
M0112

' * THE INSTRUMENTATION OF MULTICS

by

J·=rome H. Saltzer

and

John W. Gintell

Summary: This paper reports an array of measuring tools devised

to aid in the implementation of a prototypE> computer utility.

These tools incl'lde special hardware clocks ··md data channels,

general purpose programmed probing and recording tools, and

specialized measurement facilities. Some particular measurements

of interest in a system whlch combines demand paging with multi-

programming are described in detail. Where appropriate, insight

into effectiveness (or lack thereof) of individual tools is pro-

vided.

This paper is to be presented at the

Second ACM Symposium on Operating System Principles, Princeton,

New Jersey, in October, 1969.

* Work reported herein was supported in part by Project MAC, an
M.I.T. research program sponsored by the Advanced Research
Projects Agency, Department of defense, under Office of Naval Re
search Contract Number Nonr-4102(01). Reproduction in whole or in
part is permitted for any purpose of the United States Government.

M0112

The Instrumentation of Multics
+ July ':!9, 1969

Jerome H. Saltzer
Massachusetts Institute of Technology

Department of Electrical Engineering and Project MAC
Cambridge, Massachusetts

John W. Gintell
Genera 1 E lee tr ic Company

Cambridge Information Systems Laboratory
Cambridge, Massachusetts

In the construction of a modern, complex computer operating system,

sophisticated tools are needed to measure what is going on inside the

system as it runs. The list of hardware and software tools and tech-

niques used for the measurement of Multics is interesting both from the

point of view of what has proved to be important to measure, and what

has not. Multics is a project whose intent is to explore the implica-

tions of building a comprehensive computer utility. The specific goals

of Multics are described in a series of papers written in 1965 1; briefly,

the objective is to create a computer operating system centered around

the ability to share information in a controlled way, and permitting

application to a wide variety of computational jobs. A spectrum of user

services, including a hierarchical file organization, sharing of information

in fOre memory, dynamic linking of subroutines and data, parallel process-

ing and device-independent input/output facilities characterize the system,

and contribute to a complexity that makes careful instrumentation mandatory.

+ Work reported herein was supported (in part) by Project MAC, an M. I. T

research program sponsored by the Advanced Research Projects Ag.ency, De-

~ partment of Defense, under Office of Naval Research Contract Nonr-4102(01).

Reproduction of this report, in whole or in part, is permitted for any

purpose of the United States Government.

.•

Instrumentation ofMultics - 2

Two implementation techniques used in Multics call for specialized

r:.easurements. The first of these is a multiprogrammed multiprocessor

organization, chosen to facilitate continuous operation of the utility

and for ease of system scaling. The second technique is exploitation

of an ability to begin executing a program which is not completely loaded

into primary memory: this technique, usually named demand paging, is

intended to exploit and encourage a tendency of m~ny programs to local

ize their references to primary memory in any given period of tfme. Since

these two techniques when applied simultaneously require interacting

multiparameter controlling algorithms, specialized measurements must be

made to check on the resulting performance and to allow adjustment of the

parameters.

Multics, as a research project, cop.tains many new ideas and new

combinations of old ones. As a result, in its design there have been a

dismayingly large number of choices to be made: strategies, algorithms,

parameter settings, and emphasis on importance of designauri speed of

individual modules. Since the presumption was made at the start that

some wrong choices are inevitable, there has been an emphasis on integrated

instrumentation from the earliest design of the system. The result has

been an ability to move in rapidly to unclog bottlenecks. In particular,

two effects have been observed:

Frequently~ the best guesses by system programmers as to the

cause of some performance problem have been proven wrong by the

detailed measurements. Each such surprise while possibly affecting

the programmer's ego, has saved work redesigning or streamlining

Instrumentation of Multics - 3

a module which was not causing the trouble. (Of course, the

record has not been perfect: some unimportant modules have

been redesigned in spite of (or for lack of) instrumentation

results.)

Many otherwise undetected performance problems have been dis

covered in exploring instrumentation output. Probably because

of normal variations of response in interactive systems, a flaw

which degrades average response time by 20~ may not be re

cognized immediately as such by console users. It frequently

takes a healthy factor of two before the user realizes something

is wrong.

The measuring techniques described here have been directed primarily

toward understanding what goes on inside the operating system, rather than

on measuring "throughput", system capacity, or the characteristics of

system load. This direction is partly because of the research nature of

the Multics project and partly because when an operating system provides

e large variety of user services, its capacity depends very sharply on

what exactly the users choose to do, making any single measure of capacity

highly suspect.

Many of the measurement techniques used on Multics are not new .. They

are mentioned anyway, because it is the array of techniques used together

which has been valuable, and also the relative importance of various tech

niques, old and new, is probably different in the Multics environment than

elsewhere.

Instrumentation of Multics - 3a

one should not presume that all the measurement techniques described

here were thought out in advance, though many were. Much of the experience

in measuring Multics has been to discover what additional measuring facilities

were needed; this process, of course, continues.

We begin by describing three hardware tools which aid in construction

of measuring facilities. Then eight particularly useful, general, progra~

med measuring facilities are described. ·This is followed by a brief

discussion of the built-in instrumentation used to monitor multiprogrammed

demand paging. After a description of techniques for obtaining controlled

measurements, a few observations about measurement of operating systems

conclude the discussion.

Instrumentation of Multics - 4

Hardware Tools for Instrumentation

Before describing the programmed measurement techniques used in

Multics, one must know of three specially designed hardware tools pro-

vided by the General Electric 645 computer on which Multics is currently

implemented. These three are: a program readable calendar clock which

provides a uniform and precise time base for all measurements, a memory

cycle counter in each central processor, and a special input/output

channel which permits another computer to monitor the contents of the

GE-645 primary memory.

The calendar clock consists of a 52-bit register whose contents are

increased by one, once each microsecond, under control of a quartz crystal

oscillator. This rate is in the same order of magnitude as the instruction

processing rate of the GE-645, so that timing of ten-instruction subroutines

is meaningful. The register is wide enough that overflow requires several

* tens of years, so that it serves as a calendar. The calendar clock fits

into the GE-645 system structure like a bank of memory: it is directly

n~adable as a double-precision integer by a single instruction from any

central processor. A library subroutine is provided to read the clock and

in principle a language translator can implement a built-in function for

the purpose. This design encourages use of the clock reading as a "date

and time stamp'' to uniquely identify messages, files, and processes in

the system.

* All Mult~cs installations contain the same calendar clock setting: the
n~mber of m~croseconds since 0000 GMI', Jan. 1, 1901. The clock is set by a
f:t.eld engineer, who is supplied with a printed table of such settings keyed
to local standard time.

Instrumentation of Multics - 5

There are three significant advantages to thiE: hardware clock design

compared, say, with a software clock simulated by a processor interval

timer (a technique which requires no extra hardware· in most present-day

computers):

The simplicity of usage of the hardware clock is very great, both

for supervisor and for user procedures,

In a multiprocessor system there is no question as to which pro

cessor is maintaining the simulated clock (and no problen of sepa

rately maintained and potentially unsynchronized clocks.)

Confidence in the accuracy of the clock is easy to gain; one

does not have to w0rry about accuracy of special code which com-

pensates for interrupts, or loss of "ticks'' during register

reloads.

Associated with the calendar clock is a program loadable 52-bit time

match register, which is continuously compared by hardware with the calen

dar clock register. Whenever a time match occurs the clock generates a

"time-match" interrupt. A supervisor procedure coordinates the use of

this facility among the users of the system and the system's own metering

facilities.

The second hardware tool is simply a modification of the ubiquitous

processor interval timer; in the GE-645 this "timer" counts the number of

~emory references made by the central processor rather than the number of

clock ticks. There are at least three reasons for interest in such a

measurement:

Instrumentation of Multics - 6

In a multiprocessor system which exhibits interference on

access to primary memory, it permits a load-independent measure

of cpu usage, for accounting purposes.

Comparison with calendar clock readings permits measurement of

memory interference.

Comparison with instruction counts permits a check on the

associative memory of the GE-645 central processor, to see

to what extent it reduces memory accesses for page table words.

This tool has not yet been used in any significant way since gross

system measurements suggest that scratchpad memory effectiveness is near

its theoretical upper limit and memory interference is insignificant in

the present configuration. Sustained production use of two processors will

probably rekindle interest in this tool.

The third hardware tool is an input/output channel which can run in

an endless loop, once initialized, without attention from the operating

system. The particular endless loop programmed is a "read into the

address part of the next command" followed by a "write out repeatedly

the contents of the word whose address was just read''. The channel is

connected, by a 2400 Baud telephone line, to a Digital Equipment Corpora

tion PDP-8/338 programmable display computer. With this channel, the

PDP-8/338 program can monitor the contents of any Multics data bases for

which it knows the location and format. The data rate involved -- less

than 60 words per second -- presents a negligible I/0 and memory cycle load to

Instrumentation of Multics - 7

the GE-645 system. Since no GE-645 processor code is executed in obtaining

the data (as would be the case if one of the system's users probed period

ically into a data base) one can be quite confident that the act of probing

has not significantly affected the measurement. This slow data rate does

make it difficult to monitor a rapidly changing data base.

General Software Tools for Instrumentation

A number of general programmed measurement tools have been implemented

as part of Multics; eight of them are reported here. All of these tools

are built into the system in such a way that the tool is always invokable.

Thus, any would-be observer can make observations and perform ,experiments

withwt madng system modifications, and with minimum effect on the conditions

of measurement. The performance degradation caused by these permanent

installations has been both estimated and measured to be quite small.

The first, and most elaborate of these tools is a general metering

package which records time spent doing selectable supervisor primitive

operationswhile the system is running. For each selected primitive the

met~ring package records the number of times the primitive is invoked and

the total execution time accumulated within each of a number of ranges of

execution time.

Four primitives in Multics associated with implementation of the

Multics virtual memory2, were intuitively felt to be potential system

bottlenecks and thus were chosen for initial integration with the measurE-

ment package. The first of these is the dynamic linking procedure, which

is invoked when a procedure makes a symbolic reference to another procedure

or data. The second primitive is the missing-segment procedure which is

invoked to set up the environment required for paging. The third primitive

is the missing-page procedure which is invoked when a program refers to a

Instrumentation of Multics - 8

page not in primary memory. The fourth primitive is the wall

crossing procedure which is i.nvoked each time the process needs to

switch from one protection ring (domain of access) to another ring. Such

a switch occurs, for example, on each call from a user program to a

supervisor procedure.

The measurement of time spent executing a primitive is complicated

by two problems. The first problem is that the central processor is

multiplexed among many processes; thus something more than reading the

calendar clock at the beginning and end of execution of a primitive is re

quired to compute time spent executing in a primitive. Time spent wait

ing for I/O operations on missing pages or for a lock to clear is not

counted as part of the primitive whenever the situation permits multipro

gramming during the wait. The second problem is that primitives may in

voke other primitives (including themselves) during their operation and

provision must be made for this situation. For example during the handling

of ~ missing-segment both missing-pages and additional missing segments

may occur, each of which must be handled in order to proceed with the ori

ginal missing-segment handling. The rule is that time spent in a nested

primitive is not charged to the nesting primitive if the nested primitive

is also being metered. By this rule it is possible to perform a pair of

experiments to learn the amount of time spent in a nested primitive as a

result of handling the nesting primitive. For example, if one first meter~

both missing-segment hand ling and missing- page handling, and then later

meters missing-segment handling only, the second experiment will show mis

sing-segment handling time increased by just the amount of missing-page

Instrumentation of Multics - 9

handling which was triggered by missing segment handling.

A segmented system provides a simple way to detect how time spent in

the system is distributed among the various components. The second tool, a

segment usage metering facility, sets the calendar clock to interrupt per

iodically (typically every ten milliseconds). When the interrupt occurs,

the segment number of the segment which was executing is used to index into

an array of per segment counters and the appropriate counter is incremented

by one. After the system has run for a while this table can be sorted and

the resulting distribution of segment usage can be printed out, listing the

most popular segments first. This facility is similar to the one described

by Cantrell and Ellison3.

A realted, third tool records on a per-segment basis the number of

missing pages and segments encountered during execution in that segment.

Both of these measurements can br coupled to the general metering package

described earlier. If coupled, the arrays are updated only during handling

of metered primitives or possibly only when outside the metered primitives

but within a specified process. This latter option permits detailed analysis

of any user program.

Two examples of the use of these three measurement facilities illustrate

their utility. The first significant application of these packages was in

the analysis of missing-page' handling. ~y obtaining the time distribution

function for missing-page handling and running segment usage metering during

this time only, it was possible to compute how much time was spent in each

module of the missing-page handler. A heavy imbalance of time spent in

the core management module suggested a redesign of that module so as to

not handle multiple page sizes.

Instrumentation of Multics - 10

As a second example, a user analyzing his own program can use the

packages in several ways. By requesting the timing of all supervisor

primitives, and then running segment usage metering only during time

outside the metered primitives the user can deduce the central processor

time expended in each of the- procedures which are part of his program.

The supervisor primitive timing permits him to see the cost of the speci-

types of primitives he is using. The per-segment missing-page counters

allow him to see if one of his own segments encountered an unexpectedly

large number of missing pages -- perhaps because it uses a data struc-

ture ineffectively.

A typical example of the (somewhat cryptic) output of the general

metering package is shown in Figure l. This output was obtained during

execution of the standard "certification" script described below. The

primitives measured are the fault and interrupt handling modules.

A fourth tool, very different in scope from t~e above described facility,

counts the number of times procedures are called. A standard call-save-

return sequence is used for all interprocedure ref~rence in Multics.

An "add-one-to-storage" instruction is included in this sequence which

increments a counter each time a procedure is entered. This counter enables

a programmer to determine lat~r e~actly how many times a procedure has been

called and to relate that number to the number of calls to other procedures.

A fifth tool is a specially designed software package named the

Graphical Display Monitor, the subsystem of PDP-8/338 programs that use

the previously described synchronous data channel to interrogate locations

of memory in the GE-645. Multics obliges this display by building, during

system initialization, a table containing pointers to interesting data

Instrumentation of Multics - 11

bases. A set of display generating tools permit one .to prepare a new display

program in a few hours time. Some standard displays have been developed to

observe the traffic controller's queues, the arrays of primitive handling time

distribution~and the use of primary memory. Observations of these dis-

plays have been helpful in detecting bottlenecks in the system and on

several occasions have exhibited the system passing through st~tes previous-

ly thought to be impossible. A more complete description of this tool

4
and examples of its output will be found in the paper by Grochow

sixth and
Perhaps thA most useful software measurement tool of all is the/simp-

lest one: following the completion of each typed command the command

language interpreter types a "ready message" consisting of three numbers.

The first number is tbe time of day at the preparation for printout of

this ready message. The second number is the cpu time used since the pre-

vious ready message to the nearest millisecond. The third number is the

number of times the process had to wait for a page to be brought in, These

pieces of information, which appear automatically and almost free of charge,

give immediate feedback to the programmer as to the resource usage of t~e

command just typed. This feedback is an invaluable aid to the programmer

in seeing the influence of program changes upon performance. For cases

where there are several ways to perform the same task the us~r is given

guidance as to which is more economical. For example, there are two text

editors currently available on Multics; the cheaper one is readily apparent

and thus generally the chosen editor,

Instrumentation of Multics - 12

Perhaps the most signiftcant drawback to providing powerful system facilities

such as a large virtual memory and a full PL/I compiler is the ease with

which even a sophisticated system programmer can unintentionally trigger

unbelievably expensiye operations. One of the principal Multics tools to

fight back at misuse of virtual memory as though it were real memory is a

missiog-page tracing package. In this package, the missing page handler

retains in a ring buffer the segment and page number and the time of day of

the last 256 missing pages of the process under measurement. Printing out

the contents of the ring buffer following execution of some library program

is often very revealing, sinee it provides unimpeachable evidence of which

were the different pages the program touched. This tracing package frequently

reveals that a large working set is the result of unnecessary meandering in

the path of control of a program. The list of pages touched gives a pro-

grammer precise ammunition on how to reorganize his program to improve its

locality of reference.

Finally, a second tracing package monitors the effect of the system's

multiprogramming effort on an individual user. The general strategy here is

to write a user program which goes i~to a tight loop repeatedly reading the

calendar clock. Normally, successive clock readin~differ by the loop

transit time. If a larger difference occurs, it is a result of control of

the processor having been snatched away from the loop to handle an interrupt

or run another process. These larger time differences, and the time they

were noted, are added to the end of a growing table of interruptions, and

the program returns to its loop. When the table is filled, the program

Instrumentation of Multics - 13

prints out the table, showing the time of occurrance of each interrupt,

and the length of time it took to handle it. This table helps build con-

fidence that the processor scheduling algorithm is working as predicted,

and it occasionally discovers a misprogrammed data channel which is pt:o-

ducing more frequent interrupts than necessary. It also provides an in-

dependent confirmation of the time required to handle each interrupt;

This measurement is a good example of one for which a simulated software
likely

clock would barely suffice since the clock simulation itself is I to

interact with the scheduling algorithm and the interrupt handlers, whose

functions are being measured. On the CTSS system, a predecessor of Multics

for the IBM 7094, the lack of a calendar clock forced this type of measure-

ment to be made using arrival of w~ds from a magnetic tape as a kind of

pseudo-clock.
two

Apart from thd techniques just described, Multics does not have
reported

built-in general event tracing packages, such as ·those I by Campbell

5
and Heffner • This lack can probably be attributed to a suspicion that

the volume of interesting traceable events in Multics would preclude

intelligent analysis; nevertheless there have been times when it was

thought that a built-in general trace would have been very handy.

Special Instrumentation for Multiprogrammed Demand Paging

Multiprogramming6 has been in use for a long time in a variety

of systems. In a few words, multiprogramming consists of keeping several

programs in primary memory, so that when one program encounters an I/O

roadblock control of the processor can be immediately switched to another.

Instrumentation of Multics - 14

The objective is to keep the central processor busy more of the time,

nnd thereby increase the rate of job completions. This improved utili

zation of the processor comes about at the expense of extra primary

memory required to hold programs which are ready to absorb a released

processor.

If the primary memory can hold only a few programs, there will be

timE!S when all available programs are roadblocked simultaneously. The

central processor then must idle, waiting for some program's I/0 require

ments to be satisfied. This idle time we will term "multiprogramming idle",

to distinguish it from "true idle" time which occurs when, despite space

:Ln primary memory for another program, there is simply no customer waiting

for the system's services.

We have thus far identified two measures of central processor util

ization for which instrumentation must be provided, If multiprogramming

idle time is a significant fraction of the total real time, it may indicat~

a shortage of primary memory or an unhelp~ui scheduler. If true idle time·

is large, the system is probably not fully loaded.

The fundamental complication introduced by the ability to run a program

without all its pages in primary memory is that there is no longer a simple

rule to determine whether or not one more program will fit. In fact, with

limits which are too generous to be helpful, there is always room

for one more program in primary memory. Unfortunately, addition of another

program to this"eligible set" may either allow some otherwise idle processor

time to be. used, or it may cause the programs in the eligible set to fight

over the available memory.

. Instrumentation of Multics - 15

S d . 7 h i ' orne system es~gners ave part tioned primary memory among the

eligible programs. If a program in one partition is not allowed to

steal space for its pages from a program in another partition, the question
program to the eligible set is iust like

of adding another I that of multiprogramming witnout demand paging,

Unfortunately, this strategem b:reaks down when many pages are (and any

page may be) shared among several programs, as required by the objectives

of Multics 8. We have therfore explored the non-partitioned avenue, by

controlling the size of the eligible set, at first rigidly, and in the

future dynamically. For either rigid or dynamic control, the existence

of control implies that there will still be multiprogramming idle time;

the decision about adding anoth~program to the eligible set turns on

whether or not any additional paging activity thereby introduced either

wipes out the recouped idle time, or causes unacceptable job delays.

A variety of special purpose meters are therefore included as an

integral part of the Multics multiprogramming scheduler and the. ~age

removal selection algorithm. Measures of paging activity include total

processor time spent h~ndling missing-pages, numbe~ of missing pages,

average running time between missing pages, ~nd average length of the

grace period from the time a page goes idle until its space h actually

reused.

As a rough measure of response time for a time-sharing console user,

an ex,onential average of the number of users in the highest priority

scheduling queue is continuously maintained. The exponential average

is computed by a method borrowed from signal data processing9

Instrumentation of Multics - 16

An integrator, I, initially zero, is updated periodically by the formula

I ... I*m + N ;
q

O.O~m<l.O

where N is the measured length of the scheduling queue at the instant
q

of updej te, and .!!} is an exponential damp in~ constant which determines the

average distance into the past over which the average is being maintained.

In general, the sample which was taken

1.0
k =,--..,---

1. 0 - m

samples in the past will have an effect on the value of the integrator 1/e

as large as the current sample. The average queue length is approximately

N = I/k q

This averaging technique, which requires only a multiply and an add instruc-

tion slipped into a periodic path, is an economical way to maintain an

average which does not "remember" conditions too far into the past.

If the recent average queue length is multiplied by the average run

time in the first queue an estimate is obtained of the expected response

time of the moment. This estimate has been used on CTSS to dynamically

control the number of users who may log into the system. In MuL:ics, this

me0aijur~-npff.Pc tive uses of estimate, as mentioned above, is als0 a guide with which t 1 uy ~

control of the size of the multiprogramming eligible set.

Control of Measurements: Script Driven Tests

A persistent problem in a complex operating system is evaluating

the effect of a small change in a factor presumed to affect performance.

If tha system is observed under a normal load of usage before and after

the change, fluctuations in the nature of the load may wipe out the effect

Instrumentation of Multics - 17

to be measured, To get around this problem a standard "benchmark", or

series of programs, is often eevised. This benchmark can then be run

against a new system while taking measurements to compare with the old.

When the system under test is designed to be used interactively from

time-sharing consoles, two difficulties are introduced:

A load simulator must maintain a laxge number of simultaneous

but low density input streams.

Each individual input stream should be somehow representative

of a human user conversing with a computer system. For example,

inputs should be separated by pauses representing "think times".

10
Greenbaum attacked this problem for Multics by developing a program for

the PDP-8 computer whi~h via telephone lines to the GE-645 simulates one

to twelve simultaneous interacting human users, each of which is following

a (possibly different) script of commands to be input to the system with

interspersed "think" time intervals.

A number of scripts have been developed, but the one most frequently

used is one which represents a user typing in and debugging a small FORTRAN

program. This script goes as follows:

type in program

try to translate it, discovering errors

edit the program to correct it

translate the program, this time successfully

rename the program

run the program

print the program on the user's typewriter

list all files associated with the program

delete the program

Instrumentation of Multics - 18

This script "maps into" the a"ailable command language of a variety of

time-sharing systems, and can therefore be used as a basis for inter-

sy,stem comparison of usage charges and response time. When used on CTSS,

11
this script produces a measured load similar to that observed by Scherr

over a long period of actual use. Although the script simulates only a

very specific class of user, the mix of system services invoked (note that

actual running of the user's program is a small part of the script) is

probably similar to that invoked by a wider class, so that if a system

chaitge improves the performance of the script, it can be expected to sim-

ilarly ~prove the performance of the system under actual load.

Because of the sheer logistic problems.of extending a telephone-line

driven technique to more than a few simulated users, an internal driver

program for Multics has also been developed. The driver can create as

many processes as desired and have them each perform some script (the script

described above is usually used) in competiti~ with one another .. Only

a minimal change to the normal operating conditions is required, because

the Multics I/0 system provides the capability of attaching an input/output

stream to a file rather than a typewriter. Even so, this technique has the

limitation that it does not exactly simulate real users. The I/0 path to

a file is inescapably different from the path to a typewriter (especially

as to number of different pages in the working set) and the driver program

itself competes for resources at least at the beginning and end of the

te~t. In addition, the current version of the internal user simulator does

not insert "think times" between commands1 although addition of this feature
'

is contemplated. Despite these difficulties, the internal user siml.tlator

has proven very useful because of its simplicity of operation and repeat-

Instrumentation of Multics - 19

ability of the measurements taken while it operates. When new Multics

systems are installed, they are first required to be "certified" by running

the user simulator as a check on both performance and functional capability.

Observations

One conviction gained from experience with Multics, and earlier

with CTSS, is that building permanent instrumentation into key supervisor

modules is well worth the effort, since the cost of maintaining well-organized

instrumentation is low and the payoff in being able to "look at the meters"

any time a performance problem is suspected or even when one is not

is very high. In a large system, a kind of inertia frequently impedes

quick changes to a module such as installation of temporary meters in

response to some suspected problem.

A second conviction, arising from a variety of experiences when an

apparent performance bug turned out to be an instrumentation bug, is that

the meter readings are always suspect. Whenever possible, an independent,

perhaps gross, measurement which can confirm some aspect of a measurement

in question is very worthwhile.

A third observations is that most system programmers are not by train-

ing or temperament scientists, and they often lack the patience to method-

ically set up an experiment which is precisely controlled. An alarming

number of "non-experiments" are performed, with a total useful (?) result

of (for example) "I brought the system up with a shorter scheduling

quantum and response seemed a little better." Although much useful infor
and insight

mation/can be gained by on-l:i,ne monitoring of uncontrolled live users, use

of such measurements for performance comparison must always be suspect since

the particular user population at any instant may be non-"average". The

•

Instrumentation of Multics - 20

rules that apply to all scientific measurements also apply to measuring

computer systems:

Controlled experiments require great care, and may be quite

expensive.

Uncontrolled experiments are uninteresting -- one must make only

one change at a time if he is to honestly evaluate the change.

Before embarking on an experimental change one should first make

a prediction of what measurements should change, and then spend

some time understanding why they didn't change exactly as pre

dicted.

One must always be on the watch for unintentional misinterpretation

of a result by a system programmer (or his manager) who has a

large personal stake in a hoped-for outcome. One is dealing with

human beings, and the psychology of error is no different than in

other situations.

Instrumentation of Multics -21

Acknowledgements

Almost everyone who contributed to the design of Multics has

contributed at least one suggestion toward its instrumentation.

F. J, Corbato and E. L, Glaser offered helpful suggestions on almost

all aspects. Contributions to the design of the calendar clock were

made ~y Chester Jones, Joseph Ossanna, and George Futas. Victor

Vyssotsky suggested the cpu memory cycle co~nter. Early work on the

PDP-8/Multics I/O channel was done by Daniel Edwards and Thomas
display

Skinner. The PDP-8/338 graphic/monitor was designed and implemented

by Jerrold Grochow. Contributions to the fault metering package came

from Charles Clingen and David Vinograd. Robert Rappaport and Steve

Webber contributed to the design of metering for ~ynamic paging and

multiprocessor scheduling. The internal script driver was designed

and implemented by David Stone and Richard Feiertag; the external

(PDP-8) version, by Howard Greenbaum and Akira Sekino.

Instrumentation of Multics - 22

References

1. Corbato, F.J., et al, "A New Remote-Accessed Man-Machine System,"
AFIPS Conference Proceedings 27 (1965 FJCC), Spartan Books,
Washington, D.C., 1965, pp. 185-247.

Bensoussan,
Memory,"
Prine ip les,

A., C.T. Clingen, and R.C. Daley, "The Multics Virtual
Second ACM Symposium on Operating System

Princeton, N.J., October, 1969.

3. Cantrell, H. N. and A. L. Ellison, "Multiprogramming System Perform
ance Measurement and Analysis," AFIPS Conference Proceedings 32,
(1968 SJCC), Thompson Book Co., Washington, D.C., 1968, pp. 213-221.

4. Grochow, J.M., "Real-Time Graphic Display of Time-Sharing System
Operating characteristics," to be presented at 1969 Fall Joint Computer
Conference, Nov., 1969.

5. Campbell, D.J., and W.J. Heffner, "Measurement and Analysis of
Large Operating Systems During System Development," AFIPS Confer
ence Proceedings 33, (1968 FJCC), Thompson Book Company, Washington
D.C., 1968. pp. 90J-914.

6. Critchlow, A.J., "Generalized Multiprocessing and Multiprogramming
Systems," AFIPS Conference Proceedings 24 (1964 FJCC), Spartan
Books, Baltimore, 1963, pp. 107-126. --

7. Denning, P.J., "Resource Allocation in Multiprocess Computer Systems,''
Ph.D. Thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering, May, 1968. (Available as M.I.T. Project
MAC Technical Report TR-50).

8. Corbato, F.J., "A Paging Experiment with the Multics System~" to be
published in a festschrift for P.M. Morse, 1969.

9. Blackman, R.B., and J.W. 'Tukey, The Measurement of Power Spectra,
Dover, New York, 1958 (Originally appeared in Bell System Technical
Journal, January and March, 1958).

10. Greenbaum, H.J., "A Sumulator of Multiple Interactive Users to Drive
a Time-Shared Computer System," S.M. Thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering, October 1968.
(Available as M.I.T. Project MAC Technical Report TR-58.).

11. Scherr, A.L., An Analysis of Time-Shared Computer Systems3 M. I.T.
Press, Cambridge, Mass., (1967).

DATE! 06/05/69 21)11,7 EST r~u
RUN DURATION! 06t~1,85JO~O

AVG, FAULT TI~ESI

PAGE: OOIOO,OD7421
~EG,l 00100,013855
INTR: 00100,00093~

LI~KI 0010) 1023143
W~LLI 0010) 1001418

TOTAL NUMBER OF ~~lLTS

PAGEl 6295 LISKI
SEG,: 14J WI\LLI

732
32~6

FAULT PROCESSING DJaarro~s

'l'IME IN METERED l'R,C:FJSSESI 015:3113~000~

PAGEl 00146 17209H %= , 1. 3 5
SEG, I 00101,9~1239 %~: • 4 7
!..INK I 00116,91111::2 %: 4. 11
WALL: oo:ou,6761131 ""' 1 • 13
!NTRl 001111,37965~ %: 3,49

******************•******FAULT T~BLE**'*****•****~******

l"AULT TIME C:lUNT TOrAL TIME "!UN
TIPE GROUP ~~M %: ,51 " '15,

:rntr 256-512.u, ~523 52,2~ 3133 25.; 6 1 39
Intr ,5•1ms 1 ~06 2,65 261 1 • 9 1 1 611
Intr 1 ... 2ms 1 3050 19193 11189 2\1, 1 3 1 1 37
Intr 2 .. ums1 2317 15. 14 6162 112195 2,~5

lntr ll•sms, 5 ,03 32 ,22 61 sa

Paae ,5•1!11S, 16 ,25 1 ij 1:>3 • 88
Paere 1 .. 2ms, 311 15tl s9 ,12 1,1'11
Paae 2•411'151 796 12,64 2~04 u,a 2,51
Pa"e II•Bms 1 3916 52,20 211S6'7 52,58 !1,27
Pa~n 8~16ms, 1265 2010q 13910 29177 10199
l'a~e 16•32ms, 243 3,86 s131 1 I 1 ~ 8 2 1 1 11
l'a.,e 32•6Sms, 24 138 :165 21:>6 110.21
Paere 65"'131m!l 1 1 101 68 I 1 ij 68,'75

Figure 1--Sample result of fault metering.

