
M0104

MASSACHUSETTS INSTITUTE OF TECHNOLOOY

Project MAC

July 8, 1968 MAC-M- 384

A PAGING EXPERIMENT WITH THE MULTICS SYSTEM*

by F. J. Corbato

Abstract

The paging algorithm currently used in the Multics system

is described in considerable detail. This algorithm can be viewed

parametrically such that at one extreme it has a page removal stra-

tegy of first-in-first-out (FIFO) and at the other extreme a removal

strategy of least-recently-used (LRU). Two brief experiments are

described where the effects of parametric variation were observed

with results which indicate that a particularly simple case of the

algorithm gives efficient performance.

PREPRINT

This memo is a preprint of a paper to be

iilcluded in a Festsdhrift to be published

in honor of Professor Phi lip M.. Morse.

* Work reported herein was supported (in part) by Project MAC, an
M. I. T. research program sponsored by the Adva~ced Research Projects
Agency, Department of Defense, under Office of Naval Research Con
tract Number Nonr-4102 (01).

PREPRIN T

A PAGING EXPERIMENT WITH THE MULT T CS SYSTEM

by F. J. Corbato

Paging was first introduced in the Atlas Computer! and promptly

had great influence on sys t•:!m designers. For paging allows the solution

of two problems in a systeiilc1.tic way: 1) it is possible to execute pro

grams which are only partially loaded into primary memory or which

require primary memory space larger than that avatlable and 2) it is

possible to interrupt and remove programs from primary memory and later

restore them with minimal storage allocation difficulties. These issues

bt~come especially important when one designs large-scale multiple-accer;s

systems in which multiplexing among user programs which are competing for

primary memory is generally the case. Despite the obvious benefits which

can result from paging, there is also a danger of extreme degradation of

system performance whenever excessive paging activity occurs. 2 ,3

System degradation as a result of paging is, of course, caused by a

mixture of overall system design (e.g., a relatively small core memory)

and the particular paging strategy employed. Since there sti 11 is not

a great deal of insight into paging strategies, it is valuable to examine

them so as to isolate this component of the general problem.

Introduction

Paging strategies and algorithms have been studied previously,

for example, by Belady.4 From these results and others, it is clear

that there is considerable statistical fluctuation in performing experi-

- 2 -

ments and more importantly that there is a dependence on the charac

teristics of the program samples chosen and the computer environment

in which the programs are operated. How strong this dep0ndence is.

is still not well understood and is one reason for the p1·esent study.

Moreover, because the Multics system5 contains many radical Llepartures

from previous systems, it is a good candidate for investigating the

invariance of results. Some of the departures which could easily affect

paging behavior are: the use of recursive and pure procedures, the use of

segmentation, the employment of a PL/I subset as a Language for system

pr:>gramming, the homogeneous paging of much of the supervisor on the

same basis as user programs, as well as the relatively large amount of

pageab le memory and the particular page size.

With the above motivation for paging studies, it is important

to recognize the goals and limitations which are being considered. It

is in principle possible to design computing systems where all paging

sequences are specified by the programmers. In this way, one would

obtain more effective operation with near optimum sequencing of pro

grams and data to and from secondary and primary memory. However, such

a :nocedure is in general impractical in the Multics system for a

variety of reasons: one immediate obstacle is that the sy~:tem is

designed for the simultaneous multiplexing of multiple users and

processors who in turn share a single copy of all common procedures or

data. Thus a procedure may be simultaneously a member of several

processes (i.e., programs) each with different paging specifications.

But even beyond this fundamental difficulty there is the inconvenience

to the programmer of determining and analyzing program behavior. Even

- 3 -

granting that he were able to do it accurately and that he could specify

data-dependent variations, there is still a problem that such specifica

tion represents unwanted clerical tedium. Thus, in large systems such as

Multics there is an important need for an automatic paging strategy

which adapts to all situations, changes of pr~1grannning lwbits and even

variations in the progrannning style or sharing patterns among tht:' user

population.

Having established that an automatic paging strategy is desir

able, it also follows from the above considerations that such a strategy

is constrained to using past performance and events to predict the future.

It is only to the extent that there is a corelation of past and future

behavior that a paging algorithm can have any effect. A key strategic

question which a paging algorithm must answer whenever a new page is

needed is: "which page should be removed from core memory?" Two

possible strategies of page removal are those of first-in-first-out

(FIFO) and least-recently-u:3ed (LRU). In the case of the FIFO algorithm,

the justification is that it is easy to implement; it is particularly

valid in those cases where pages are brought in for a brief init.ial

burst of activity and then abandoned for long periods. In the case

of the LRU algorithm, it is not obvious how to implement i,t precisely

without expensive hard·~are design assistance or without incurring paging

overhead several orders of magnitude greater than can be tolerAted;

nevertheless, the LRU paging strategy is probably a good one since one

would expect a high corelation of least-~ecently-used pages with pages

unneeded by a program in the immediate future.

- 4 -

.Til~ Multics Paging Algorithm

In the Multics system a paging algorithm has been developed which

has the implementation ease and low overhead of the FIFO strategy and is

an approximation to the LR.U strategy. In fact, the algorithm can be viewed

as a particular member of a class of algorithms which embody for each page,

a shift register memory of length k. At one Hmit of k = 0, the algorithm

becomes FIFO; at the other limit as k-+ oo, the algorithm is LRU. The

current Multics system is using a value of k = 1., and it is the purpose

of the present study to explore the effect of variations of k.

To understand more clearly the significance of k, a simplified

view of the multics algorithm is first given. The algorithm which is

called upon whenever a new page is needed keeps track of all potentially

removeable pages with a pointer into a circular list and cyclically

evaluates each page for either retention or replacement by the new page.

Each page has associated with it a usage bit in its page table entry and

the usage bit is turned on (i.e., set to 1) by the processc•r hardware

whenever the page is referenced (i.e., read or written). Whenever the

algorithm examines a page entry, it extracts the associated usage bit and

enters it into the high-order position of a k-bit shift re~:ister after

shifting the contents of the register one bit-position lower. Then if

the shift register is non-zero, the page is retained; if th~ shift

register is zero, the page is replaced by the new page. In either case

the usage bit for the page is turned off and the circular list pointer

is advanced.

Some properties of this class of algorithms can be deduced

from the above description. It is clear that the case of k = 0 is nothing

- 5 -

but the FIFO algorithm. Further, as k increases, the pointer of the

cir:ular list must on the average revolve k times as far as it does in

the case of k = 1 to yield as many page replacements. For large values

of 1c, the mechanism takes on the character of a periodic sampled-data

system where the number of le.ading (high-order) z(•ros in the ~hift

register of a page is a direct measure of the m.unber of cycles through

the list since the page was used and hence the approximate time; in

this way the LRU algorithm is reached in the limit.

An important aspect of this class of algorithm is that the

overhead of operation increases with increases of. k. It is therefore

possible to engineer a practical algorithm by adjusting k to a value

such that the reduction in page replacements due to the algorithm's

improved predictive properties is just balanced by the increased

overhead.

A critical aspect in the design of a paging strategy is the

maintenance of stable operation under transient program behavior. Many

of the algorithms studied by Belady have the property of cyclic per

formance variations in that periodically all pages have their usage bits

res.et simultaneously. Similarly, an early version of the Multics algorithm

suffered from a periodic sampling of page usage bits which was only loosely

coupled with page replacement frequency. To consider this issue further

and to examine the stability of the present Multics algorithm, the example

of k = 1 is considered. In this case, the usage bits are distributed

on the average such that half are on and half are off. For if the

circular pointer sweeps through the usage bit 1, it will leave behind

it the usage bit 0. Conversely, when usage bit 0 is swept through,

- 6 -

usage bit 1 is left behind since the replacing page brought in will in

the case of demand paging certainly be used. Furthermorl'. wi. th

periodic page replacements, if there is an excl!SS of zero usa~e bits.

the pointer rotation rate will slow down and more one bits wdl be

created; conversely for the opposite case, the p<)inter rotation rate

will speed up. Thus, the algorithm's decision mal--ing mechanism, because

it is syncronized to the traffic of page replacements and by its design

contains negative feedback, is quite stable in its performance.

In the area of algorithms used by system programs, it is easy

fc·r misunderstanding to arise and for non-trival aspects to be over

looked. For this reason a more detailed view of the precise mechanism

of the Multics algorithm is given in Figures 2 and 3. As will be noted

in the following explanation, several additional refinements over what

has already been discussed are needed to create a working strategy.

Figure 2 gives the flow of control which occurs when a program

finds a page needed from secondary storage and a page f<lUlt occurs.

The initial test in box 1 normally takes the "no" branch. Because its

purpose is easier to understand after the main logic of the algorithm

is established, an explanation is given below rather than here. In

box 2 a test is made to ascertain if the pool of empty blocks of pri.-

mary storage is nearing exhaustion. cA free block pool is used so as

to be able to service a page fault more r~pidly without waiting for

a page to be removed from primary core memory.) If the free block pool

is low, box 3 is entered to replenish the pool. (Figure 3 represents an

elaboration of box 3,) Control next passes to box 4 where a free block

is designated for the new page and a pointer to this block is entered into

- 7 -

a list of pages being read (L e., ''pulled") int:o core memory. In box 5

th~ location on secondary storage of the new page is determined from

a ·naster data base called the Active Segment T.lble (AST) and the s(>con

dary storage drum controller is directed to transmit the page into core

memory. However, before this transmission is complete the program in

boxes 6 and 7 proceeds to do severa 1 bookkeeping steps for· all the

drum-core transfers which have been completed since the drum status wns

last checked. One step is the switching of the page pointers from the

pull list to the head of the replaceable page list. The reasllU for

the head rather than the tail of the list is that in addition a special

"first-time" 1-bit switch is turned on for each of the newly pulled pages.

As will be seen later in fi.gure 3, this switch makes it possible for

the algorithm to ignore for a few page faults the initial hurst of

references to a page before it begins to monitor usage. (Otherwise a

nf!W page would always appear used after the first pointer rotation

si.nce the attempt to reference it is what triggered the pull.) After

setting the switches, the page table entries for the pages are .:1djusted

so that attempts to reference the pages will succeed and the other pro

cesses which had been waiting for the arrival of pages now in primary

storage are scheduled for processor service. Similarly in box 7 the

blocks corresponding to the pages which have been removed (i.e .. "pushed")

from core memory to the drum are transferred to the free block list. At

this point the process is unable to proceed until its needed page is

pulled; hence in box 8 control is transferred to the processor multi

plexing section of the supervisor to await notification from another

process. Finally at some later time when the page is pulled, another

- 8 -

precess schedules the original process for a processor and in box 9

corctrol is returned to the point where the page fault oc,~urn'd so that

processing may resume as if 11minterrupted.

The ini tia 1 test in box 1 only takes the "yes" branch i.n tlwse

relatively rare instances when a desired page is either bdng pulled into

or pushed from primary memory. This situation can comt' atout from t\·H'

cases. In one case the needed page was in primary memory but became

sufficiently inactive that a previous page fault has initiated its

removal and the push is not yet complete. In the second case :mot\wr

process has developed a need for the page and has already initiated

a pull. In either case, however, the flow of control is to box 8

where the processor is released until the page transit is completed. At

this time the process is restarted at the faulting location. r f the page

was being pulled, the process proceeds; if the page was twin).', pushed, a

page fault occurs and a fresh attempt is made to obtain the page.

Figure 3, which is largely self-ex'planatory. shows thv flow of

control required to replenish the free block list with n mort' blocks.

(In Multics n is currently set to a value of 3.) A few items art' of

note however. One is that the test in box 12 is where the first-time

switch allows the initial burst of usage of a pulled page to be ignored.

Another item of note is in box 20 where a test is made to avoid pushing

pages which have not been modified while in core. (For this purpose the

processor hardware assists by setting a modified bit in the page table

entry whenever a page is modified.) In any case, however, control returns

from the replenishment section when n blocks are selected for the free

block list.

- 9 -

Finally it should be noted in passing tlHJ.t the algorithm

presented in Figures 2 and 3, although basically correct, lacks many

critically important features which are present in the versi.0n in the

Multics system: These ignored features are needed for proper treatment

of several complications. Some are:

1. There are additional mechanisms needed for .;egment descriptor

tables and for page tables. (In Multics these pages are either of two

sizes: 64 or 1024 words.) In general there must be machinery for segment

management.

2. Mechanisms are needed for the dynamic "wiring down" and

"unwiring" of pages in core memory for purposes such as page tables

ard per-process tables.

3. Data base interlock mechanisms and protocols must be

established to allow multiple processors simultaneously to operate and

take page faults.

4. Special attention must be paid in the details of the

algorithm so as to allow simultaneous sharing of the pages of a segtllent

by different processes.

5. Refinements are needed to allow for special situations

such as pages which are created (with zeros) in growing segments.

6. In rare instances the free block pool can become empty

due to statistical fluctuations and special consideration must be made.

7. In the interest of coding efficiency certain mechanisms are

not used exactly as described. For example the push and pull lists

are not formally created but ar~ effected by the use of indicators in the

elements of the replaceable page list.

- 10 -

8. In the case where the paging drum has comt1leted several pulls

but no page faults have occurred in other processes [or an inordinate

peciod of time, special provision must be made to reschedule for execu-

tion the processes which can proceed.

_The Experiment and the Resu ~~

One of the purposes of this paper is to describe an experiment

with the Multics paging strategy in which the value of k, the shift

register length, was varied. To perform the experiment it was necessary

to modify the system.programs slightly but not in a way that seriously

perturbs the results.

To serve as a test load, two cases were selected. The first

case was the standard initia.lization computation which the system :lhvays

performs to bootstrap itself in from the system tape_, gene1·ate the configu

ration-dependent system environment, establish the paging and segmentation

machinery and then proceed to load the remainder of the sy~; tem into

secondary storage. Although there is a great deal of paging in this case,

an objective is to establish whether or not the computation is ty.pical.

The second case of the paging test was a short p;·ogram written

for the purpose which proceE~ded to ca 11 automatically a sequence of about

ten basic, non-interactive commands. It was not felt that

any more careful choice of sample was warranted since the Hult1cs system

is still undergoing rapid development and evolution. Moreover, past

experience indicates that the commands chosen represent typical opera-

tions of a user population.

The environment of the experiment was a reproduci h 1 c ''ne-user

- 11 -

* t·~me- sharing system with a uniform page size of 1024 36- bit \vords and a

rt~placeable page pool of about 170 pages. Five distinct run:-; \vere madt•

w:~th different values of k .and the values obtained are given in Table:-; l

and 2. The page fault counts contain both those occurring explicitly

as page faults and those contained implicitly within segment faults. (A

segment fault occurs when there are neither pages nor segment page tab lc

in primary memory.) The Central Processor Unit (CPU) times given are those

required to service the combined page and segment faults and do not include

either the user terminal typing time or the delay due to the rotation

time of the secondary storage drum.

It should be noted the average fault service times given are

particularly large due to the present state of the Multics system. A

soon-to-be-implemented strategy of reducing the number of effective

segments by binding related groups together is expected to lower the

average fault service time by at least a factor of four to the neigh-

borhood of a few milliseconds; the effect of this change will be to

r•=duce the differences between the results for different values of k.

~~he Multics system potentially could have other effective page sizes aE
well as non-uniform page sizes. Future experiments may explore these
directions although none are now contemplated.

- 12 -

Cc•nc lusions

In examining the results given in Tables l and 2. several conclu-

sions can be drawn. First it is clear that the two case!' give similar effects

and that there is a dr . .tmatic improvement in going from k = 0 to k = l. Second,

a value of k in the range of 2 to 4 appears to give a paging strategy \vith the

number of page faults down to a level where possible furth2r improvement::; <1rt>

small compared to statistical fluctuations. Third, when one examines tlw total

fault service times, it is clear that as k increases sn does rhe computational

overhead of the paging algorithm. Since this latter basis is the pertinent one

for comparison, the optimum value of k lies in the range of 1 to 2. Fout·th,

with so little difference bet~veen the results in the range of k from 1 tl' 4.

a value of k = 1 is indicated. The reason for the later choice is because a

lower value of k should produce an algorithm which is more stable and adaptive ~

to transient changes in paging behavior. Fifth and finally, there should be

some caution in ex'tending the present results to other circumstances since:

1) the results are based on a small sample, 2) the Multics system may have pro

perties which are uniquely its own and 3) the system is sti l1 evolving and

changing rapidly.

Acknowledgements

The Multics system is being developed on a cooperative basis by

members of the Bell Telephone Laboratories, the General Electric Company ~md

Project MAC of M. I. T. The development and implementation of the paging

strategy has been principally done by a team led by P. G. Neumann and R. C. Daley

and including M. R. Wagner and G. F. Clancy. In addition, A. J. Goldstein

made early backgrounci contributions and F. J. Corba tel assi s tNI in devc l(1 pi ng .,

- 13 -

the particular method of syncronizing page usage monitoring with page fault

frec.uency.

The author would like to thank P. J. Denning, E. G. Coffmann,

C. T. Clingen and R. C. Daley for helpful discussions. Appreciation is

given to J. W. Gintell and D. R. Vinograd who implemented the procedures

used to meter the fault processing data. Finally, special and warm grati

tud,e is extended to T. H. Van Vleck for his expert knowledge of Multics and

his assistance in performing the experiments in the face of the extreme

complexities which are present in the development of a large system.

TABLE t

Page Faults vs. CPU Fault Service Time

in System Initialization

(toto.l CPU t"lme ~~ 564.2 sec. fork " l)

Tot<~ 1 Cl't: Fault

k _p~e faults Se r'!J c e T i ll~.J.~:.)

0 8309

1 I 07. q

2 4098

4 4205 .1 l?. ')

7 4317 12 n . .>

k

0

1

2

4

7

TABLE 2

Page Faults vs CPU Fault Service Time in

a Sample Set of Basic Conunands

(total CPU time :::: 74.7 sec. for k o= 1)

page faults

3628

1659

1635

1598

I 1725

Total CPU Fault
Service Time (sec_0

72. q

36.4

:18. 7

44.3

''

o(14 -

RE~ferences

L Kilburn, T., "One-Level Storage System," IRE Transa~:tions on Electronic
Computers~ Vol. EC-11, No. 2 (April 1962)~

2. Denning, P. J., "The Working Set Model for Program Behavior," _Commt~i
cations of the ACM_.._ Vol. 11, No. 5 (May 1968).

J. Denning, P. J., "Resource Allocation in Multiprocess or Cnmpult>t.· Sys
tems," (Ph. D. Thesis), Project MAC Report MAC-TR-50 (May 196H)

4. Belady, L. A., "A Study of Replacement Algorithms For a \"irtual
" Storage Computer, ~ystems Journal, Vol. "i, No. 2 (1966),

pp. 78-101.

5. Corbato, F. J. and Vyssotsky, V. A., "Introduction and Overview of
the Multics System," AFIPS Conference Proceedings, VoL 27, (FJCC 1965).

An Example of the Replaceable Page List

pulled pages ore entered
ahead of the replenish-

commutating pointer for
replenishment of the
free page list from the
replaceable page list

(2) first- usage bit set

Q not recently used, not modified

() recently used, not modified

CD not recently used, modified

e recently used, modified

Figure I

page fault)
!

w Is page beinQ
pushed or pulled?

yes
Jno

~ is free block ,...--..
1 ist lenoth >I i'

yes ~ no

~ get n more
blocks for
free block list

-., ~ L move pointer from heod
of the free block list
to the pat;~e pull list

+
~ look up in the AST the

location in secondary
store of the pat;~e;
initiate pull

~
~ remove pointers of completely pulled pages from

pull I ist to the head of the replaceable page I ist ;
turn first-time bit on of pulled pooes; modify
page table entries to point to pulled pages; notify
and wakeup waiting processes of pulled pages.

J
remove pointers of completely

>ushed pages from the push
ist to the head of the
ree block list

.. ~
~ wait for page

to be pulled
(or pushed)

• • •
(processor multiple>:ed with other processes)

9

• • •

notification of
completely pulled
page

return to point
where page fault
occurred

Fiau re 2

get n more blocks
for free block list

t'o] set ?o:~., ~]
i = I

pick up po~n::~:-;=t-poQe--l
of replaceable paqe ltst .___ ______ r =- -------- _ _j

,..... _________ Y_e_s_---lfi!J is the first -] L time bit on?

l~~-o ~ turn first- time
bit off

~ turn usage
bit off

~
·- place page pointer at end

of replaceable page I ist

put block in
free block list

l
i+- i +I

i = n?

J no ! yes
~------------~

return

insert value of usage bit
into shift register of page

~ turn usage bit

no

of page off

is shift
register= 0?

yes

modify page table entry to cause
page fault if page accessed again

Figure 3

modif=~-
core ~ J

~~n-0----------~!-e~s----------~

~- put page in L_ page push list

was page
while in

l
~ look up in AST the location

in secondary store for the
page to go; initiate push

J

..

