
M /-, S S A C H U S E T T S I N S T I T U T E 0 F T E C H N 0 L 0 G Y

PROJECT MAC

Professor Brian Randell
The Computing Laboratory
University of Newcastle upon Tyne
Claremont Tower, Claremont Road
Newcastle upon Ty~e NEl 7RU
England

Dear Brian:

I

Reply Ia• Proieel MAC
545 T ethnology Square
Cambridge, Mass. 02139

Telephone, 16171 864-6900 x6201

March 3, 1970

I would like to submit the paper on "The Multics Virtual Memory",
presented at the Princeton Symposium on operating system principles,
for publication in the ACM Communications. I have enclosed two copies
of the paper with minor corrections marked in red. Attached to each
copy of the paper is a set of professionally-drawn figures to replace
the corresponding hand-drawn figures in the paper.

The summary at the beginning of the paper seems to serve as an
appropriate abstract. To complete the documentation unit, the
following content indicators are recommended.

Key Words and Phrases: virtual memory, file systems,
segmentation, information sharing, data sharing,
shared procedures, paging, storage management, file
management, file hierarchies.

CR Categories: 3.73, 3.74, 4.31, 4.32

Thank you for your time and consideration.

It was good talking with you at Princeton and I hope to see you
again soon.

Sincerely,

Robert C. Daley
Assistant Group Leader
Computer System Research

THE MlrLTICS VIRTUAL MEMORY * Nlll I I

A. llensou>Hl<lrl
c. T. Clingcn

General El.t~c·trll' Company
Cambrid11.e, Mnssachuset ts

R. C. Dnley
l'rnj<ll't MAC, M, I. T,

CambL"idge, Massachusetts

Summary: As experience with use of on-line operating systems has grown, the IH'c'd to s\un-e in!'nn11<ltion
among system users has become increasingly apparent. Many contemporary >syst<•ms penni t sonw dcgrc•e of
sharing. Usually, sharing is accomplished by allowing several users to share' data via input Hnd
output of information stored in files kept in secondary storage. Through the' use of scgmt'ntdti.on,
however, Multics provides direct hardware addressing by user and system programs of all ini.wmation,
independent of its physical storage location. Information is stored in segments each of which is
potentially sharable and carries its own independent attributes of size and access privilege,

Here, the design and implementation considerations of segmentation and sharing in Hultics are first
discussed under the assumption that all. information resides in a large, segmented main memory.
Since the size of main memory on contemporary systems is rather limited, it is then shown how the
Multics software achieves the effect of a large segmented main memory through the use of the GE 645
segmentation and paging hardware.

1. Introduction

In the past few years several well-known systems
have implemented large virtual memories which
permit the execution of programs exceeding the
si7e of available core memory. These
implementations have been ac~&eved by demand
paging in the Atlas computer , allowing a
program to be divided physically into pages only
some of which need reside in core storage at anr4
one time, by segmentation in the B5000 computer ,
allowing a program to be divided logically into
segments, only some of which need be in core, and
by a combinat~oy 1of both segmentatio~ and paging
in the GE 645 ' and the IBM 360/67 for which
only a few pages of a few segments need be
available in core while a program is running.

As experience has been gained with remote-access,
multiprogrammed systems, however, it has become
apparent that, in addition to being able to take
advantage of the direct addressibility of large
amounts of information made possible by large
virtual memories, many applications also require
the rapid but controlled sharing of information
stored on-line at the central facility.
In Mul tics (Mu lt ip lexed Jnformation and _fomputing
Service), segmentation provides a generalized
basis for the direct accessing and sharing of
on-line information by satisfying two design
goals: 1) it must be possible for all on-line
information stored ~n the system to be addressed
directly by a processor and hence referenced
directly by any computation. 2) it must be
possible to control access, at each reference,
to all on-line information in the system.

>~Work reported herein was supported (in part) by
Project MAC, an M.I.T. research program sponsored
by the Advanced Research Projects Agency,
Dcpartml'nt of Defense, under Office of Naval
\(oll<:nrch Contract Numher Nonr-1+102(1),

The fundamental advantage of dire~·t nddressibilitJ
is that information copying is no longer
mandatory. Since all instructions and data
items in the system are processor-addressible,
duplication of procedures and data is unnecessary,
This means, for example, that core images of
programs need not be prepared by loading and
binding together copies of procedures before
execution; instead, the original procedures may
be used directly in a computation. Also,
partial copies of data files need not be read,
via requests to an I/O system, into core buffers
for subsequent use and then returned, by means
of another I/O request, to their original
locations; instead the central processor
executing a computation can directly address just
those required data items in the original version
of the file. This kind of access to information
promises a very attractive reduction in program
complexity for the programmer.

If all on-line information in the system may be
addressed directly by any computation, it becomel
imperative to be able to limit or control access
to this information both for the self-protection
of a computation from its own mishaps, and for
the mutual protection of computations using the
same system hardware facilities, Thus it
becomes desirable to comparbnentalizc or package
all information in a directly-addressible memory
and to attach to these information packages
access attributes describing the fashion in 1~hich
each user may reference the contained data and
procedures, Since all such information is
processor-addressible, the access attributes of
the referencing user must be enforced upon each
processor reference to any information package.

Given the ability to directly address all
on··line information in the system, thereby
eliminating the need for copying data and
procedures, and given the ability to control
access to this information, then controlled
information sharing among several computations
follows as a natural consequence,

In Multics, segments are packages of information
which are directly addressed and which are
accessed in a controlled fashion, Associated
with each segment is a set of access attributes
for each user who may access the segment.
These attributes are checked by hardwaJ:e upon
each segment reference by any user. Furthermore
ali on-line information in a Multics iustallation
~ be directly referenced as segments while in
other systems most on-line information is
referenced as files.

This paper discusses the properties of an
"idealized" Multics memory comprised entirely of
segments referenced by symbolic name, and
describes the simulation of this idealized
memory through the use of both specialized hard­
ware and system software. The result of this
simulation is referred to as the Multies virtual
memory.. Although the Multics virtual memory
has been discussed elsewhere3,6,7 at the
conceptual level or in its earlier forms, the
implementation presented here represents a
mecl1anism resulting from several consecutive
implementations leading to an effective
realization of the design goals.

2, Segmentation

A basic motivation behind segmentation is the
desire to permit information sharing in a more
automatic and general manner than provided by
non-se!jlllented systems. Sharing must be
accomplished without duplication of information
and access to the shared information must be
controll.ed not only in secondary memory but also
in main !llemory.

In most existing systems that provide for
information sharing, the two requirements
mentioned above are not met. For example, in
the CTSS system5, information to be shared is
contained in files. In order for several users
to access the information recorded in a file,
a copv of the desired information is placed in a
buffet· in each user's core image. This requires
an explicit, progranuner-controlled I/O request to
the file system, at which time the file system
chec:{s \~hether the user has appropriate access to
the file. During execution, the user program
manipulates this copy and not the file. Any
modification or updating is done on the copy and
can be reflected in the original file only by an
explicit I/O request to the file system, at
~<•h ich time the file system determines whether
tll'.' user has the right to change the file.

In non-segmented systems, the use of core images
makes lt nearly impossible to control access to
shared information in core. Each program in
execution is assigned a logically conti1;uous,
bounded portion of cot·e memory or paged
virtual memory. Even if. the non-trivial problem
of addressing the shared information in C<>rc
were solved, access to this infonuiltion could
not be controlled without additional hat·dware
assistance. Each core image con,;ists of a
succession of anonymous words tl111t cnnnol be
decomposed into the originnl elemc•ntary parts
from which the core image was synthctizc'd,
These different parts arc indistinguishable in
the core image; they have lost tho:-ir id<'ntity
and thereby have lost all their altributes, such
as length, access rights and name. As a
consequence, non-segmented hardware is in.:~dequate

for controlled sharing in core memory, Although
attempts to share information in core memory
have been made with non-segmented hardware.
they have resulted in each instance being a
special case which must be pre-planned at the
supervisory leve 1. This coordination with the
supervisor can usually be done for only a few
system programs such as compilers and text
editors.

In segmented systems, hardware segmentation can
be used to divide a core image into several
parts, or segments9. Each segment is accessed ,
by the hardware through a segment descriptor
containing the segment's attributes. Among
these attributes are access rights that the hard­
ware interprets on each program reference to the
segment for a specific user. The absolute core
location of the beginning of a segment and its
length are also attributes interpreted by the
hardware at each reference, allowing the segment
to be relocated anywhere in core and to gl"ow
and shrink independently of other segments. In
most of these systems, a user program must first
call the supervisor to associate a segment
descriptor with a specific file befo~e the
program can directly access the information in
the file. If the number of files the user
program must reference exceeds the number of
segment descriptors available to the user, the
user program is forced to call the supervisor
again to free segment descriptors currently in
use so that they can be reused to access other
information. Furthermore, if the number of
segment descriptors is insufficient to provide
simultaneous direct access to each distinct file
required by his program, the user must then
provide for some means of buffering this informa­
tion. Buffering, of course, requires that
information from more than one file be copied
and coalesced with other distinctly different
information having potentially different
attributes, Once the information is copied and
merged, the identity of the original information
is lost, thus making it impossible for the ..,.,
information to be shared with other user

programs. In addition, this form of user-
controlled segment descriptor allocation and
buffering of information requires a significant
amount of pre-planning on the part of the user.

In Multics, the number of segment descriptors
available to each computation is sufficiently
large to provide a se~nent descriptor for each
file that the user program needs to reference in
most applications. The availability of a large
number of segment descriptors to each computation
makes it practical for the Multics supervisor to
associate segment descriptors with files upon
first reference to the information by a user
program, relieving the user from the responsibili­
ty of allocating and deallocating segment
descriptors. In addition, the relatively large
number of segment descriptors eliminates the need
for buffering, allowing the user program to
operate directly on the original information
rather than on a copy of the information. In
this way, all information retains its identity
and independent attributes of length and access
privilege regardless of its physical location in
main memory or on secondary storage. As a
result, the Multics user no longer uses files;
instead he references all information as segments,
which are directly accessible to his programs.

To Multics users, all memory appears to be com­
prised of a large number of independent linear
core memories, each associated with a descriptor,
A user program can create a segment by issuing a
call to the supervisor, giving, as arguments, the
appropriate attributes such as symbolic segment
name, name of each user allowed to access the
segment with his respective access rights, etc.
The supervisor then finds an unused descriptor
where it stores the segment attributes, The
segment having been created, the user program
can now address any word of the corresponding

Nan•t I N4111f "- Nan•f 5
Attrlbvtt• AHribvl-t~ Attribult•

I I I

linear memory by the pail" [namo,il wh,'rl' "nam~"
is the symbolic name <>f the l'l'gmc•nt nml "l" is
the word number in the linenr mem,ny. Further·
more, any other user ,·an refet·etKl~ word numlwr i
of this segment also by Lhe pair {nanw, i 1 b11t lw
can accrss it only acl'l>rding to the .te'<'''""
rights he was given by tlH~ crent<>l' and \..rhll'lt <lrl'
recorded in the descriptor. Comhin.ttieH1S of
the "read'', '~rite", "execute" and ".1ppt•nd"
access rights are available in ~\ultics.

A simple representation of this m<'mory, t·c•fc~t:rcd
to as the Multics ideal izcd memory, is shown i.n
Figure 1.

3. Paging

In a syEtem in which the maximum size ,,(;my
segment were very small <:ompat·ed te> tlw size ,,f
the entire core memory, the "swaJlping" e>f
comple:te segments into and out or ~'""c> ,,•,mlJ ,,,.
feasible. Even in such a system, if ,lll
segmen'ts did not have th•• same maximum ,.;t;,,) •• H.

had the same maximum size but wen! allo\vc'.l te>
grow from initially smaller sizes, ther0 r,•ta.t:,~,.

the difficult core management problem of pn,v!din~
space for segments of different sizes. ~:u:r;,-,-,

however, provides for segments of suifi.:i,•nt
maximum size that only n few can be? ~Cntit·,•l\' c",,t-,'·
resident at any one time. Also, th,•s~C sc·~:::h·;;t,;

can grow from any initial size smdller than L;,,,
maximum permissible size.

By breaking segments into equal-sized parts
called~ and providing for till~ transporL.ILie'l1
of individual pages to and from ClWC as J,·;:•tn.J
dictates, several practical problems encountl''·"J
in the implementation of a sc,gmcnted virtu:tl
memory are solved.

First, since pages are all of equal size, spae·,•

No~ IIH<ll !'l&mf4 NMttS
AUributf~ Altribvlt!

I I I

.......................

J

Fig. 1. Multics Idealized Memory

allocation is immensely simplified,
problems of "compacting" information
on secondary storage, characteristic
dealing with variable-sized segments
are thereby eliminated.

The
in core and
of systems
or pages,

Second, since only the referenced page of a
segment need be in core at any one instant,
segments need not be small compared to core
memory.

Third, "demand paging" permits advantage to be
taken of any locality of reference peculiar to a
program by transporting to core only those pages
of segments which are currently needed, Any
additional overhead associated with demand paging
should of course be weighed against the alterna­
tive inefficiencies associated with dedicating
core ·to entire segments which must be swapped
into core but which may be only partly referenced,

Finally, demand paging allows the user a greater
degree of machine independence in that a large
program designed to run well in a large core
memory configuration will continue to run at
reduced performance on smaller configurations.

4. The Multics Virtual Memory

Multics simulates the idealized memory,
represented in Figure 1, using the segmentation
and paging features of the GE 645 assisted by
appropriate software features, The result of
the simulation is referred to as the "Multics
Virtual Hemory". The user can keep a large
number of segments in this memory and reference
them by symbolic name; upon first reference to a
segment, the supervisor automatically transforms
the symbolic name into the appropriate hardware
address which is directly used by the processor
for subsequent references.

The remainder of this paper explains the address­
ing mechanism in the GE 645 and describes how
the Multics supervisor simulates the Multics
idealized memory.

5. The GE 645 Processor

The features of the CE 6l15 processor which are
of interest for the implementation of the Multics
virtual memory are se~:;mentation and paging.

Segryentation

Any address'in the GE 645 processor consists of
a pair of integeril [s,i]. "s" is called the
segment number, "i" the index within the segment.
The rangeof"'i's" and "i" is 0 to zl8.1.
Word [s,i] is accessed t~rough a hardware
register which is the st word in a table called
a descriptor segment (DS). The descriptor
segment is in core memory and ita absolute
address is recorded in a processor register
called a descriptor ~ register (DBR). Each
•,wrrl of the DS is called n Regment descriptor
wnrd (SIJW); thE' ~th SDW wi 1.1 btl rahrrNI to ntl
·::;·1 J\.f(n) • :-iN• F I f',ll t'll '} •

The DBR contains the values:

DBR.core which is the absolute core addresu
of the DS.
DBR. L which is the length of the DS.

Segment descriptor word nwnber "s" contains the
values:

SDW(s), core which is the absolute core
address of the segment s.
SDW(s). L which is the length of the
segment s.
SDW(s),acc which describes the access rights
for the segment.
SDW(s).F which is the 1'missing segment"
switch.

A simplified version of the algor-ithm used by the
processor to access the word whose address is
[s,i) follows (see Figure 2):

If DBR. L< s, generate a trap, or "fault" to
the supervisor.
Access SDW(s) at absolute location
DBR. core + s,
If SDW(s).F = ON, generate a missing segment
fault,
If SDW(s). L< i, generate a fault,
If SDW(s),acc is incompatible with the
requested operation, generate a fault.
Access the word whose absolute address is ..,
SDW(s). core + i.

.D.BR DS (O~f Jl.f
-t

~I>W ls) i'
~lC:!MEHT"_." ' corfl\•larcLF

~1

. :t .
wo.t.D (.t,i.] •

Fig. 2. Hardware Segmentation in the GE 645

The above description assumes that segments are
not paged; in fact, paging is implemented in the
GE 645 hardware, In the Multics implementation,
all segments are paged and the page size' is
always 1024 words.

Element "i" of a segment is the wth word of the
pth page of the segment, "w" and "p" being define"
by ..,

S w .. i mod 1024
l p • (i • w)/1024

Each segment is referenced by a processor through
a~ table (PT). The PT of a segment is an
array of physically contiguous words in core
r.temory. Each element of this array is called a
1~ table word (PTW). Page table word number p
contains:

PI'Wtp).core which is the absolute core
address of page number p.
PTW(p).F which. is the 'missing page" switch.

The meaning of DBR.core and SDW(s).core is now:

DBR.core =Absolute core address of the PT
of the descriptor segment.
SDW(s).core =Absolute core address of the
PT of segment number s.

A simplified version of the algorithm used by
the processor to access the word whose address
is [s,i) is as follows (see Figure 3):

If DBR. L< s, generate a fault.
Split s into the page number sp and the word
number sW"
Access PTW(sp) at absolute location
DBR. core + sp•
If PTW(sp).F = ON, generate a missing~
fault,
Access SDW(s) at absolute location
PTW(s).core+ sw.
If sn&(s).F = ON, generate a missing segment
fault.
If SDW(s).L< i, generate a fault.
If SDW(s).acc is incompatible with the
requested .operation, generate a fault.
Split i into the page number ip and the
word number fw.
Access PTW(ip) at absolute location
SDW(s).core + i .
If PTW(ip).F = bN, generate a missing page
fault.
Access the word whose absolute location is
PTW(ip).core + iw·

In order to reduce the munher of proce11sor
reference.- to core stot·ag•• 1~hil•• perfonnin;~ lhi,;
algorithm, each pr''Ye~;,;,n- has a sma 11., IIi ;~II- "i"'''J
associative memory 1 automatically mC~int,ti•a•d :;"
as to always contain the PTW' s and Sll\~'" '"''''t.
recently used by the processor. Tlh• ""~'":iatlve
memory significantly reduces the munhc• r ,q·

additional memory requests required during
address preparations.

6. Nul tics Processes and the Nul tics ~"::..~

A process is generally understood a:> hd:tg a
program in execution. A proce,;,; is ch:tt•:<c·t,•t·i::.-d
by its state-word definin~~. at any giv''" instant,
the history resulting from the ''xe,·ut:ion ,,f the:
progra1.1. It is also charactet·in'd by it:s
address space. The address sp<h'<• of a i'rocc.-s
is the set of processor addr.;H;:;,•" that th·~

process can use to reference i nf,>rmati,•n i.n
memory. In Mul tics, any i nf Pnna t ion th.ll a
process can reference by an addr'"'s or th,: f,,t·m
[segment number,word ntunlwr] i.s said to lw in
the address space of the p1·nce~s. Th<·t·c is a
one-to-one correspondence between Multics
processes and address spaces, Each process ls
provided with a private descriptor segmt'nt whh·h
maps Sl"gment numbers into ''ore memory addn·s~es
and with a private tahiP which nmps symbolic
segment names into segmt•nt numbers. This tnble
is called the Known Scgm,•nt Tahh• (KST).

The Mul tics supervisor cc>uld have• he en IH it ten
so as not to use seb'lllent addressing of C<>ursc;
but organizing the supervisor into pron•dures
and data segments pennits one> to use, in the
supervisor, the same convc>ntions that nrc> ust>d in
user programs. For i nstanec>, the ca 11- sav<'-
return conventlons 7 maJ~ for users procrams can
be used by the supervisor; the standard 1vay to
manufacture pure procedun•s in a user rrogrmn is
also used extensively in the Rupervisor. A less
visible advantage of segmentation of tht>
supervisor is that some supervisory fad lit i es

DBR
'PT o

c;orl' 11.1

PAC.l "t.pH of J>!J Prw(\,.) :s,.
cor~ IF j

~

:s ..
PTe(5DW(s)

UGMl!NT••• ¥

PAC.!·~,." o(t. (orC:J'-1"'< IF

PTW(Lp) \'l.p
~!C.MI!.I\IT "ft" •

·~
corlllj:'

:

woRn(s.,i]
li·
'

Fig. 3. Hardware Segmentation alld Paging in tlw CE 6:1~

provided for the management of user segments can
also be applied to supervisor segments;
for example, the t!C>mand paging facility designed
to automatically load pages of user segments can
also be used to load pnges of supervisor segments.
As a result, a large portion of the supervisor
need not reside pertmlncntly in core,

Unlike most supervisors, the Multics supervisor
docs not operate in a dedicated process or
address space. Instead, the supervisor
procedure and data segments are shared among all
Multics processes. Whenever a new p1·ocess is
created, its descriptor segment is initialized
with descriptors for all supervisor segments
allowing the process to perform all of the basic
supervisory functions for itself. The execution
of the supervisor in the address space of each
process facilitates communication between user
procedures and supervisor procedures. For
example, the user can call a supervisor procedure
as if he were calling a normal user procedure,
Also, the sharing of the Multics supervisor
facilitates simultaneous execution, by several
processes, of supervisory functions, just as the
sharing of· user procedures facilitates the
simultaneous execution of functions written by
users.

Since supervisor segments are in the address
space of each process, they must be protected
against unauthorized references by user programs.
Multics provides the user with a ring protection
mechanism12 which segregates the segments in his
address space into several sets with different
access privileges. The Multics supervisor
takes &dvantage of the existence of this
mechanism and uses it, rather than some other
special mechanism, to protect itse~f.

7, Segment Attributes

Directory Hierarchy

The name of a segment and its attributes·are
associated in a catalogue. Conceptually this
catalogue consists of a table with one ·ntry for
each seement in the system. An entrv contains
the name of the sevnent and all i"t"S7ttributes:
length, memory address, list of user" allowed to
use the segnient with their respective access
rights, data and time the segment was created,etc,

In ~ultics,this catalogue is implemented as
several se6"tnents, called directories, organized
into a tree structure, A segment ~ is a list
of subnnmes reflecting the posi.ti.on of the entry
in the tree structure, with respect to the
beginning, or root directory (ROar), of the tree.
liy convention, subnames are separated by the ,
character ''>" Each subname is called an entryname
and the list of ent rynames is called a pa thname.
An entry name is unique in a given directory and
a pathname is unique in the entire directory
hierarchy. Because of its property of uniquely
identifying a segment in the directory hierarchy,
the pa.thname has been chosen as the symbolic name
by which the :.tultics user must reference a s9gment.

TlH~t .. c [,t-c two typ ... ~s of dirl',:tnry "'ntt~i~.._~~, hr.l!H.'L ... ,slttfl!llll
and liuks. A branc·h i.s n dirc'L't,n·y ,·ntt'\' ''hie\!
contains all at.tri.butes nl ;t "''~''"''t1t tvhi '" •l If,,;,
is a di.rectory c•nn·y \vhich c,mta!n:; tit,• tulitlt~,.-·
of another direct,,ry c•ntrv. A t\llll'V ,kt.til,~d

description of the dirc•c·t,n·y hic't·:n-clty ""'I nl tit,•
nse of links is)o;iv<~n by llnley a11d 1'-:<'lllll·'llllh,

Op<.'rations on Sq;m,'nt Attdbutes

Supervisor prir,tit ivc's pc'rf,>rm 11ll opc•r;tt i<>ns <'11
segment ,tttributes. 'l'hc·n~ i.s ,1 si't of
primitives available to t!w usct· tvltic·lt .tll'"' ltit,l,
for cx:unpl~, to t...~rc-att~ a .Sl.'gmL'nt, dcll.~Ll' .. 1 ~\.:'~~iil\'11t,

change the entrynamc of,, dirvct<'rY. <.)ntt·y, .-lt.lnr,c'
the access ril;ltt~ ,)f a sc•gment, list tlt,• ""!-i•"''nl
attributes contained in a directory, etc.

Creatin~; a segment whose p;tthnm;''~ is ROOT> A>il> C
(see Figure 4) consists basically of the following
steps:

Check that entryname C does not alrc'.Hiy exi,;t
in the directory ROOT> A > B •
Allocate space for a new branch in directory
ROOT> A >B.
Stot·e in the branch the following itc't;'!S:

The entry name C.
The segment len1~th, i.niti.1lizcd to <:c't'O,
The access list, given by the crcatnr.
The segment map, c·on~isting (>[an UlTay
of secondary nt'-'mory ildJrcsses, ,,,-,c inr
each page of tlw segment. The maximum lttfl!llll
length of a segment in ~!ulti.es llL'i.n);
64 pages, the segment map for any segm<:ut
contains 64 entt·ic~s. Sinccl thc1 segm<:tlt
length is still zc•ro, C<lCh entry oi the!
segment map is initializ<'d with a "null"
address, showi.ng that no s~condary memory
has been assigned to any potential page of
the scgmen t.
The s<:gment status "inactive", meaning
that th~.:re is no page table for this
se~~ent. The segnwnt status, '~hich may
be either "active" or "innctiv~" is
indicated by the~ ..S'"itch.

8. Segment Accessing

Although the creation of a segment initializes its
attributes, additional supervisor support is
required to m;:tke the segmPnt accessible• to the
processor when n user program references the
segment by symbolic name.

8.1. Symbolic Addressing Conventions

The pathname is the only symbolic name by which a
segment can be uniquely identified in the
directory hierarchy. However, for user conve-
nience, the system provides a facility ~1ereby a
user can reference a segment from his program
using only the last entry name of the segment's
pathname and supplying the rest of the p;lthname
according to system convent ions. Tit is bst Pntr...,
name is called the reference~~-

•ooT>A>B>C

ROOT >J)>A>F

Fig. 4.

t.!lri:..ukt:l
£.R\pky

a.mpty

• !> , .. aru •re direct••r ur"'e"tt.
• Cirdtr) o.re "•" • .lirc~tory Sl!~''""ts.

Directory Hierarchy

When a process executes an instruction which
:lttempts to access a segment by means of its
reference name, the Nultics dynamic linking
facility 7 is automatically invokc1d. The dynamic
linker determines the missing part of the path­
name ace ,n-d ing t'' the above-mentioned system
conventions. These conventions are called
se!lrch rules and may be regarded as a list of
~o~ to be searched for an entry nnme
,natching the specified reference name.
When this entry name is found in a directory,
the directory pathname is prefixed to the
reference nnme yielding the required pathname.
The dynamic linker, using the "~lake Known"
module (8.2.), then obtains a segment number by
which the referenced segment wi 11 be accessed.
Finally it transforms the reference name into
this segment mnnber such that all subsequent
executions of the instruction in this process
access the segment directly by segment number7 Further details are given by Daley and Dennis

8.2. Making a Segment Known to a Process

Each time a segment is referenced in a process
by its pathname, either explicitly or as the
result of the evaluation of a reference name by
the dynamic linking facility, the pathname must
he translated into a segment number in order to
pennit the processor to address the segment for
this process. This translation is done by the
supervisor using the KST associated with the
process. The KST is an array organized such
that entry number "s", KSTE(s), contains the
path name associated with segment number "s ".
See Figure 5.

If the association [pathname,segment number] is
found in the KST of the process, the segment is
said to be known to the process and the segment
number can ~ed to reference the segment.

If the association [pathnamc:,scgment number] is
not found in the KST, this is the first reference
to the sq,'Tilent in the process and the segment
must he nade knol'n. A segment is made knm~n by
assigning an unused segment number "s" in the
process and by recording the pathname in KSTE(s)
to establish the pair [pathname,segment number]
in the KST o: the process. Also, the directory
hierarchy is searched for this pathname and a
poi~ter to the corresponding branch is entered in
KSTE(s) for Later use (8. 3,).

'The per-process association of pathname and
segment number is used in the Multics system
because it is impossible to assign a unique
se3ment number to each segment. The reason is
that the num':>er of segments in the system nearly
always will be larger than the number of segment
numbers available in the processor.

When a segment is made known to a process by
segment number "s", its attributes are not placed
in SDW(s) of the descriptor segment of that
process. SDW(s) having been initialized with the
missing segment switch ON, the first reference in
this process to that segment by segment number

"s" will cnuse the proct~~S\)r tfl generate a tr;lp. 'lflll!lllll
In Multics this trap is l'<~ll,,d 11 '\nis,;!.nr, :;q:;IOl<'nt
fault" and transfers contt·ol t'' a supcr\'isor
module called the st>gm<'nt fault handll•r.

8. 3. The se,•ml'n t F;Hd t Hand 1 er

When a miss in~' segm('llt fnult oc,·ut·:<, "'"1t rol l s
passeu to the sef,ment fau 1 t hand 1 e ,. tu ''con' the
proper segment uttriilutt'S in tile• apprupt·int,~ SllW
anu set the missing Sl'p,ment swirch OFF in th<' SOW,

These attributes, as shown in Fi.gur'' 3, consist
of the page table addt·ess, the l0ngth ,,i th<~
segment, and the access rights of the user with
respect to the segment. The inionnation
initially available to tht.! Stl!wrvisl1r upon
occurrence of a missing segment fault is the
segnwn t number "s ".

The only place where the net>ueJ att rihutes ,·a;t be
found is in the branch of the segment. trsin>,
the segment number "s", the supt•rvi:;or ,·an lo,·ate
the KST entry associated with the faulting
segment; it can then find the r<'qui rt.!J brunch
since a pointer to the branch has bt.!en st<:>red in
the KST entry when the segment was made known to
this process (8.2.).

Using the active switch (Figure 5) in the bran..:h,
the supervisor determines 1~hether there is .1 page
table for this segment. Recall that this sw~~ch
w<lS initialized in the branch at segment cr,~nt ir
time. If there is no pa,~c tahle, one mtwt be 'fllllll
constru ted. A portion of core memory is
pennanent ly reserved [ot· page tables. All page
tables are of the same length and the number of
page tables is determined at sysc.:>m initializa­
tion.

']:'he sup'ervisor divides page tables into two lists:
the used list and the free list. M!tnufacturi.ng
a page table (PT) for a segment could consist
only of se lee ti ng a PT from the free 1 ist,
putting its absolute address in the branch and
moving it from the free t<' the used list. If this
were actually done, howev<•r, the servicing ,>f
each missing page fault would require access to a
branch since the ser;nwnt map contain! nr;
second~1ry storage nJdrcs~Ps is ke!'t Lllct·c
(Figure 5). Sin<''-' it f,; imprnctil•nl f,,,- nll
dirPctories to pt•rm:nll'nlly ,-esidc• in cpre, pag<'
fault handling could tiH~rc'by .-eqnin• n secondnry
storage acces;; in additi<'n to LiH' read request
required to trar";port til<· pa!!,C Itself into corP.
Although this mechanism works, efficiency cnn­
siderations have lt•d to the "at:tivatinn"
convention between tht> segm<'nt fault handler and
the page fault handler.

Activation. A portion of core memory is
permanently reserved for recording attributes
needed by the page fault handler, i.e., the
segment map and the segment length. This
portion of core is referred to as the Hctive
segment table (AST). There is only one AST in'lflll!lllll
the system and it is shared by all processes.
The AST contains one entry (ASTE) for each PT.

A PT is always associated with an ASTE, the
address of one implying the address of the other.
They may be regarded as a single entity and will
be referred to as the [PT,ASTE] of a segment.
The used list and free list mentioned above are
referred to as the [PT,ASTE] free list and the
[PT,ASTE] used~·

A segment which has a [PT,ASTE) is said to be
~· Being active or not active is an
attribute of the segment and is recorded in the
branch using the active switch.

When the active switch is ON, both the segment
map and the segment length are no longer in the
branch but are to be found in the segment's
[PT,ASTE) whose address was recorded in the
branch during "activation" of the segment.

To activate a segment, the supervisor must:

I

I

Find a free [PT,ASTE]. (Assume temporarily
that at least one is available).
Move the segment map and the segment length
from the branch into the ASTE.
Set the active switch ON in the branch.
Record the pointer to [PT,ASTE] in the
branch.

I I I s 1.

1.w II i.p J
'

PAC.. f. PTW
,~' core 1 F

--~A,_' • Tot,..porOI')' mAppin_g.
...... Ma.pping '1\te..lecol to invalid111tc Cll. te ... porca•y

c. l,plici~t mo.rr;"~·

I

By pairing an ASTE with a PT in core, the segment
fault handler has guarante~r.l that all segment
attributes needed by the page fault handler are
core-resident, permitting more efficient puge
fault servicing.

Connection. Once the segment is active, the
corresponding SDW must be "connected" to the
segment. To connect the SDW to the segment the
supervisor must:

Get the absolute address of the PT, using the
[PT,ASTE) pointer kept in the branch, and
store it in the SDW.
Get the segment length from the ASTE and
store it in the SDW.
Get the access rights for the user from the
branch and store them in the SDW.
Turn off the missing segment switch in the
SDW.

Having defined activation and connection, segment
fault handling can now be summarized as:

D$

Use the segment number s to access the KST
entry.
Use the KST entry to locate the branch.
If the active switch in the branch is OFF,
activate the segment.
Connect the SDW.

DSR
L c:orc LJ

l>IRE.CTORY

K~T

Fig 5. Basic Tables Used to Dnplement the Multics Virtual Memory

Note that the active switch and the [PT,ASTE]
pointer in the segment branch "automatically"
guarantee segment sharing in core since all sow's
describing a given segment will point to the
same PT.

Once the segment and its SDW have been connected,
the hardware can access the appropriate page
table word. If the page is not in core, a
missing page fault occurs, transferring control
to the supervisor module called the page fault
handler.

8.4. The Page Fault Handler

When a page fault occurs the page fault handler
is given control with the PT address and the page
number of the faulting page. The information
needed to bring the page into core memory is the
address of a free block of core memory into which
the page can be moved and the address of the page
in secondary memory.

A free block of core must be found. This is done
by using a data base called the~.!!!!£· The
core map is an array of elements called core~
entries (CME). The nth entry contains ~rma­
tion about the nth block of core (the size of all
blocks is 1024 words). The supervisor divides
this core map into two lists; the~~~
l!.~ and the ~ ~ free ~·

The job of the page fault handler consists of the
follbwing steps:

Find a free block of core and remove its
core map entry from the free list.
(Assume temporarily that the free list is
not empty.)
Access the ASTE associated with the PT and
find the address in secondary memory of the
missing page.
If this address is a "null" address,
initializ.e the block of core with zeros
and update the segment length in the ASTE;
this action is only taken the first time the
page is referenced since the segment was
created and provides for the automatic grow­
ing of segments. Otherwise issue an I/O
request co move the page from secondary
memory into the free block of core and wait
for completion of the re¥~est via a call to
the "traffic controller" which is
responsible for processor multiplexing,
Store the core address in ~he PTW, remove
the fault from the PTW, and place the core
map entry in the used list.

8.5. Page Multiplexing

There are many more pages in virtual memory than
there are blocks of core in the real memory;
therefore, these blocks must be multiplexed
among all pages, In the description of page
fault handling it was assumed that a free block
of core was always available. In order to
insure that this is nearly always true, the page
fault handler, upon removing a free block from the

core map free list, examines the number of ~
remaining free list entries; if this number is
less than a preset minimum value, a page removal
mechanism is invoked a sufficient number of times
to insure a non-empty core map free list in all
but the most unusual cases, A non-empty core
map free list eliminates waiting for .page removal
during the handling of a missing page fault.

To get a free block of core, the page removal
mechanism may have to move a page from core to
secondary memory. This requires: (a) an
algorithm to select a page to be removed;
(b) the address of the PTW which holds the address
of the selected page, in order to set a fault in
it; and (c) a place to put the page in secondary
memory.

The selection algorithm is based l'P<>n pog•~ usa!e.
It is a particularly easy-to-implement v~rsion
of the "least-recently-used" algorithml,8.
The hardware provides valuable assistance by,
each time a page is referenced, setting ON a bit,
called the used bit, in the corresponding PTW.
The selectio;;:-;lgorithm will not be described in
detail here. However, it should be noted theb
candidates for removal are those pages described
in the core map used list; therefore, each core
map entry which appears in the used list must
contain a pointer to the associated PTW (Figure S)
in order to permit examination of the used bit,
The action of storing the PTW pointer in the core
map entry must be added to the 11st of actions
taken by the page fault handler when a page is ~
moved into core (8.4.).

Once the supervisor has selected the page to be
removed, it takes the following steps:

Set the missing page switch ON in the PTW,
If no secondary memory has been assigned
yet for this page, i.e., the segment map
entry for this page holds a "null" address,
assign a block of secondary memory and store
its address in the segment map entry.
Issue an I/O request to move the page to
secondary storage.
Upon completion of the I/O request, move the
core map entry describing the freed block of
core from the core map used list to the cora
map free list. This may be done in another
process upon noticing the completion of the
I/O request.

8,6, [PT,ASTE] Multiplexing

Core blocks can be multiplexed. only among pages of
active segments, The number of concurrently
active segments is limited to the number of
[PT,ASTE] pairs, which is, by far, smaller than
the total number of segments in the virtual
memory. Therefore [PT,ASTE] pairs must be
multiplexed among all segments in the virtual
memory.

Wh~n segment activation was described, a [PT,ASTE'
pair was assumed available for assignment. ~
In fact, this is not always the ~ase. Mp.king one

segment active may imply making another segment
1nactive thereby disassociating this other
segment from its [PT,ASTE]. Since all processes
sharing the same segment will have the address of
the PT in an SDW, it is essential to invalidate
this address in all SOW's containing it before
removing the page table •.

This operation requires: (a) an algorithm to
select a segment to be deactivated; (b) knowing
all SOW's that contain the address of the page
table of the selected segment, in order to
invalidate this address; (c) moving the
attributes contained in the ASTE back to the
branch; and (d) changing the status of the
segment from active to inactive in the branch.

The selection algorithm for deactivation, like
the selection algorithm for page removal, is
based on usage. When the last page of a segment
is removed from core, the segment becomes a
candidate for deactivation. The algorithm
selects for deactivation the segment which has
had no pages in core for the longest period of
time, i.e., the segment which has been least
recently used. Since the number of [PT,ASTE]
pairs substantially exceeds the number of page­
able blocks of core, it is always possible to
find an active segment with no pages in core,

The ASTE must provide all the information needed
for deactivating a segment. This means that
during activation· and connection, this informa­
tion must be made available, During activation,
a pointer to the branch must be placed in the
ASTE.; during connection, a pointer to ·the SDW
must be placed in the ASTE. Since more than one
SDW is connected to the same PT when the segment
is shared by several processes, the supervisor
must maintain a list of pointers to all connected
sow's. This list is called a connection list,
See Figure 5.

After the selection algorithm chooses a [PT,ASTE]
to be freed, the disassociation of the segment
from its [PT,ASTE] is done in two steps:
disconnection and deactivation,

Disconnection consists of storing a segment fault
in each SDW whose address appears in the connec­
tion list in the ASTE. Deactivation consists of
moving the segment map and the segment length
from the ASTE back to the branch, resetting the
active switch in the branch·, and putting the
[PT,ASTE] in the free list,

9. Structure of the Supervisor

Up to now supervisor functions have been described,
but not the supervisor structure. In this
section, the different components of the super­
visor are presented and the ability of portions of
the supervisor to utilize the virtual memory is
discussed.

9. l. Functional Modules

Three funcr.ional modules can be identified in the
supervisor described in Section 8; they are called
directory control (DC), segment control (SC), and
~ control (PC).

DC performs all operations on segment attributes;
it also maps pathnames into segment numbers in the
KST of the executing process, Data bases used by
a process executing DC procedures are the direc·
tortes and the KST of the process. (Figure 6)

SC performs segment fault handling. Data bases
used by a process executing SC procedures are
directories, the KST of the process, descriptor
segments and [PT,ASTE] pairs.

PC performs page fault handling. Data bases used
by a process executing PC procedures are [PT,ASTE]
pairs and the core map.

9,2, Use of PC in the Supervisor

One can observe that the page fault handler need
not know if a missing page belongs to a user
segment or to a supervisor segment; it only
expects to find the information it requires in
the [PT,ASTE] of the segment to which the missing
page belongs. Therefore, if all segments used in

r----:---"T ••••
l)irtdol'y

Con trot

........,.. ____,
Sl t g nu:~t ~
Conb·oL

Fig. 6, Supervisor Functional Modules and Data Bases

SC and DC are always active, then thElir pages
n~ed not be in core since PC can load them when
they are referenced.

In order to make use of PC in the rest of the
supervisor the following (temporary) assumption
must be made.

Assumption 1:

a. All segments used in PC are always in core
and are connected to the descriptor segment
of each process,

b. All segments used in SC and DC are always
active and are connected to the descriptor
segment ot each process.

9.3. Use of SC in the Supervisor

Assumption 1 is satisfactory in the Multics
implementation except for directories.

The number of directory segments in the system
may be very large and keeping them always active
is not a realistic approach, since a large number
of [PT,ASTE] pairs would have to be permanently
assigned to them. It would be desirable to use
SG to activate and connect directory segments
only as needed.

A necessary condition for handling a segment
fault for segment x in a process is that segment x
be known to that process. Assuming that all
directories are known to all processes, but not
necessarily active, reference to a directory x
may cause a segment fault. When handling this
fault, the segment fault handler must reference
the parent directory of segment x, where the
branch for x is located. This reference to the
parent of x could, in turn, cause a.recursive
invocation of the segment fault handler. These
recursive invocations can propagate from direc­
tory to parent directory up to the root. If the
root directory is always active and connected to
each process, then the recursion is guaranteed
to be finite and a segment fault for any direc•
tory can be handled.

The first assumption can be replaced by the
following more satisfactory assumption (again
temporary).

Assumption 2:

a. All segments used in PC are always in core
and are connected to the descriptor segment
of each process.

b. All non-directory segments used in SC and
DC are always active and are connected to
the descriptor segment of each process.

c. The root directory is always active and
connected to each process.

d. All directories are always known to each
process.

9. 4. Use of the Make Kno"'" Fad lltv in :he
Supervisot·

However, it is unsatisfactory to keep all d i rcc·­
tori es known to all processes because o:: the
space that would be required in each KST. It
would te more attractive if a dire-:tory could he
made known to a process only when 1wedeJ by the
process.

Haking a segment x known implies Sc'arching few
its pathname in the KST. If not f,JUnJ, the
parent of x must first be made knm.rn nnd sc1 c111 up
to the root. If the root directory is always
known to all processes then any dil·ecr,,t·y i.~,m

be made known to a proces;; by cnlling rc>cursh·cly
the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the' fitMl
assumption:

Final Assumption:

a, All segments used in PC are always in c,n·c
and are connected to the descriptor segment
o[each process.

b. All non-directory segments used in SG and DC
are always active and are connected t0 the

·descriptor segment of each process.
c. The root directory is always active and

connected to each process.
d. The root directory is always known to each ...,tJJ

process.

Given the above assumption, supervisor segments,
as well as user segments, can be stored in the
virtual memory that the supervisor provides.

10. Summary.

The most important points discussed in this paper
are summarized below. They are grouped into t~o
classes: the point of view of the user of the
virtual memory, and the point of view of the
supervisor itself.

User Point of View

The Multics virtual memory can contain a very
large number of segments that are referenced
by symbolic names,
Segment attributes are stored in special
segments called directories, which are
organized into a tree structure; by. a naming
convention known to the user, the symbolic
name of a segment must be the pathname of the
segment in the directory tree structure.
Any operation on directory segments must be
done by calling the supervisor.
Any operation on a non-directory segment can
be don.e directly in accordance with the
access rights that the user has for the
segment; any word of any segment which
resides in the virtual memorv can be
referenced with a pair [path;ame,i] by the ...,tJJ
user.

Supervisor Point of View

The supervisor must simulate a lar·ge
segmented memory which is directly address­
able by symbolic name and such that any
access to the memory is submittl~d to access
rights checking.
The supervisor maintains a directDry tree
where it stores all segment attrLmtes.
It can retrieve the attributes of a segment,
given the pathname of that segment.
The supervisor itself is organizeJ into
segments and runs in the address .·:pace of
each user process.
Any segment, be it a directory or a non­
directory segment, is identified by its
pathname but can be accessed only using a
segment number. For each segment name the
supervisor must assign a segment rumbcr by
which the processor will addret;s Lhe segment
in the process.
The processor accesses a word of .:\ segment
through the appropriate SDW and Pl'W, subject
to the access rights recorded in the SDW.
A segment fault is generated by the processor
whenever the page table address or access
ri.ghts are missing in the SDW. The super­
visor then, using the KST entry as a stepping
stone, accesses the branch where it finds the
needed infonnation. If a PT is to be
assigned, the supervisor may have to deacti­
vate another segment.
A page fault is generated by the processor
whenever a PTW docs not contain a core
address. The supervisor then, using the
ASTE associated with the PT, moves the miss­
ing page from secondary storage to core.
This may require the removal of another page.

11. Acknowledgments

Thi.s paper would be incomplete without acknowledg­
ment of the people who worked so hard to build the
virtual memory supervisor portion of Multics.
Special mention goes to G. F. Clancy,
M. R. Thompson and S. H. Webber who, under the
design leadership of R. C. Daley, have been
involved in a major portion of the design and
implementation effort. They were aided in
earlier designs and implementations by
C. A. Cushing, s. M. Jones, G. B. Krekeler,
N, I. Morris, P. G. Neumann, R. K. Rathbun,
J. D. Van Hausan, M. R. Wagner and L.D. Whitehead,
Recent implementations have also benefitted from
the contributions of S. D. Dunten and
M. C. Turnquist. Contributions in the form of
analyses and discussions have been made by
F. J. Corbat6, J. H. Saltzer and V. A. Vyssotsky.

Finally, our thanks go to P. A. Belmont,
M, A. Meer and D. L. Stone who participated in
studies leading to this formalized description
of the Multics virtual memory.

Refcn~ncl'S

1. BBLADY, L.A. A Study of Replacem(•nt i\ lt;<'t"i th:n~
for a Virtual-Storage Computer.
IBM Systems J.5, 2 (1966), 78-lOl,

2. COMFCIRT, W. T. A Computing Syst<'m De,d~;n Fen·
User Service•. l'rn<'. A}'T.PS 1965 Fall J,>int
Computer Conference Vol. 27, Pt. l, Srartnn
Books, New York, pp,619-628.

3. COR!lA"'6, F. J., nnd VYSS(Yl'SKY. V. A.
Intro.,uction and Ovcrvie\V "'f thv ~1u1~il~s

Systl'l'l. Proc. AFfl'S l'lll.~ Fnll .Joint c,>mputer
Conference, Vol. 27, Part l. Spa1·tan l\lh>ks,
New Y01:k, pp. 185-196.

4. CORBATO, F. J. A Paging Expc l'ila<'llt" wi tll the'
Nulti2s System. To be includcJ i.n a
Festschrift to be published in h<otH>r <lf
Pr:e>f. P. M. Morse.

5. CR TSi:-11\N, P. A, ed. The -~~-t_iJ.>J..•:: :!J.!22~::.
Sharing System: A Pr:ogt·cmuuc't·'" Cuidc~, 2nd ed.,
MI'l' Press, Cambridge, Mass., 1965,

6. DALEY, R. C., and NEUMANN, P. l~. A G<'l1<'ral­
P11rpose File System for Secondary SU't.<1)>,c',
Prnc. AFI.PS 1965 Fall Joint Computer Coni.,
Vol. 2 7, Part l. Spartan !looks, New York,
pp. 213-22 9.

7. DALEY, R. C., and DENNIS, J. !1. Virtual
Memory, Processes, and Sharing in Multics.
Comm, ACM 11, 5 (May 1968), 306-312.

8. DENNING, P. J. The Working Set Nodel for
Program Behavior. Co!JU1l. ACM ll, 5 (Nay 1968),
323-333,

9. DENNIS, J, B. Segmentation and the Design of
Multiprogrammed Computer Systems, J.ACM 12,
4 (Oct. 1965), 589-602,

lO.FCYrHERINGHAM. J. Dynamic Storage Allocation
in the Atlas Computer, Including an Automatic
Use of a Backing Store - Connn. ACM 4, 10(1961),
4;35-436.

ll,GIASER, E. L., COULEl~, J. F., and OLIVER,G.A,
System Design of a Computer for Time Sharing
Applications. Proc. AFIPS 1965 Fall Joint
Computer Conference, Vol. 27, Part 1.
Spartan Books, New York, pp. 197-202.

12.GRAHAM, R. M. Protection in an Information
Processing Utility. Comnr. ACM 11, 5(May 1968),
365-369.

13,SALTZER, J, H. Traffic Control in a Multi­
plexed Computer System. Tech. Rep. No,
MAC-TR-30 (Ph.D. thesis), Project MAC, MIT,
Cambridge, Mass,, 1964.

14.The Descriptor -- A definition of the BSOOO
Information Processing System. Burroughs Corp.,
Detroit, Mich., 1961,

.. . ..

