
MASSACHUSETTS INSTITUTE OF,TECHNOLOGY 

Project MAC 

December 12, 1968 

SENSITIVE ISSUES IN THE DESIGN OF MULTI-USE SYSTEMS* 

by F. J. Corbato 

Abstract 

An attempt is made to isolate and discuss fifteen critical 

issues ranging from technical to managerial which affect the com-

plexity and difficulty of constructing computer systems which serve 

multiple users. The present memo is a slightly edited version of a 

transcript so that it still had the rough colloquial flavor or the oral 

presentation. Nevertheless, it is being distributed as is because of 

the current interest in technical management experience gained develop-

ing large-scale software systems. 

* The present paper is an edit from a transcript of a talk presented 
at a technical symposium on Advances in Software Technology held in 
February, 1968, at the opening of the Honeywell EDP Technology 
Center, Waltham, Massachusetts. 

M0105 





SENSITIVE ISSUES IN THE DESIGN OF MULTI-USE SYSTEMS 

by Professor F. J. Corbato 

Multi-use computer systems are potentially largeJ both in the 

amount of effort required to put tlnem together and in the number of users 

trying to use them at the same time. Functionally, such systems serve 

many people with diverse interests simultaneously in real-time. As sys

tems, they usually include a great deal of software; they should also 

include both data processing and time-sharing capabilities. 

Generally speaking, there are two extreme forms of multi-use 

systems; each type can be illustrated in a graph of system cost versus 

the munber of users. First, there is the kind of system that can be 

started with a small number of users at a fairly small system cost; it 

can be expanded for more users, but only at a rather steep increase in 

system cost. The JOSS systemrAWhich is a Rand-built dedicated system 

tuned to a particular computer, is an example of this type. It is cheap 

to run in a small way but expensive to extend. The other kind of sys-

tem starts out with a very large threshold, but has a smaller deriva-

tive with respect to the number of users. Multics, which tries to be 

all things to all men, is an example of this latter type. A small Multics 

is a physical impossibility at the present time. Since Multics must have 

a large amount of equipment and probably a minimum of a q·uarter million words 

in primary memory, there is a large cost commitment that necessitates a lot 

of customers to pay for it. 

The major problems in the design of multi-use systems are (1) 

deciding what to build and (2) making sure that one's expectations do not 

exceed one's accomplishments. These problems involve a number of usensitive 

issues." The justification for discussing these issues is found in certain 

unfortunate conditions currently discernible in the computer environment. 



- 2 -

Typically, a large system is about twenty-five percent hardware and seventy

five percent software. But the minute a system is disl·ussed, the talk is 

about memory - cycle times or about fancy instructions for doing floating

point or about accomplishing something so small in a Byzantine way that 

it has no real significance in the overall system picture. The talk does 

not ordinarily get around to the reasons why software is complicated. 

Another condition is that most software systems are usually late in deli

very and below their performance estimates. There are some horrendous 

examples when you look at the industry at large. But the reason is not 

that people did not try; it is that they did not fully understand what 

they were getting into. Another condition is that certain traditional 

management techniques ar~ ineffective. For instance, it has been demon

strated that system programming using the human wave approach, is some

what wanting. Because computer software is getting more and more serious 

as computing becomes important to business -- as it accounts for the 

expenditure of one to ten percent of a company's resources -- there should 

be no slip-ups in supplying services. On the other hand, as the need for 

more ambitious systems increases, they come in larger units, and the mix

ups are larger when they happen. 

In the design of multi-use systems, there are some signals in 

administrative and technical areas that are symptomatic of danger. They 

indicate that the planned goal of the project will not be achieved. Fif

teen of these danger signals are discussed in this essay. 



- - 3 -

1. The first danger signal is when the designers of the system won't 

document. They dcon't want to be bothered trying to write out in 

words what they intend to do. Instead they seem to want a vague charter, 

and they don't want to spell out the mechanisms they intend to use. 

The general attitude goes something like this, "I will write when I've 

coded it, when I've figured out how it works." This iB an old school 

of progrannning, one that is obsolete. The hardware people seem to 

have set the pace in showing the proper discipline. No one would 

dream of giving a hardware designer a wiring gun to create a computer. 

We would just as soon give a two-year-old girl a paint brush and tell 

her to paint a mural. Yet, that is how a lot of large systems have 

been thrown together. Basically, the first thing that comes to mind 

is made to be the system. In general, a person is not very capable 

of designing unless he can list several ways of doing something. 

Then, he has a choice of how to optimize the design. This whole 

process of design review and argumentation among the design team as 

to the proper choice of paths is currently very poorly done in the 

programming world, and this is part of the cause of a lot of diffi-

culty. Most designs are n9t scrutinized very well. The reason is 

that often very little in the way of lucid explanation is written 

down in advance. To some extent if something cannot be explained, 

then there is a good chance it isn't understood. A mechanism or a 

program is not designed until an ordinary mortal can . understand 

it -- say even the hardware engineer who is not a programmer. This 

is a reasonable criterion because if all the decisions are forced 

to hinge on the judgement of the most specialized people -- people 

that know the shorthand of system programming a little better --



- 4 -

the situation is fraught with danger. What test can be used to deter-

mine whether or not a person has really finished designing something? 

An obvious difficulty is trying to sift out glibness from the articulate 

expression of ideas. It's a real problem to figure when a fellow is 

basically glossing over problems. How do you smoke this out? One test 

might be to ask the question -- will two programmers who are given 

the same specification program the same thing? If they won't program 

the same thing or if there is room for a large amount of "artistic 

expression", there has been no designing; it is being left to some-

body else. As an aside, this discipline has been tried in the Multics 

project. It has not been a total success partly because it's a new 

experience for programmers. There should be better results in the future, 

however, because the direction is right. 

2. The second danger signal is when designers won't or can't implement. 

What is referred to here is the lofty designer who sketches out on 

the blackboard one day his great ideas and then turns the job over 

I 

to coders to finish many months later. That is clearly an exaggera-

tion but if the design isn't clean enough and understood enough so 

that it is sensible for the responsibility of implementing it to the 

rest with the designer right to the bitter end, trouble is going to 

appear. The reasoning here is that even if a designer has the best 

of intentions of looking for all the pitfalls in his design docu-

ments, there are unexpected little surprises or mechanisms that just 

don't work out very well -- things which are five times slower than 

he expected because he forgot about the bookkeeping that had to go 

on. This kind of thing happens all the time. It's not a disaster 

providing someone recognizes the problem early and solves it. Such 



- 5 -

recognition and solution usually require the designer. But if the 

work is farmed out to somebody who didn't design it, there emerges 

a whole new set of communication and control problems. So while 

it's not impossible for the designer to let somebody else do the 

work, trouble is in the offing the minute that happens. 

3. The next danger signal is when the design needs more than ten people. 

This doesn't mean that all the support people, the secretaries, the 

technicians, and the like must add up to no more than ten. But when 

the crucial kernel of the design team is more than ten people, a 

larger scale project is coming into being. This is the point where 

communication problems begin to develop. It is impossible to talk in 

an involved way to more than ten people a day. In addition, all the 

offices cannot be placed physically near each other. Specialization 

begins to develop so that people are no longer interchangeable. 

Although bright man A can take over bright man B's job in case he's 

sick, it will take him three months just to understand the issues that 

bright man B knew. Suddenly there is no longer any mobility in a 

technical sense. Another problem, of course, is that the minute there 

are more than ten people, not everybody is equally proficient, and 

supervision problems begin to appear. Management is always trying to 

do an ambitious system. And a manager is always pushing people in 

as deep as they can swim. Thus, a critical thing is supervising pro-

' 
grammers. A supervisor has to watch like a hawk for a man beginning 

to drown. A symptom is that he doesn't produce any results for a 

week or a month, but is still at his desk every morning with his 

pencil in his hand. If he isn't found out for a month, a month is lost 



- 6 -

because obviously the job is still te be done. Everyone is always 

being pushed to the limit, and programmers in a given situation can 

easily vary by a factor of ten in their performance. 

There is another issue too if the ten-person effort is exceeded. 

Here is a proposed formula. In a large organization of M people, it 

is necessary to take the attitude that one person c~n closely super-

vise only about six more. Let m be the number of levels of manage-

m 
ment that the organization has, so that M ~ 6 . Intuitively, the 

number of levels of management, m, times some sort of an index of 

system intricacy, S, should be a constant. That is mS = constant. 

In other words,when there are many levels of technical management 

in a project, the project is going to be of the more cauti~us type, 

one which is much easier to understand. It has to have fewer prob-

lems and less intricacy, or communication and comprehension problems 

will develop between levels. In large systems nobody understands 

everything. Each person sees what is in front of his nose, but has 

difficulty g~asping the totality of the system. 

4. If a project cannot be finished or made use of in one year, trere 

is potential trouble, because the chances of underestimation are 

strong. It is going to take two years, and a year of grace must be 

acquired in order to finish. Another aspect of a long-tetLU project 

is that a personnel turnover of roughly twenty percent per year must 

be assumed. One man in five in a design group is going to be gone 

for one reason or another. It's just unrealistic to assume an invar-

iant implementation and design group. Again, if the effort extends 

over a long period of time, the documentation must be in order, 

because of the continual transference of responsibility. Another 



- 7 -

reason it is important to be careful with any project longer than a 

one year period is that the attention span of a corporation or organi

zation is limited. If something doesn't work within a given time, they 

may decide that it is a bad idea. In other words, sponsors have limited 

patience, and everyone has a sponsor in some sense. 

5. The next danger signal for a project arises when more than one big 

advance is attempted. One advance is about all that can be coped 

with at once. The Multics project has been on the ropes for a while, 

but is now coming off. One of the reasons is that there are three 

big advances in it. One of them is implementing the software using 

a subset of PL/I. A second advance was new hardware which wasn't sea

soned yet. An a third advance was a new system which had ~bout every 

innovation that could be thought of. The price of this ambition was 

very heavy design requirements. Of course, this danger signal must 

be taken with a grain of salt, because it would be a disaster if peo~ 

ple got so timid and cautious that nothing interesting \-Tas ever· t ,·1 ~.I. 

To some extent it is necessary to gamble some to get anywhere. 

6. The next danger signal is the assumption that the system will be finished 

in a fixed period of time. If the system is large, the assumption 

is totally unrealistic. It was historically correct with smaller 

machines, but with bigger systems it is incorrect. Large systems 

are never finished; this means that there is a requirement of con-

stant evolution as the using population is generating new demands 

of what it wants. Yesterday's breakthrough is tomorrow's expecta-

tion as ordinary service. This trend has been seen in computer languages. 



- 8 -

The pressure to keep growing puts new strains on systems. New fea

tures have to be evolved. New input-output equipment appears. Peo

ple want to use it, and the system has to accommodate it. What this 

really reflects is that attention has to be paid to modularity on 

functional lines. This attention extends to anticipating the main

tenance needs of software. An analogy can be found in hardware where 

there is a tremendous difference between an engineering prototype or 

breadboard and a production model which is built to be maintained 

on a continuous basis. 

7. The next warning occurs if a compiler to implement the system cannot 

be afforded. If the reason it can't be afforded is because the 

object code is going to be too mushy, too clumsy, or too inefficient, 

then performance estimates are already too close. That's only talking 

about a factor of two or so. If performance is already being counted 

on so closely, then some risks are already being taken because the 

estimates are probably not that accurate. There should be slack enough 

to take on the luxury of a compiler. Another sobering number that has 

been said before, but is worth repeating is that one hundred lines of 

debugged code per man-month is a very realistic estimate when 

a project is really loeked at. We have seen this work out in two sys-

tems. At first we didn't believe it for ourselves. We believed it for 

government contracting and the like, but we thought we were better. 

But then we reviewed our CTSS experience. The overall development of 

CTSS lasted roughly forty-eight months; an average of ten men and forty-

eight thousand words of code is about what we did do. It has been applied 

to Multics, and by the time we get it completed we will have averaged thirty 

persons over forty-eight months, and the figures are again going to be 

reasonable. Furthermore, these estimates seem to hold regardless of whe- ~ 

ther the line of code is written for a compiler or an assembler. 

A compiler language minimizes details at the source code level 



-

·-

- 9 -

by a factor of maybe five to ten. Furthermore, a compiler language 

contributes to the maintainability, minimizes t~e problem of personnel 

turnover, and assists documentation. llowever, a compiler lqnguage is 

not a panacea, because it introduces a scary element in systems design. 

If system development is traced against time, then at first very 

little gets done because work must be started on a compiler. Then, 

too, when the compiler works, it will probably take a little longer 

to get familiar with the compiler and get organized. Also, the 

object code will probably work poorly at first. But gradually mobility 

goes up and things can be changed faster than in assembly language. 

Local inefficiencies can be found, algorithms can be retuned, and 

whole sections can be recoded and even reprogrammed; suddenly per

formance goes up rapidly in a system-wide sense. Now if everyone 

can wait until performance is satisfactory, the project is all right. 

One of the problems, of course, is that people sometimes evaluate 

a system at an early stage and if the time scale is wrong, there is 

trouble. 

8. Another danger signal is the omission of key hardware. The notion 

of what hardware is key, of course, depends on what is being attempted. 

For example, in a time-sharing system if there is inadequate secondary 

storage, there is going to be trouble. Communication channels must 

be in order for handling teletypes and consoles. Here some pretty 

ugly problems may be encountered, such as keyboards locking up because 

the computer hasn't got around to unlocking them yet, if the wrong 

line discipline is established for some of the devices. Further, there 

has to be some sort of minimal protection scheme to allow the super

'7isor to keep control over malfunctioning programs. There must be some 



- 10 -

sort of alarm clock which normally only the supervisor program can 

set and which will prevent a runaway process from going on indefinitely. 

Finally one less obvious need is for a calendar clock to keep book

keeping straight. One of the biggest difficulties in a multi-pro

cesssing multi-access system is the terrific amount of bookkeeping to 

~eep track of th~ chronology of events and frequently to generate uni

que names; a good unique name generator is the time of occurrence, 

since the chronology is thereby preserved. Thus, a calendar clock 

acts like a good unique name generator provided it includes the year. 

This latter requirement occurs because many file-purging algorithms 

are based on the date that something happens, and this date may extend 

back over one year. Because false purges are extremely serious mis

haps, it is dangerous to rely on an operator to put the date into 

the system every day. An even worse arrangement is to have the year 

assembled into the system. Too often it is the same system programmer 

that quit six months ago that is the only one who knows where to change 

the date at the end of each year. 

9. Another danger signal is when a system is not a line-of-sight system. 

This means that all of the terminals, consoles or what-have-you are 

not in the same room, within shouting distance of the operator. If 

everybody is in the same room -- such as is the case in the PDP-10 

time-sharing system -- a lot of things can be done off-line, in effect, 

by casually and informally talking to one another. A case ih point 

is resource allocation; "Hey, Joe, I want to use this paper tape 

reader." "No, I'm already using it. You can't have it." That kind 

of thing can be done and the system doesn't have to be concerned. 

But when a system has remote users, there is a difference. If a man 



- 11 -

wants a tape unit mounted and he's five miles away from the computer, 

he must have already prearranged to leave his tape in the central 

computer room, where an operator must somehow mount it at the right 

time and in the right place. This takes a lot of cumbersome adminis

~rative bookkeeping. Synchronizing the tape mounting with a phone 

call is one way of trying to make it work out. A more desirable solu

tion is to try to synchronize it with a dialogue going through the com

puter, but then there must be communication with the operators through 

some output device. Also, suppose the operator signals "I can't find 

your tape; what do you want me to do next?" Now new decision branches 

are showing up. It's not too hard to think that one through. But these 

are just the normal cases. There are still situations like a tape 

snapping in the middle of reading. The operator can go over and stop 

the tape unit, but what has he done? Has he stopped the whole com

puter? If he has to clear the whole computer to reset, the situation, 

a disaster is in the making because the other n-1 users aren't inter

ested in the tape breaking. Recovery procedures and taking care of the 

unexpected are a major part of the problem. Part of the difficulty 

comes from the fact that the operator must intervene in a single user's 

process, and in a certain fixed logical sense unbind the tape from that 

process and reassign it to a pool of unbound tape units. 

Another place where a system which is not line-of-sight requires 

extra complexity is in providing for an orderly way of taking the 

machine down. There are times when for some reason the dropping of 

the service is to be scheduled. How is this to be done? It is possi-

\, 



- 12 -

ible to assume that everyone had his watch synchronized and was going 

to get off in time. A phone call to everybody could be tried, but 

that's awfully cumbersome. In fact, the only reasonable solution is 

to arrange some scheme of automatic log-out for the user so that the 

~aterial he is working with at the moment is preserved, Then when 

service is resumed, he'll be able to restart what he was doing with-

out loss of information. This requirement is a rather big order and 

whether it can or cannot be done turns out to be an acid test for most 

systems. To meet the requirement of automatic logout, what must be 

done in effect is unbind all of the specific bindings to the hard-

ware the status of particular tape units that are being used, particular 

disc files that are 0pen, and the like. They must be unbound because 

when the system is brought back up, it may be necessary to reconfigure 

equipment, and there may thus be different permutations of the tape 

I 
units or different arrangements of the disc file. So it's an intri-

cate and non-trivial problem. 

10. Another danger signal is when the system is required to remember infor·-

~ation. In a time-sharing system, consoles have a small band width 

communication channel to the computer, so that one of the following 

extremes must be taken. Either all the information is kept close 

at hand and the large computer used almost as a desk calculator, or 

all information is put into the computer with very little at the console. 

For obvious reasons, the latter is what happens. Now all the key pro-

grams are in the computer. If after the first year all the work that 

has been built up painfully and tediously suddenly evaporates, it 

will be a major jolt. As time goes on the situation will only get 



- 13 -

worse. What it means is that the management of the computation center 

is forced to supply some insurance against catastrophe. In fact, the 

more reliable the equipment gets, the more this insurance is necessary. 

This is analogous to a fire in a city. No ordinary citizen can main-

tain his own private fire department. He has to rely on the city when 

a fire occurs. In the case of information storage, protection against 

outright disaster is relatively easy. The difficult problem arises in 

the case of the semi-disaster, where the information of only a few 

people gets lost and the aim is to restore their information, not that 

of everyone. Since it is not desired to reset all information files 

to an earlier status just because one bit was dropped out of some-

body's program, the resetting must be done selectively. This adds 

a whole new set of problems that are non-trivial. 

11. Another danger signal is when the system must grow without bounds. 

One of the first problems encountered, is that the memory capacity has 

to grow without bound. But at this time, there is conflict with the 

point just discussed: namely, the system must be backed up. The 

straightforward way to organize a backup is just to dump the contents 

periodically. But the larger the amount of information involved, the 

more impossible it is to dump the contents without major service dis-

ruptions or mishap. Solving this problem requires fairly sophisti-

cated techniques of incrementally dumping material as generated. It's 

I 

frankly, an order of magnitude more complicated and the particular 

solution will vary with circumstances, 

12. Another danger signal is where the system is open ended. That is, 

programma that introduce new properties into the system can be written 



- 14 -

on it. Such a system is in contrast to one that is closed-- e.g., 

an airline reservation terminal -- where an ordinary clerk cannot extend 

the services at his fingertips and what he can do is very seriously 

constrained. Another example of a closed system is the JOSS System, 

which works through an interpretive system. A user can write any legal 

JOSS program, but if he attempts anything else, he gets his hands 

slapped. The issue here is that as soon as a system is open ended, 

it gives rise to a whole new host of protection problems involving both 

accidents and maliciousness. 

13. A somewhat related danger signal is when there are over ten system 

maintainers. Here, I'm talking about an on-line system that is 

actually being maintained on-line. In such a situation, there may 

be a supervisor program which every system programmer is able to 

work on. If every system programmer has the same rights and privi

leges, ten is about the most that can be tolerated in the event that 

some mishap occurs. If more people are in the same group, there is no 

way to account for who made a change. A smaller group of people is 

also a way of trying to avoid administrative bottlenecks. Normally, 

the only way of coping with a situation where a lot of people have 

access to one master file is to get very heavy handed and be very care

ful. But it will be realized that things cannot be done in a hurry. 

For example, the password of a user is a very sensitive piece of infor

mation to let the system identify who it is that is dialeq in or is 

working with the system. The issuing of passwords can be trusted to 

only one man if responsibility is to be isolated. But if he's out 

of tcwn or sick, there is a problem. In other words, an administrative 



- 15 -

bottleneck has started. The same problem comes up when computer time 

runs out at midnight on a Friday night, and the desire is to work over 

the weekend. The problem is how to acquire authorization quickly to 

get more computer time in the account so that work can be continued. 

There is no desire to call up the director of the project at his home 

at midnight on a Friday night. There might be some willingness to 

call up the supervisor and beg for a little lenience. Clearly large 

groups of system maintainers introduce problems. 

14. The next danger signal is when continuous service is wanted. Of course, 

the decision must be made as to what is meant by eontinuous. If con

tinuous means "never stop," not even a microsecond, it is doubted that 

anyone knows how to do that today. But if the system can be down for 

a minute or two, then there are solutions known. However, the real 

problem of continuous service comes up in the normal system house

keeping. A normal desire is to be able to use the machine offline in 

some sense, doing system updating, changing the supervisor, improving 

the library programs, etc. When are these things to be done if the 

system is running all the time? Another example is in the running of 

an airline reservation system; if it is really being run continuously, 

then when is the disk file or the drum to be backed up? When can the 

information be gotten out of the system? 

15. The last danger signal is when the system requires the ability to per

mit combinations of sharing, privacy, and control. That systems which 

have these requirements are needed is clear. The accounting files in 

a department store are an example. Certainly, arrangements should be 

made so that every clerk can enter transactions and that an accoun

tant can correct mistakes, but not the clerk. Thus, a whole question 



- 16 -

of responsibility and accountability is merged with the mechanics of 

the system. A further concern is about auditors being able to check 

to see that everybody in the chain of responsibility is doing as 

expected. Hence, it gets to be a very subtle problem of access con

trol. In addition, there is a problem of deciding who people are. 

Just because a man says he is John Doe at the end of the terminal 

isn't proof at all that he is. It's non-trivial, too, in the sense 

that just putting passwords and locks in wildly doesn't solve the prob

lem. First of all there's the obvious problem of having padlocked 

the door which is embedded in cardboard. But there are other prob

lems. Suppose a lock is put on a door that many people use. One 

man loses his key. The key is compromised. And now thP obvious 

decision is to change the lock quickly and, of course, this means 

that new keys must be passed out to the n people who already have the 

keys. Clearly, this is clumsy if n is large. In fact, there is tre

mendous awkwardness if the access control problem is not handled cor

rectly. There are solutions, but it is not a closed subject. This 

is partly becasue it is not just a question of authorizing individ

uals. Often the desire is to discuss a group of people as a class 

because when a group of people is specified, there is no need to 

know every member of the group. Thus access control represents a 

potentially intricate area in a system. 

That's a very long list of danger signals. Perhaps some people may 

conclude that it isn't wise to want to work on a new system. Unfortun

ately, this is the wrong conclusion to draw. I haven't spent time encour

aging people to try new ideas because I assume there are many who don't 

neeq it. In fact, the only way to make progress in developing systems 



- 17 -

is to try. There is no magic set of answers to all of the problems I 

have raised. Today the people who are most knowledgeable in this area of 

multi-use systems are those who have tried to do something themselves. 

Thus, the only real issue in choosing a project is to bite off something 

that can be chewed, and it is to this point that the list of danger sig

nals has been addressed. 




