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Summary: As experience with use of on-line operating systems has grown, the IH'c'd to s\un-e in!'nn11<ltion 
among system users has become increasingly apparent. Many contemporary >syst<•ms penni t sonw dcgrc•e of 
sharing. Usually, sharing is accomplished by allowing several users to share' data via input Hnd 
output of information stored in files kept in secondary storage. Through the' use of scgmt'ntdti.on, 
however, Multics provides direct hardware addressing by user and system programs of all ini.wmation, 
independent of its physical storage location. Information is stored in segments each of which is 
potentially sharable and carries its own independent attributes of size and access privilege, 

Here, the design and implementation considerations of segmentation and sharing in Hultics are first 
discussed under the assumption that all. information resides in a large, segmented main memory. 
Since the size of main memory on contemporary systems is rather limited, it is then shown how the 
Multics software achieves the effect of a large segmented main memory through the use of the GE 645 
segmentation and paging hardware. 

1. Introduction 

In the past few years several well-known systems 
have implemented large virtual memories which 
permit the execution of programs exceeding the 
si7e of available core memory. These 
implementations have been ac~&eved by demand 
paging in the Atlas computer , allowing a 
program to be divided physically into pages only 
some of which need reside in core storage at anr4 
one time, by segmentation in the B5000 computer , 
allowing a program to be divided logically into 
segments, only some of which need be in core, and 
by a combinat~oy 1of both segmentatio~ and paging 
in the GE 645 ' and the IBM 360/67 for which 
only a few pages of a few segments need be 
available in core while a program is running. 

As experience has been gained with remote-access, 
multiprogrammed systems, however, it has become 
apparent that, in addition to being able to take 
advantage of the direct addressibility of large 
amounts of information made possible by large 
virtual memories, many applications also require 
the rapid but controlled sharing of information 
stored on-line at the central facility. 
In Mul tics (Mu lt ip lexed Jnformation and _fomputing 
Service), segmentation provides a generalized 
basis for the direct accessing and sharing of 
on-line information by satisfying two design 
goals: 1) it must be possible for all on-line 
information stored ~n the system to be addressed 
directly by a processor and hence referenced 
directly by any computation. 2) it must be 
possible to control access, at each reference, 
to all on-line information in the system. 

>~Work reported herein was supported (in part) by 
Project MAC, an M.I.T. research program sponsored 
by the Advanced Research Projects Agency, 
Dcpartml'nt of Defense, under Office of Naval 
\(oll<:nrch Contract Numher Nonr-1+102(1), 

The fundamental advantage of dire~·t nddressibilitJ 
is that information copying is no longer 
mandatory. Since all instructions and data 
items in the system are processor-addressible, 
duplication of procedures and data is unnecessary, 
This means, for example, that core images of 
programs need not be prepared by loading and 
binding together copies of procedures before 
execution; instead, the original procedures may 
be used directly in a computation. Also, 
partial copies of data files need not be read, 
via requests to an I/O system, into core buffers 
for subsequent use and then returned, by means 
of another I/O request, to their original 
locations; instead the central processor 
executing a computation can directly address just 
those required data items in the original version 
of the file. This kind of access to information 
promises a very attractive reduction in program 
complexity for the programmer. 

If all on-line information in the system may be 
addressed directly by any computation, it becomel 
imperative to be able to limit or control access 
to this information both for the self-protection 
of a computation from its own mishaps, and for 
the mutual protection of computations using the 
same system hardware facilities, Thus it 
becomes desirable to comparbnentalizc or package 
all information in a directly-addressible memory 
and to attach to these information packages 
access attributes describing the fashion in 1~hich 
each user may reference the contained data and 
procedures, Since all such information is 
processor-addressible, the access attributes of 
the referencing user must be enforced upon each 
processor reference to any information package. 



Given the ability to directly address all 
on··line information in the system, thereby 
eliminating the need for copying data and 
procedures, and given the ability to control 
access to this information, then controlled 
information sharing among several computations 
follows as a natural consequence, 

In Multics, segments are packages of information 
which are directly addressed and which are 
accessed in a controlled fashion, Associated 
with each segment is a set of access attributes 
for each user who may access the segment. 
These attributes are checked by hardwaJ:e upon 
each segment reference by any user. Furthermore 
ali on-line information in a Multics iustallation 
~ be directly referenced as segments while in 
other systems most on-line information is 
referenced as files. 

This paper discusses the properties of an 
"idealized" Multics memory comprised entirely of 
segments referenced by symbolic name, and 
describes the simulation of this idealized 
memory through the use of both specialized hard­
ware and system software. The result of this 
simulation is referred to as the Multies virtual 
memory.. Although the Multics virtual memory 
has been discussed elsewhere3,6,7 at the 
conceptual level or in its earlier forms, the 
implementation presented here represents a 
mecl1anism resulting from several consecutive 
implementations leading to an effective 
realization of the design goals. 

2, Segmentation 

A basic motivation behind segmentation is the 
desire to permit information sharing in a more 
automatic and general manner than provided by 
non-se!jlllented systems. Sharing must be 
accomplished without duplication of information 
and access to the shared information must be 
controll.ed not only in secondary memory but also 
in main !llemory. 

In most existing systems that provide for 
information sharing, the two requirements 
mentioned above are not met. For example, in 
the CTSS system5, information to be shared is 
contained in files. In order for several users 
to access the information recorded in a file, 
a copv of the desired information is placed in a 
buffet· in each user's core image. This requires 
an explicit, progranuner-controlled I/O request to 
the file system, at which time the file system 
chec:{s \~hether the user has appropriate access to 
the file. During execution, the user program 
manipulates this copy and not the file. Any 
modification or updating is done on the copy and 
can be reflected in the original file only by an 
explicit I/O request to the file system, at 
~<•h ich time the file system determines whether 
tll'.' user has the right to change the file. 

In non-segmented systems, the use of core images 
makes lt nearly impossible to control access to 
shared information in core. Each program in 
execution is assigned a logically conti1;uous, 
bounded portion of cot·e memory or paged 
virtual memory. Even if. the non-trivial problem 
of addressing the shared information in C<>rc 
were solved, access to this infonuiltion could 
not be controlled without additional hat·dware 
assistance. Each core image con,;ists of a 
succession of anonymous words tl111t cnnnol be 
decomposed into the originnl elemc•ntary parts 
from which the core image was synthctizc'd, 
These different parts arc indistinguishable in 
the core image; they have lost tho:-ir id<'ntity 
and thereby have lost all their altributes, such 
as length, access rights and name. As a 
consequence, non-segmented hardware is in.:~dequate 

for controlled sharing in core memory, Although 
attempts to share information in core memory 
have been made with non-segmented hardware. 
they have resulted in each instance being a 
special case which must be pre-planned at the 
supervisory leve 1. This coordination with the 
supervisor can usually be done for only a few 
system programs such as compilers and text 
editors. 

In segmented systems, hardware segmentation can 
be used to divide a core image into several 
parts, or segments9. Each segment is accessed , 
by the hardware through a segment descriptor 
containing the segment's attributes. Among 
these attributes are access rights that the hard­
ware interprets on each program reference to the 
segment for a specific user. The absolute core 
location of the beginning of a segment and its 
length are also attributes interpreted by the 
hardware at each reference, allowing the segment 
to be relocated anywhere in core and to gl"ow 
and shrink independently of other segments. In 
most of these systems, a user program must first 
call the supervisor to associate a segment 
descriptor with a specific file befo~e the 
program can directly access the information in 
the file. If the number of files the user 
program must reference exceeds the number of 
segment descriptors available to the user, the 
user program is forced to call the supervisor 
again to free segment descriptors currently in 
use so that they can be reused to access other 
information. Furthermore, if the number of 
segment descriptors is insufficient to provide 
simultaneous direct access to each distinct file 
required by his program, the user must then 
provide for some means of buffering this informa­
tion. Buffering, of course, requires that 
information from more than one file be copied 
and coalesced with other distinctly different 
information having potentially different 
attributes, Once the information is copied and 
merged, the identity of the original information 
is lost, thus making it impossible for the ..,., 
information to be shared with other user 



programs. In addition, this form of user-
controlled segment descriptor allocation and 
buffering of information requires a significant 
amount of pre-planning on the part of the user. 

In Multics, the number of segment descriptors 
available to each computation is sufficiently 
large to provide a se~nent descriptor for each 
file that the user program needs to reference in 
most applications. The availability of a large 
number of segment descriptors to each computation 
makes it practical for the Multics supervisor to 
associate segment descriptors with files upon 
first reference to the information by a user 
program, relieving the user from the responsibili­
ty of allocating and deallocating segment 
descriptors. In addition, the relatively large 
number of segment descriptors eliminates the need 
for buffering, allowing the user program to 
operate directly on the original information 
rather than on a copy of the information. In 
this way, all information retains its identity 
and independent attributes of length and access 
privilege regardless of its physical location in 
main memory or on secondary storage. As a 
result, the Multics user no longer uses files; 
instead he references all information as segments, 
which are directly accessible to his programs. 

To Multics users, all memory appears to be com­
prised of a large number of independent linear 
core memories, each associated with a descriptor, 
A user program can create a segment by issuing a 
call to the supervisor, giving, as arguments, the 
appropriate attributes such as symbolic segment 
name, name of each user allowed to access the 
segment with his respective access rights, etc. 
The supervisor then finds an unused descriptor 
where it stores the segment attributes, The 
segment having been created, the user program 
can now address any word of the corresponding 
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linear memory by the pail" [namo,il wh,'rl' "nam~" 
is the symbolic name <>f the l'l'gmc•nt nml "l" is 
the word number in the linenr mem,ny. Further· 
more, any other user ,·an refet·etKl~ word numlwr i 
of this segment also by Lhe pair {nanw, i 1 b11t lw 
can accrss it only acl'l>rding to the .te'<'''"" 
rights he was given by tlH~ crent<>l' and \..rhll'lt <lrl' 
recorded in the descriptor. Comhin.ttieH1S of 
the "read'', '~rite", "execute" and ".1ppt•nd" 
access rights are available in ~\ultics. 

A simple representation of this m<'mory, t·c•fc~t:rcd 
to as the Multics ideal izcd memory, is shown i.n 
Figure 1. 

3. Paging 

In a syEtem in which the maximum size ,,( ;my 
segment were very small <:ompat·ed te> tlw size ,,f 
the entire core memory, the "swaJlping" e>f 
comple:te segments into and out or ~'""c> ,,•,mlJ ,,,. 
feasible. Even in such a system, if ,lll 
segmen'ts did not have th•• same maximum ,.;t;,,) •• H. 

had the same maximum size but wen! allo\vc'.l te> 
grow from initially smaller sizes, ther0 r,•ta.t:,~,. 

the difficult core management problem of pn,v!din~ 
space for segments of different sizes. ~:u:r;,-,-, 

however, provides for segments of suifi.:i,•nt 
maximum size that only n few can be? ~Cntit·,•l\' c",,t-,'· 
resident at any one time. Also, th,•s~C sc·~:::h·;;t,; 

can grow from any initial size smdller than L;,,, 
maximum permissible size. 

By breaking segments into equal-sized parts 
called~ and providing for till~ transporL.ILie'l1 
of individual pages to and from ClWC as J,·;:•tn.J 
dictates, several practical problems encountl''·"J 
in the implementation of a sc,gmcnted virtu:tl 
memory are solved. 

First, since pages are all of equal size, spae·,• 
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Fig. 1. Multics Idealized Memory 



allocation is immensely simplified, 
problems of "compacting" information 
on secondary storage, characteristic 
dealing with variable-sized segments 
are thereby eliminated. 

The 
in core and 
of systems 
or pages, 

Second, since only the referenced page of a 
segment need be in core at any one instant, 
segments need not be small compared to core 
memory. 

Third, "demand paging" permits advantage to be 
taken of any locality of reference peculiar to a 
program by transporting to core only those pages 
of segments which are currently needed, Any 
additional overhead associated with demand paging 
should of course be weighed against the alterna­
tive inefficiencies associated with dedicating 
core ·to entire segments which must be swapped 
into core but which may be only partly referenced, 

Finally, demand paging allows the user a greater 
degree of machine independence in that a large 
program designed to run well in a large core 
memory configuration will continue to run at 
reduced performance on smaller configurations. 

4. The Multics Virtual Memory 

Multics simulates the idealized memory, 
represented in Figure 1, using the segmentation 
and paging features of the GE 645 assisted by 
appropriate software features, The result of 
the simulation is referred to as the "Multics 
Virtual Hemory". The user can keep a large 
number of segments in this memory and reference 
them by symbolic name; upon first reference to a 
segment, the supervisor automatically transforms 
the symbolic name into the appropriate hardware 
address which is directly used by the processor 
for subsequent references. 

The remainder of this paper explains the address­
ing mechanism in the GE 645 and describes how 
the Multics supervisor simulates the Multics 
idealized memory. 

5. The GE 645 Processor 

The features of the CE 6l15 processor which are 
of interest for the implementation of the Multics 
virtual memory are se~:;mentation and paging. 

Segryentation 

Any address'in the GE 645 processor consists of 
a pair of integeril [s,i]. "s" is called the 
segment number, "i" the index within the segment. 
The rangeof"'i's" and "i" is 0 to zl8.1. 
Word [s,i] is accessed t~rough a hardware 
register which is the st word in a table called 
a descriptor segment (DS). The descriptor 
segment is in core memory and ita absolute 
address is recorded in a processor register 
called a descriptor ~ register (DBR). Each 
•,wrrl of the DS is called n Regment descriptor 
wnrd (SIJW); thE' ~th SDW wi 1.1 btl rahrrNI to ntl 
·::;·1 J\.f(n ) • :-iN• F I f',ll t'll '} • 

The DBR contains the values: 

DBR.core which is the absolute core addresu 
of the DS. 
DBR. L which is the length of the DS. 

Segment descriptor word nwnber "s" contains the 
values: 

SDW(s), core which is the absolute core 
address of the segment s. 
SDW(s). L which is the length of the 
segment s. 
SDW(s),acc which describes the access rights 
for the segment. 
SDW(s).F which is the 1'missing segment" 
switch. 

A simplified version of the algor-ithm used by the 
processor to access the word whose address is 
[s,i) follows (see Figure 2): 

If DBR. L< s, generate a trap, or "fault" to 
the supervisor. 
Access SDW(s) at absolute location 
DBR. core + s, 
If SDW(s).F = ON, generate a missing segment 
fault, 
If SDW(s). L< i, generate a fault, 
If SDW(s),acc is incompatible with the 
requested operation, generate a fault. 
Access the word whose absolute address is .., 
SDW(s). core + i. 

.D.BR DS (O~f Jl.f 
-t 
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Fig. 2. Hardware Segmentation in the GE 645 

The above description assumes that segments are 
not paged; in fact, paging is implemented in the 
GE 645 hardware, In the Multics implementation, 
all segments are paged and the page size' is 
always 1024 words. 

Element "i" of a segment is the wth word of the 
pth page of the segment, "w" and "p" being define" 
by .., 

S w .. i mod 1024 
l p • (i • w)/1024 



Each segment is referenced by a processor through 
a~ table (PT). The PT of a segment is an 
array of physically contiguous words in core 
r.temory. Each element of this array is called a 
1~ table word (PTW). Page table word number p 
contains: 

PI'Wtp).core which is the absolute core 
address of page number p. 
PTW(p).F which. is the 'missing page" switch. 

The meaning of DBR.core and SDW(s).core is now: 

DBR.core =Absolute core address of the PT 
of the descriptor segment. 
SDW(s).core =Absolute core address of the 
PT of segment number s. 

A simplified version of the algorithm used by 
the processor to access the word whose address 
is [s,i) is as follows (see Figure 3): 

If DBR. L< s, generate a fault. 
Split s into the page number sp and the word 
number sW" 
Access PTW(sp) at absolute location 
DBR. core + sp• 
If PTW(sp).F = ON, generate a missing~ 
fault, 
Access SDW(s) at absolute location 
PTW(s ).core+ sw. 
If sn&(s).F = ON, generate a missing segment 
fault. 
If SDW(s).L< i, generate a fault. 
If SDW(s).acc is incompatible with the 
requested .operation, generate a fault. 
Split i into the page number ip and the 
word number fw. 
Access PTW(ip) at absolute location 
SDW(s).core + i . 
If PTW(ip).F = bN, generate a missing page 
fault. 
Access the word whose absolute location is 
PTW(ip).core + iw· 

In order to reduce the munher of proce11sor 
reference.- to core stot·ag•• 1~hil•• perfonnin;~ lhi,; 
algorithm, each pr''Ye~;,;,n- has a sma 11., IIi ;~II- "i"'''J 
associative memory 1 automatically mC~int,ti•a•d :;" 
as to always contain the PTW' s and Sll\~'" '"''''t. 
recently used by the processor. Tlh• ""~'":iatlve 
memory significantly reduces the munhc• r ,q· 

additional memory requests required during 
address preparations. 

6. Nul tics Processes and the Nul tics ~"::..~ 

A process is generally understood a:> hd:tg a 
program in execution. A proce,;,; is ch:tt•:<c·t,•t·i::.-d 
by its state-word definin~~. at any giv''" instant, 
the history resulting from the ''xe,·ut:ion ,,f the: 
progra1.1. It is also charactet·in'd by it:s 
address space. The address sp<h'<• of a i'rocc.-s 
is the set of processor addr.;H;:;,•" that th·~ 

process can use to reference i nf,>rmati,•n i.n 
memory. In Mul tics, any i nf Pnna t ion th.ll a 
process can reference by an addr'"'s or th,: f,,t·m 
[segment number,word ntunlwr] i.s said to lw in 
the address space of the p1·nce~s. Th<·t·c is a 
one-to-one correspondence between Multics 
processes and address spaces, Each process ls 
provided with a private descriptor segmt'nt whh·h 
maps Sl"gment numbers into ''ore memory addn·s~es 
and with a private tahiP which nmps symbolic 
segment names into segmt•nt numbers. This tnble 
is called the Known Scgm,•nt Tahh• (KST). 

The Mul tics supervisor cc>uld have• he en IH it ten 
so as not to use seb'lllent addressing of C<>ursc; 
but organizing the supervisor into pron•dures 
and data segments pennits one> to use, in the 
supervisor, the same convc>ntions that nrc> ust>d in 
user programs. For i nstanec>, the ca 11- sav<'-
return conventlons 7 maJ~ for users procrams can 
be used by the supervisor; the standard 1vay to 
manufacture pure procedun•s in a user rrogrmn is 
also used extensively in the Rupervisor. A less 
visible advantage of segmentation of tht> 
supervisor is that some supervisory fad lit i es 
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Fig. 3. Hardware Segmentation alld Paging in tlw CE 6:1~ 



provided for the management of user segments can 
also be applied to supervisor segments; 
for example, the t!C>mand paging facility designed 
to automatically load pages of user segments can 
also be used to load pnges of supervisor segments. 
As a result, a large portion of the supervisor 
need not reside pertmlncntly in core, 

Unlike most supervisors, the Multics supervisor 
docs not operate in a dedicated process or 
address space. Instead, the supervisor 
procedure and data segments are shared among all 
Multics processes. Whenever a new p1·ocess is 
created, its descriptor segment is initialized 
with descriptors for all supervisor segments 
allowing the process to perform all of the basic 
supervisory functions for itself. The execution 
of the supervisor in the address space of each 
process facilitates communication between user 
procedures and supervisor procedures. For 
example, the user can call a supervisor procedure 
as if he were calling a normal user procedure, 
Also, the sharing of the Multics supervisor 
facilitates simultaneous execution, by several 
processes, of supervisory functions, just as the 
sharing of· user procedures facilitates the 
simultaneous execution of functions written by 
users. 

Since supervisor segments are in the address 
space of each process, they must be protected 
against unauthorized references by user programs. 
Multics provides the user with a ring protection 
mechanism12 which segregates the segments in his 
address space into several sets with different 
access privileges. The Multics supervisor 
takes &dvantage of the existence of this 
mechanism and uses it, rather than some other 
special mechanism, to protect itse~f. 

7, Segment Attributes 

Directory Hierarchy 

The name of a segment and its attributes·are 
associated in a catalogue. Conceptually this 
catalogue consists of a table with one ·ntry for 
each seement in the system. An entrv contains 
the name of the sevnent and all i"t"S7ttributes: 
length, memory address, list of user" allowed to 
use the segnient with their respective access 
rights, data and time the segment was created,etc, 

In ~ultics,this catalogue is implemented as 
several se6"tnents, called directories, organized 
into a tree structure, A segment ~ is a list 
of subnnmes reflecting the posi.ti.on of the entry 
in the tree structure, with respect to the 
beginning, or root directory (ROar), of the tree. 
liy convention, subnames are separated by the , 
character ''>" Each subname is called an entryname 
and the list of ent rynames is called a pa thname. 
An entry name is unique in a given directory and 
a pathname is unique in the entire directory 
hierarchy. Because of its property of uniquely 
identifying a segment in the directory hierarchy, 
the pa.thname has been chosen as the symbolic name 
by which the :.tultics user must reference a s9gment. 

TlH~t .. c [,t-c two typ ... ~s of dirl',:tnry .... "'ntt~i~.._~~, hr.l!H.'L ... ,slttfl!llll 
and liuks. A branc·h i.s n dirc'L't,n·y ,·ntt'\' ''hie\! 
contains all at.tri.butes nl ;t "''~''"''t1t tvhi '" •l If,,;, 
is a di.rectory c•nn·y \vhich c,mta!n:; tit,• tulitlt~,.-· 
of another direct,,ry c•ntrv. A t\llll'V ,kt.til,~d 

description of the dirc•c·t,n·y hic't·:n-clty ""'I nl tit,• 
nse of links is )o;iv<~n by llnley a11d 1'-:<'lllll·'llllh, 

Op<.'rations on Sq;m,'nt Attdbutes 

Supervisor prir,tit ivc's pc'rf,>rm 11ll opc•r;tt i<>ns <'11 
segment ,tttributes. 'l'hc·n~ i.s ,1 si't of 
primitives available to t!w usct· tvltic·lt .tll'"' ltit,l, 
for cx:unpl~, to t...~rc-att~ a .Sl.'gmL'nt, dcll.~Ll' .. 1 ~\.:'~~iil\'11t, 

change the entrynamc of,, dirvct<'rY. <.)ntt·y, .-lt.lnr,c' 
the access ril;ltt~ ,)f a sc•gment, list tlt,• ""!-i•"''nl 
attributes contained in a directory, etc. 

Creatin~; a segment whose p;tthnm;''~ is ROOT> A>il> C 
(see Figure 4) consists basically of the following 
steps: 

Check that entryname C does not alrc'.Hiy exi,;t 
in the directory ROOT> A > B • 
Allocate space for a new branch in directory 
ROOT> A >B. 
Stot·e in the branch the following itc't;'!S: 

The entry name C. 
The segment len1~th, i.niti.1lizcd to <:c't'O, 
The access list, given by the crcatnr. 
The segment map, c·on~isting (>[ an UlTay 
of secondary nt'-'mory ildJrcsses, ,,,-,c inr 
each page of tlw segment. The maximum lttfl!llll 
length of a segment in ~!ulti.es llL'i.n); 
64 pages, the segment map for any segm<:ut 
contains 64 entt·ic~s. Sinccl thc1 segm<:tlt 
length is still zc•ro, C<lCh entry oi the! 
segment map is initializ<'d with a "null" 
address, showi.ng that no s~condary memory 
has been assigned to any potential page of 
the scgmen t. 
The s<:gment status "inactive", meaning 
that th~.:re is no page table for this 
se~~ent. The segnwnt status, '~hich may 
be either "active" or "innctiv~" is 
indicated by the~ ..S'"itch. 

8. Segment Accessing 

Although the creation of a segment initializes its 
attributes, additional supervisor support is 
required to m;:tke the segmPnt accessible• to the 
processor when n user program references the 
segment by symbolic name. 

8.1. Symbolic Addressing Conventions 

The pathname is the only symbolic name by which a 
segment can be uniquely identified in the 
directory hierarchy. However, for user conve-
nience, the system provides a facility ~1ereby a 
user can reference a segment from his program 
using only the last entry name of the segment's 
pathname and supplying the rest of the p;lthname 
according to system convent ions. Tit is bst Pntr..., 
name is called the reference~~-



•ooT>A>B>C 

ROOT >J)>A>F 

Fig. 4. 

t.!lri:..ukt:l 
£.R\pky 

a.mpty 

• !> , .. aru •re direct••r ur"'e"tt. 
• Cirdtr) o.re "•" • .lirc~tory Sl!~''""ts. 

Directory Hierarchy 



When a process executes an instruction which 
:lttempts to access a segment by means of its 
reference name, the Nultics dynamic linking 
facility 7 is automatically invokc1d. The dynamic 
linker determines the missing part of the path­
name ace ,n-d ing t'' the above-mentioned system 
conventions. These conventions are called 
se!lrch rules and may be regarded as a list of 
~o~ to be searched for an entry nnme 
,natching the specified reference name. 
When this entry name is found in a directory, 
the directory pathname is prefixed to the 
reference nnme yielding the required pathname. 
The dynamic linker, using the "~lake Known" 
module (8.2. ), then obtains a segment number by 
which the referenced segment wi 11 be accessed. 
Finally it transforms the reference name into 
this segment mnnber such that all subsequent 
executions of the instruction in this process 
access the segment directly by segment number7 Further details are given by Daley and Dennis 

8.2. Making a Segment Known to a Process 

Each time a segment is referenced in a process 
by its pathname, either explicitly or as the 
result of the evaluation of a reference name by 
the dynamic linking facility, the pathname must 
he translated into a segment number in order to 
pennit the processor to address the segment for 
this process. This translation is done by the 
supervisor using the KST associated with the 
process. The KST is an array organized such 
that entry number "s", KSTE(s), contains the 
path name associated with segment number "s ". 
See Figure 5. 

If the association [pathname,segment number] is 
found in the KST of the process, the segment is 
said to be known to the process and the segment 
number can ~ed to reference the segment. 

If the association [pathnamc:,scgment number] is 
not found in the KST, this is the first reference 
to the sq,'Tilent in the process and the segment 
must he nade knol'n. A segment is made knm~n by 
assigning an unused segment number "s" in the 
process and by recording the pathname in KSTE(s) 
to establish the pair [pathname,segment number] 
in the KST o: the process. Also, the directory 
hierarchy is searched for this pathname and a 
poi~ter to the corresponding branch is entered in 
KSTE(s) for Later use (8. 3, ). 

'The per-process association of pathname and 
segment number is used in the Multics system 
because it is impossible to assign a unique 
se3ment number to each segment. The reason is 
that the num':>er of segments in the system nearly 
always will be larger than the number of segment 
numbers available in the processor. 

When a segment is made known to a process by 
segment number "s", its attributes are not placed 
in SDW(s) of the descriptor segment of that 
process. SDW(s) having been initialized with the 
missing segment switch ON, the first reference in 
this process to that segment by segment number 

"s" will cnuse the proct~~S\)r tfl generate a tr;lp. 'lflll!lllll 
In Multics this trap is l'<~ll,,d 11 '\nis,;!.nr, :;q:;IOl<'nt 
fault" and transfers contt·ol t'' a supcr\'isor 
module called the st>gm<'nt fault handll•r. 

8. 3. The se,•ml'n t F;Hd t Hand 1 er 

When a miss in~' segm('llt fnult oc,·ut·:<, "'"1t rol l s 
passeu to the sef,ment fau 1 t hand 1 e ,. tu ''con' the 
proper segment uttriilutt'S in tile• apprupt·int,~ SllW 
anu set the missing Sl'p,ment swirch OFF in th<' SOW, 

These attributes, as shown in Fi.gur'' 3, consist 
of the page table addt·ess, the l0ngth ,,i th<~ 
segment, and the access rights of the user with 
respect to the segment. The inionnation 
initially available to tht.! Stl!wrvisl1r upon 
occurrence of a missing segment fault is the 
segnwn t number "s ". 

The only place where the net>ueJ att rihutes ,·a;t be 
found is in the branch of the segment. trsin>, 
the segment number "s", the supt•rvi:;or ,·an lo,·ate 
the KST entry associated with the faulting 
segment; it can then find the r<'qui rt.!J brunch 
since a pointer to the branch has bt.!en st<:>red in 
the KST entry when the segment was made known to 
this process (8.2. ). 

Using the active switch (Figure 5) in the bran..:h, 
the supervisor determines 1~hether there is .1 page 
table for this segment. Recall that this sw~~ch 
w<lS initialized in the branch at segment cr,~nt ir 
time. If there is no pa,~c tahle, one mtwt be 'fllllll 
constru ted. A portion of core memory is 
pennanent ly reserved [ot· page tables. All page 
tables are of the same length and the number of 
page tables is determined at sysc.:>m initializa­
tion. 

']:'he sup'ervisor divides page tables into two lists: 
the used list and the free list. M!tnufacturi.ng 
a page table (PT) for a segment could consist 
only of se lee ti ng a PT from the free 1 ist, 
putting its absolute address in the branch and 
moving it from the free t<' the used list. If this 
were actually done, howev<•r, the servicing ,>f 
each missing page fault would require access to a 
branch since the ser;nwnt map contain! nr; 
second~1ry storage nJdrcs~Ps is ke!'t Lllct·c 
(Figure 5). Sin<''-' it f,; imprnctil•nl f,,,- nll 
dirPctories to pt•rm:nll'nlly ,-esidc• in cpre, pag<' 
fault handling could tiH~rc'by .-eqnin• n secondnry 
storage acces;; in additi<'n to LiH' read request 
required to trar";port til<· pa!!,C Itself into corP. 
Although this mechanism works, efficiency cnn­
siderations have lt•d to the "at:tivatinn" 
convention between tht> segm<'nt fault handler and 
the page fault handler. 

Activation. A portion of core memory is 
permanently reserved for recording attributes 
needed by the page fault handler, i.e., the 
segment map and the segment length. This 
portion of core is referred to as the Hctive 
segment table (AST). There is only one AST in'lflll!lllll 
the system and it is shared by all processes. 
The AST contains one entry (ASTE) for each PT. 



A PT is always associated with an ASTE, the 
address of one implying the address of the other. 
They may be regarded as a single entity and will 
be referred to as the [PT,ASTE] of a segment. 
The used list and free list mentioned above are 
referred to as the [PT,ASTE] free list and the 
[PT,ASTE] used~· 

A segment which has a [PT,ASTE) is said to be 
~· Being active or not active is an 
attribute of the segment and is recorded in the 
branch using the active switch. 

When the active switch is ON, both the segment 
map and the segment length are no longer in the 
branch but are to be found in the segment's 
[PT,ASTE) whose address was recorded in the 
branch during "activation" of the segment. 

To activate a segment, the supervisor must: 

I 

I 

Find a free [PT,ASTE]. (Assume temporarily 
that at least one is available). 
Move the segment map and the segment length 
from the branch into the ASTE. 
Set the active switch ON in the branch. 
Record the pointer to [PT,ASTE] in the 
branch. 

I I I s 1. 

1.w II i.p J 
' 
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By pairing an ASTE with a PT in core, the segment 
fault handler has guarante~r.l that all segment 
attributes needed by the page fault handler are 
core-resident, permitting more efficient puge 
fault servicing. 

Connection. Once the segment is active, the 
corresponding SDW must be "connected" to the 
segment. To connect the SDW to the segment the 
supervisor must: 

Get the absolute address of the PT, using the 
[PT,ASTE) pointer kept in the branch, and 
store it in the SDW. 
Get the segment length from the ASTE and 
store it in the SDW. 
Get the access rights for the user from the 
branch and store them in the SDW. 
Turn off the missing segment switch in the 
SDW. 

Having defined activation and connection, segment 
fault handling can now be summarized as: 

D$ 

Use the segment number s to access the KST 
entry. 
Use the KST entry to locate the branch. 
If the active switch in the branch is OFF, 
activate the segment. 
Connect the SDW. 

DSR 
L c:orc LJ 

l>IRE.CTORY 

K~T 

Fig 5. Basic Tables Used to Dnplement the Multics Virtual Memory 



Note that the active switch and the [PT,ASTE] 
pointer in the segment branch "automatically" 
guarantee segment sharing in core since all sow's 
describing a given segment will point to the 
same PT. 

Once the segment and its SDW have been connected, 
the hardware can access the appropriate page 
table word. If the page is not in core, a 
missing page fault occurs, transferring control 
to the supervisor module called the page fault 
handler. 

8.4. The Page Fault Handler 

When a page fault occurs the page fault handler 
is given control with the PT address and the page 
number of the faulting page. The information 
needed to bring the page into core memory is the 
address of a free block of core memory into which 
the page can be moved and the address of the page 
in secondary memory. 

A free block of core must be found. This is done 
by using a data base called the~.!!!!£· The 
core map is an array of elements called core~ 
entries (CME). The nth entry contains ~rma­
tion about the nth block of core (the size of all 
blocks is 1024 words). The supervisor divides 
this core map into two lists; the~~~ 
l!.~ and the ~ ~ free ~· 

The job of the page fault handler consists of the 
follbwing steps: 

Find a free block of core and remove its 
core map entry from the free list. 
(Assume temporarily that the free list is 
not empty. ) 
Access the ASTE associated with the PT and 
find the address in secondary memory of the 
missing page. 
If this address is a "null" address, 
initializ.e the block of core with zeros 
and update the segment length in the ASTE; 
this action is only taken the first time the 
page is referenced since the segment was 
created and provides for the automatic grow­
ing of segments. Otherwise issue an I/O 
request co move the page from secondary 
memory into the free block of core and wait 
for completion of the re¥~est via a call to 
the "traffic controller" which is 
responsible for processor multiplexing, 
Store the core address in ~he PTW, remove 
the fault from the PTW, and place the core 
map entry in the used list. 

8.5. Page Multiplexing 

There are many more pages in virtual memory than 
there are blocks of core in the real memory; 
therefore, these blocks must be multiplexed 
among all pages, In the description of page 
fault handling it was assumed that a free block 
of core was always available. In order to 
insure that this is nearly always true, the page 
fault handler, upon removing a free block from the 

core map free list, examines the number of ~ 
remaining free list entries; if this number is 
less than a preset minimum value, a page removal 
mechanism is invoked a sufficient number of times 
to insure a non-empty core map free list in all 
but the most unusual cases, A non-empty core 
map free list eliminates waiting for .page removal 
during the handling of a missing page fault. 

To get a free block of core, the page removal 
mechanism may have to move a page from core to 
secondary memory. This requires: (a) an 
algorithm to select a page to be removed; 
(b) the address of the PTW which holds the address 
of the selected page, in order to set a fault in 
it; and (c) a place to put the page in secondary 
memory. 

The selection algorithm is based l'P<>n pog•~ usa!e. 
It is a particularly easy-to-implement v~rsion 
of the "least-recently-used" algorithml,8. 
The hardware provides valuable assistance by, 
each time a page is referenced, setting ON a bit, 
called the used bit, in the corresponding PTW. 
The selectio;;:-;lgorithm will not be described in 
detail here. However, it should be noted theb 
candidates for removal are those pages described 
in the core map used list; therefore, each core 
map entry which appears in the used list must 
contain a pointer to the associated PTW (Figure S) 
in order to permit examination of the used bit, 
The action of storing the PTW pointer in the core 
map entry must be added to the 11st of actions 
taken by the page fault handler when a page is ~ 
moved into core (8.4. ). 

Once the supervisor has selected the page to be 
removed, it takes the following steps: 

Set the missing page switch ON in the PTW, 
If no secondary memory has been assigned 
yet for this page, i.e., the segment map 
entry for this page holds a "null" address, 
assign a block of secondary memory and store 
its address in the segment map entry. 
Issue an I/O request to move the page to 
secondary storage. 
Upon completion of the I/O request, move the 
core map entry describing the freed block of 
core from the core map used list to the cora 
map free list. This may be done in another 
process upon noticing the completion of the 
I/O request. 

8,6, [PT,ASTE] Multiplexing 

Core blocks can be multiplexed. only among pages of 
active segments, The number of concurrently 
active segments is limited to the number of 
[PT,ASTE] pairs, which is, by far, smaller than 
the total number of segments in the virtual 
memory. Therefore [PT,ASTE] pairs must be 
multiplexed among all segments in the virtual 
memory. 

Wh~n segment activation was described, a [PT,ASTE' 
pair was assumed available for assignment. ~ 
In fact, this is not always the ~ase. Mp.king one 



segment active may imply making another segment 
1nactive thereby disassociating this other 
segment from its [PT,ASTE]. Since all processes 
sharing the same segment will have the address of 
the PT in an SDW, it is essential to invalidate 
this address in all SOW's containing it before 
removing the page table •. 

This operation requires: (a) an algorithm to 
select a segment to be deactivated; (b) knowing 
all SOW's that contain the address of the page 
table of the selected segment, in order to 
invalidate this address; (c) moving the 
attributes contained in the ASTE back to the 
branch; and (d) changing the status of the 
segment from active to inactive in the branch. 

The selection algorithm for deactivation, like 
the selection algorithm for page removal, is 
based on usage. When the last page of a segment 
is removed from core, the segment becomes a 
candidate for deactivation. The algorithm 
selects for deactivation the segment which has 
had no pages in core for the longest period of 
time, i.e., the segment which has been least 
recently used. Since the number of [PT,ASTE] 
pairs substantially exceeds the number of page­
able blocks of core, it is always possible to 
find an active segment with no pages in core, 

The ASTE must provide all the information needed 
for deactivating a segment. This means that 
during activation· and connection, this informa­
tion must be made available, During activation, 
a pointer to the branch must be placed in the 
ASTE.; during connection, a pointer to ·the SDW 
must be placed in the ASTE. Since more than one 
SDW is connected to the same PT when the segment 
is shared by several processes, the supervisor 
must maintain a list of pointers to all connected 
sow's. This list is called a connection list, 
See Figure 5. 

After the selection algorithm chooses a [PT,ASTE] 
to be freed, the disassociation of the segment 
from its [PT,ASTE] is done in two steps: 
disconnection and deactivation, 

Disconnection consists of storing a segment fault 
in each SDW whose address appears in the connec­
tion list in the ASTE. Deactivation consists of 
moving the segment map and the segment length 
from the ASTE back to the branch, resetting the 
active switch in the branch·, and putting the 
[PT,ASTE] in the free list, 

9. Structure of the Supervisor 

Up to now supervisor functions have been described, 
but not the supervisor structure. In this 
section, the different components of the super­
visor are presented and the ability of portions of 
the supervisor to utilize the virtual memory is 
discussed. 

9. l. Functional Modules 

Three funcr.ional modules can be identified in the 
supervisor described in Section 8; they are called 
directory control (DC), segment control (SC), and 
~ control (PC). 

DC performs all operations on segment attributes; 
it also maps pathnames into segment numbers in the 
KST of the executing process, Data bases used by 
a process executing DC procedures are the direc· 
tortes and the KST of the process. (Figure 6) 

SC performs segment fault handling. Data bases 
used by a process executing SC procedures are 
directories, the KST of the process, descriptor 
segments and [PT,ASTE] pairs. 

PC performs page fault handling. Data bases used 
by a process executing PC procedures are [PT,ASTE] 
pairs and the core map. 

9,2, Use of PC in the Supervisor 

One can observe that the page fault handler need 
not know if a missing page belongs to a user 
segment or to a supervisor segment; it only 
expects to find the information it requires in 
the [PT,ASTE] of the segment to which the missing 
page belongs. Therefore, if all segments used in 
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Fig. 6, Supervisor Functional Modules and Data Bases 



SC and DC are always active, then thElir pages 
n~ed not be in core since PC can load them when 
they are referenced. 

In order to make use of PC in the rest of the 
supervisor the following (temporary) assumption 
must be made. 

Assumption 1: 

a. All segments used in PC are always in core 
and are connected to the descriptor segment 
of each process, 

b. All segments used in SC and DC are always 
active and are connected to the descriptor 
segment ot each process. 

9.3. Use of SC in the Supervisor 

Assumption 1 is satisfactory in the Multics 
implementation except for directories. 

The number of directory segments in the system 
may be very large and keeping them always active 
is not a realistic approach, since a large number 
of [PT,ASTE] pairs would have to be permanently 
assigned to them. It would be desirable to use 
SG to activate and connect directory segments 
only as needed. 

A necessary condition for handling a segment 
fault for segment x in a process is that segment x 
be known to that process. Assuming that all 
directories are known to all processes, but not 
necessarily active, reference to a directory x 
may cause a segment fault. When handling this 
fault, the segment fault handler must reference 
the parent directory of segment x, where the 
branch for x is located. This reference to the 
parent of x could, in turn, cause a.recursive 
invocation of the segment fault handler. These 
recursive invocations can propagate from direc­
tory to parent directory up to the root. If the 
root directory is always active and connected to 
each process, then the recursion is guaranteed 
to be finite and a segment fault for any direc• 
tory can be handled. 

The first assumption can be replaced by the 
following more satisfactory assumption (again 
temporary). 

Assumption 2: 

a. All segments used in PC are always in core 
and are connected to the descriptor segment 
of each process. 

b. All non-directory segments used in SC and 
DC are always active and are connected to 
the descriptor segment of each process. 

c. The root directory is always active and 
connected to each process. 

d. All directories are always known to each 
process. 

9. 4. Use of the Make Kno"'" Fad lltv in :he 
Supervisot· 

However, it is unsatisfactory to keep all d i rcc·­
tori es known to all processes because o:: the 
space that would be required in each KST. It 
would te more attractive if a dire-:tory could he 
made known to a process only when 1wedeJ by the 
process. 

Haking a segment x known implies Sc'arching few 
its pathname in the KST. If not f,JUnJ, the 
parent of x must first be made knm.rn nnd sc1 c111 up 
to the root. If the root directory is always 
known to all processes then any dil·ecr,,t·y i.~,m 

be made known to a proces;; by cnlling rc>cursh·cly 
the Make Known facility of the supervisor. 

Assumption 2 will now be replaced by the' fitMl 
assumption: 

Final Assumption: 

a, All segments used in PC are always in c,n·c 
and are connected to the descriptor segment 
o[ each process. 

b. All non-directory segments used in SG and DC 
are always active and are connected t0 the 

·descriptor segment of each process. 
c. The root directory is always active and 

connected to each process. 
d. The root directory is always known to each ...,tJJ 

process. 

Given the above assumption, supervisor segments, 
as well as user segments, can be stored in the 
virtual memory that the supervisor provides. 

10. Summary. 

The most important points discussed in this paper 
are summarized below. They are grouped into t~o 
classes: the point of view of the user of the 
virtual memory, and the point of view of the 
supervisor itself. 

User Point of View 

The Multics virtual memory can contain a very 
large number of segments that are referenced 
by symbolic names, 
Segment attributes are stored in special 
segments called directories, which are 
organized into a tree structure; by. a naming 
convention known to the user, the symbolic 
name of a segment must be the pathname of the 
segment in the directory tree structure. 
Any operation on directory segments must be 
done by calling the supervisor. 
Any operation on a non-directory segment can 
be don.e directly in accordance with the 
access rights that the user has for the 
segment; any word of any segment which 
resides in the virtual memorv can be 
referenced with a pair [path;ame,i] by the ...,tJJ 
user. 



Supervisor Point of View 

The supervisor must simulate a lar·ge 
segmented memory which is directly address­
able by symbolic name and such that any 
access to the memory is submittl~d to access 
rights checking. 
The supervisor maintains a directDry tree 
where it stores all segment attrLmtes. 
It can retrieve the attributes of a segment, 
given the pathname of that segment. 
The supervisor itself is organizeJ into 
segments and runs in the address .·:pace of 
each user process. 
Any segment, be it a directory or a non­
directory segment, is identified by its 
pathname but can be accessed only using a 
segment number. For each segment name the 
supervisor must assign a segment rumbcr by 
which the processor will addret;s Lhe segment 
in the process. 
The processor accesses a word of .:\ segment 
through the appropriate SDW and Pl'W, subject 
to the access rights recorded in the SDW. 
A segment fault is generated by the processor 
whenever the page table address or access 
ri.ghts are missing in the SDW. The super­
visor then, using the KST entry as a stepping 
stone, accesses the branch where it finds the 
needed infonnation. If a PT is to be 
assigned, the supervisor may have to deacti­
vate another segment. 
A page fault is generated by the processor 
whenever a PTW docs not contain a core 
address. The supervisor then, using the 
ASTE associated with the PT, moves the miss­
ing page from secondary storage to core. 
This may require the removal of another page. 
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