 a fault occurs. Since it is
usually undesirable to permit transfers to a pro-

procedure in an inner ring from all outer rings,
we extend the notion of access bracket to include
a third integer, n3, which defines the call br~-~~
We will refer to the three integers as the rit~
bracket. If a procedure in ring i attempts to
call a procedure, P, with ring bracket {nl,n21 n3)
and n2 <i ~ n3 the call is allowed only to certain
distinguished entry points in P. If i >n3 the
call is not permitted at all. The call bracket
is implemented by software. A fault occurs if
i>n2 and the fault handler for this fault sorts
out the case n2< i~ n3. One property of any seg
ment with a non-empty call bracket is a list of
entry points called the gate list. Because pas
sing from one ring to another is similar to cros
sing a wall or fence separating the the rings,
the entries are called gates and the fault han
dler which monitors the crossing is called the
gatekeeper. A procedure in the call bracket may
transfer only to those points listed in the gate
list.

Before proceeding further, a few words about the
origin of a segment's descriptor will help put
our other comments in perspective, even though the
origin of the descriptors is immaterial to the pro
tection mechanism. In an IPU of the type we have
in mind for a concrete realization of the solu
tion described herein, the maintenance and
storage of segments is entrusted to the file sys
tem. An inactive segment is stored in file me~
ory and is often called a file. The symbolic --.,
name and other properties of the segment are k~
in a file directory entry for the segment. The
file directory entry contains the segment's
symbolic name and its location in file memory.
In addition, it contains the access bracket (nl,
n2) and the call bracket (n3), the gate list, and
the access control list. The access control list
is a list of all users who may access the segment
and the access which that user may have to the
segment. A user is specified as a triplet {per
sonal name, project id, process id). A three-
part user specification makes it possible for the
same person to have different access privileges
when he works on different projects. By including
a process id he may protect himself from himself
by having different access in his various pro
cesses. When a user first attempts to teference
a segment, by symbolic name, the file system lo
cates the segment in file memory, assigns a seg
ment number to it, and constructs the proper des
criptor with access indicator depending upon what
user is attempting to reference the segment.

We return now to the gatekeepet. When a
procedure P in ring i tries to transfer to a pro
cedure Q with ring bracket {nl,n2,n3) if i"nl
or i>n2 a fault occurs and the gatekeeper gets
control. If i~n3 the transfer is rejected as
an error. If n3~i'>n2 the target address of tr -,
transfer is compared with the entries on the ga~
list to valid ate that the call is to a valid entry
point, If i<nl the call is in an outward direction

..
,.. and any entry point is valid. After the call has

be!en validated the gatekeeper records, on a push-
,r-~, dcMn stack, the return point corresponding to the

call and the ring number of the ring control was in
in at the time the call was attempted. An attempt
to execute a return across rings also causes a
fault which allows the gatekeeper to get control.
The attempted return is validated against the re
cord of unsatisfied calls across rings. This in•
su:res that returns remain in synchronization with
calls.

The question of what ring control changes to
whe'n a procedure in ring i calls a procedure with
access bracket (nl,n2) is still unresolved. The
answer is that control should change by the small
est possible number of rings. Thus, if i> n2 con
trol changes to ring n2, if i< nl control changes
to ring nl. This interpretation seems reasonable
(although possibly arbitrary) for the following
rea1;ons. When entering an access bracket of lower
numbered rings (i ,.n2) changing control to n2
adht!res to the philosophy of granting only the
minimum access necessary to do the job. In the
othe,r direction, changing control to nl would
grant enough access for the procedure to assist
its caller, Q, if Q were called from a ring j
where n2) j ,- nl.

~tional Complexities in an IPU
The software support described in the pre

ceedlng section still does not satisfy the goals
which we stated above. When a procedure in an
innej:- ring is called arguments may be passed to
the ;Lnner procedure. Argument lists include
addrE!Sses. The inner ring having higher access
privl.leges than the outer ring, may do damage
to itself or other segments in its ring, inad
verte,ntly, if a calling procedure in an outer ring
supplies the address of some segment in the inner
ring. Thus, arguments passed to inner ring pro
cedures must be validated, i.e., all addresses
must be checked to see that the calling procedure
actually was permitted access to the segments
specified in the addresses. This is a standard
operation and is a task that the gatekeeper can
do for all calls to inner-ring procedures. This
is not quite the entire story with regard to vali
dation of addresses in argument lists. The fact
that 1:here are multi-processes executing on the
same eomputer time-shared with other users, means
that uhen segments are shared, data such as add
resses in argument lists may change between the
execution of two consecutive instructions. This
is possible since the user may be interrupted d\le
to a timer run out, for example, and another pro
cess may be executed before the interrupted pro
cess is resumed. If data segments are shared by
these two processes, then validated argument list
addresses may be modified by the interrupting pro
cess. One solution to this problem is to inhibit

. interrupts during the time the validation is tak
ing place. Actually, one has to be considerably
more sophisticated than this; interrupts must be

inhibited until the called procedure in the inneJ
ring is finished using the addresses. Even if
such a long inhibiting of interrupts were toler
able, the problem is still not solved. In a
multi-processor system, even if interrupts are
inhibited, another process is executing on anothe
processor. If that process is sharing a segment
with this one, it will be able to modify the
addresses during the time the inner procedure is
executing. Thus, it is not enough just to vali·
date the addresses. The addresses in the argu
ment list must be copied into a data area which
is in the same ring as the called procedure and'
this copy of the addresses is validated. This
guarantees that the copy of the addresses which
are being validated may be modified by a pro
cedure in another process only if that procedure
has access privileges which are equal to the
called procedure in this process.

Another problem exists for calls in the
other direction. When a procedure,P, calls a pro
cedure, Q, in a higher numbered ring, the argu
ments P is passing to Q maybe in the same ring as
P and thus inaccessable to Q. In this case they
must be copied into a data area which is accessable
by Q.

1.

2.

References

Corbato, F.J., and Vyssotsky, V.A., Introduc
tion and Overview of the Multics System,
Proceedings 2.£ ~ ~ ~~ Las Vegas,
Nevada, November 19651 pp. 185-196.

Dennis, J.B., Segmentation and the Design of
Multiprogrammed Computer Systems, JACM
(October 1965), Vol. 12, No. 4, pp. 589-602.

