
THE MULTICS INTERPROCESS COMMUNICATION FACILITY*

Michael J. Spier
Massachusetts Institute of Technology

Project MAC

and

Elliott I. Organick
Visiting Professor of Electrical Engineering

Massachusetts Institute of Technology

Summary

M0ll4
July 29, 1969

Essential to any multi-process computer system is some mechanism to
enable coexisting processes to communicate with one another. The basic
inter-process communication (IOC) mechanism is the exchange of messages
among independent processes in a commonly accessible data base and in
accordance with some pre-arranged convention.

By introducing several system wide conventions for initiating
communication, and by utilizing the Traffic Controller it is possible
to expand the basic IPC mechanism into a general purpose IPC facility.
The Multics IPC facility is an extension of the central supervisor
which assumes the burden of managing the shared data base and of
respecting the IPC conventions, thus providing a simple and easy way for
the programmer to use the interface.

The following paper describing the implementation of the Multics Inter
process Communication Facility is a preprint of a paper to be presented at
thE Second ACM Symposium on Operating System Principles, to be held in
Princeton, New Jersey in October~ 1969.

* Work reported herein was supported in part by Project MAC, an
M. [.T. research program sponsored by the Advanced Research Projects
Ag,:!ncy, Department of Defense, under Office of Naval Research Contract
Number Nonr-4102(01). Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Interprocess Communication- 1.1

l. Introduction

This paper describes the Inter-Process Communication (IPC) facility

which was developed for the Multics (Multiplexed Information and Computing

System) system and which is part of the latter's central supervisor pro

gram. Not unlike other central functions of the supervisor, the IPC

facility began with an implementation, followed by successive redesign/

re-implementation cycles during which we gained increased understanding

of the function and found an increasing number of applications for it.

An IPC capability of one form or another must and does exist in any

multi-programmed computer system. It is an essential requirement for any

parallel-processing computation, as the examples below will suggest.

There is a marked trend in modern system design towards a multi

plexing of most hardware resources to the end that a single job (task,

computation) may behave, to all outward appearances, as if it were an

independent computer. In this paper we refer to such a virtual (pseudo)

computer as a process. Later, we shall present our definition for the term

"process". For the present we shall bootstrap by using this term to

present a preliminary sketch of !PC and its uses.

An important characteristic of a process is its degree of independence

of fellow processes. Full independence may easily be achieved by contain

ing all operations of a single-purpose job (task, computation) within a

single self-sufficient process. Such an implementation, however, tends

to be wastE!ful in terms of CPU or other resource usage. An example would

be a computation that includes slow input output (I/0) steps. A more

efficient implementation would be achieved if the computation merely init

iates its I/0 requests letting the actual I/0 operations be executed by

some other, perhaps dedicated process. This arrangement enables the com-

putation to proceed to the point at which it actually needs the result of

the I/O operation. At this point the computation (i.e., the

Interprocess Communication - 1.2

first process) should be able to wait for the notification th3t the awaited

event has occurred. Moreover, for efficient C~U resource management, the

first process should be able to abandon its hardware processor until the

event occurs. This type of implementation of a single computation involves

~~ cooperating_processes.

Another example is that of two processes which operate on a single

buffer. Process A puts items into the buffer; process B removes items from

it. By virtue of their independence of one another, no assumptions about the

relative speeds of process A and process B should be necessary. Thus if

process A is "faster" then process B, the former will eventually fill up

and overflow the buffer. If, on the other hand, process B is the faster,

a point will be reached when B will attempt to extract a non-existant item

from an empty buffer. This problem is easily solved by making process A

wait for the "buffer not full" event whenever.the overflow condition is

detected, by making process B wait for the "buffer not empty" event whenever

the buffer is empty, and by making processes A and B notify one another of

the "buffer not empty" and "buffer not full" events respectively when it

is appropriate that they should do so.

In the foregoing example one process is permitted to execute asyn

chronously of the other, to the extent that its relative independence allows.

Cooperating processes synchronize or coordinate their activities only when

necessary (i.e., when they enter their respective "critical sections", as

Dijkstra has put it~. Now picture an arbitrary computation that involves

n (~2) cooperating processes. What system-provided facilities can be pro

vided that will assist the designer of such a computation to effectively

Interprocess Communication - 1. 3

program the required coordination among these n processes when n is large?

This is the problem that has been attacked and effectively solved in the

Multics IPC effort. The current solution, albeit one of perhaps many,

wil::. hopefully be of interest to the reader of this paper.

As evolved in Multics, the IPC capability is now a completely gen

eralized, and effective modular unit. This development was made possible

by the availability, in the Multics system, of certain other capabilities,

namely the ability to freely share data bases among (or protect them from)

different users, the ability for several of them to access such a shared

data base by referring to it under a single symbolic name~ the ability to

achieve mutual exclusion among competing computations and the availability

of efficient processor multiplexing capabilitiss. In the past the problems

involved in providing all those functions may have seemed so insurmountable

that they may have completely obscured the actual issues of IPC and may

have prevented a general pu'Ipose IPC function from ever evolving beyond the

stage of ad hoc implementations.

The Inter-Process communication facility is itself oblivious to the

type of, or reason for, the communication that it supports between

processes. The facili,ty provides wait and notify services. It does so

~1ithout ever compromising a process' independence, without restricting

the number of possible events, without restricting the number of com

nlunicating processes and without differentiating between types of events.

It works for hardware-originated events (e.g., interrupts) as well as for

s:oftware originated (e. g., "buffer not empty/not full") event:s. This

last ability has proven to be useful because it allows the intermixing

of hardware and software originated events so as to give them a common

Interprocess Communication - 1.4

interpretation without ever actually having to know their origin.

An example taken from the actual Multics :!Jnplementation is the "process

termination'' event which may be triggered by any of the following causes:

the logout command, console hangup (power off), general system shutdown,

fatal error condition within the same process, out of funds condition,

preemption by a higher priority user, etc. Any of these occurrences

causes a dedicated system process to be notified that a "process

termination" event has occurred for a given process. The 'etcetera'

following the list of occurrences implies that the list is by no means

closed. Any other condition may be added to that list in the future

without affecting, in any way, any of the existing implementations of this

event.

Interprocess Communication - 2.1

2. Background

Before proceeding, we offer several background concepts and definitions

to explain the framework (Multics system environment) in which the IPC operates.

The concept of "process" is an abstraction. It has been defined in

2 3 4 5 8
different ways ' ' ' ' depending upon the computer and information system

model one wishes to explain. We begin here with a definition for process

which, though perhaps abstract to an extreme, may ultimately facilitate

development of the intercommunication model that is wanted. We way that a

process is ~ discret~ progression, in time, o~ ~iscernable changing ~tates.

If each discernable state change is called an ~' we may abbreviate

the foregoing by sayin-g that a process is ! (discrete) sequence of events4 .

Two processes normally communicate with one another when some of the events of

one are, or may be, of interest to the other1' 4 ' 8' 9• Our definition allows

us to think of the process as being an abstract execution point whose prog-

ression manifests itself in the form of changing states which may be observed

(i.e., events). The word discrete suggests that the observer is free to

choose different units ("grains") of time.

It is convenient to think of a multi-processing system (one that dis-

tributes its resources over a group of processes) as a collection of coopers-

ting processes that exist within a special world, or private universe. This

approach allows us, later on, to talk about a universe that is external to

that of a multi-processing system.

To the programmer, the notion of process is (intuitively) easily under-

5 stood to be the equivalent of "program in execution" This maps nicely into

the above definition if we say that the "grain of time" is a hardware

Interprocess Communication - 2.2

instruction cycle and if the states which we observe are those of the

hardware registers. Let us name it a "hardware-level" process.

Alternatively, we may choose a larger grain of time. An example is a

program coded in some high-level language (e.g., FORTRAN or PL/I etc.)

wherein, as far as the programmer is concerned, the process' progression

is of interest only as it passes from one source statement to another, and

where the observations relate to changes in the values of source-language

variables.

In the Multics system, the word "process" has a well defined meaning.

It is a "hardware-level" process whose address space is a collection of

named segments, each with defined access, and over which a single execution

point is free to "roam" i.e., fetch ins true tions and make data references

3,4,6. A central supervisor module sees to it that at most one execution

point is ever awarded to an address space.

Interprocess communication implies an exchange of data communications

among cooperating processes; this data exchange must take place in a s.hared

data base and implies read/write access in that data base for all communi-

eating processes. By design, sharing a data base (for whatever reason)

presents no difficulty in the Multics system. After agreeing on the segment

to be shared for storage and retrieval of messages each of the cooperating

processes is free to reference the segment by its distinct file system name.

Such a reference causes the same segment (same physical copy in primary

6 memory) to be accessed by each process .

lnterprocess Communication - 2.3

To control multi-process access to a single data base and to guard

against reference to data that may be briefly in inconsistent states,

there is need for a locking mechanism to insure mutual exclusion among

potentially interfering processes
1' 5' 8 . In this paper, whenever we discuss

shared data bases, we assume that availability of such a mechanism (later

referred to as functions lock and unlock), based on a hardware test and set

instruction, and its application whenever necessary.

IPC is conceived, primarily, as a standard means of communication

among processes. However, a process which is engaged in input output

operations (1/0) is, in fact, communicating with some independent dedicated

hardware processor (commonly known as m I/0 Channel) which is external to the

process' universe. I/O channels are capable of producing signals indicating

completion or trouble. The signals are transmitted to the system in the form

of processor interrupts (device signals). We may think of the processor

and the I/0 channel as being two cooperating processes which exist in a

common universe.

Device signals are unpredictable and may arrive at any given time to

interrupt any currently-executing process. Logically, however, they "belong"

to the process that is currently "responsible" for the interrupting I/O channel.

In a multiplexed computer system, it is of interest to be able to

distinguish between the concepts of "hardware" processor and ''virtual"

3 4 8 (i.e., pseudo, or software) processor·' ' A program that is written for a

computer (as opposed to process) may make assumptions about the (hardware)

processor's speed of execution. If, however, the program is written for a

process, even though the actual execution is done by the very same hardware

Interprocess Communication - 2.4

processor, the process is not guaranteed to keep that processor for any

predetermined length of time. Consequently, the time gap ("grain of time'')

between the execution of any two consecutive mach '.ne instructions is

unpredictable.

Central to Multics is a module called the Traffic Controller 3•4 under

whose control independent computations may compete fairly for (i.e., share)

the computer resources of the system. But, more importantly for consideration

here, the Traffic Controller also provides block/wakeup services. Block and

wakeup are general functions that govern the transmission of control communi-

cation which, for example, permit two or more processes to cooperate or

synchronize their activities8. The block function is invoked by a process

to force its virtual processor to pause. The wakeup function is invoked

by some other process in order to restore to the (possibly blocked) first

process its execution capabilities.

The job of the Traffic Controller is to make the multiplexed system

look like a dedicated processor system by creating one virtual processor for

each process. The virtual processor may be thought of as "always executing"4 ;

from its point of view the effect of the block function is to insert an un

predictably large "grain of time" between two events.

Although a process is always "conscious" of giving up the processor

when (and because) it invokes the block function, the mechanics of processor

switching, apart from real-time "clock jumps'', are essentially invisible

to the affected process. This means that a process can complet~ly ignore

the multiplexing being performed by the Traffic Controller. In the same

Interprocess Communication - 2.5

spirit of modularity, the Traffic Controller of Multics, unlike its counter

part in the forerunner, CTSs 10, is itself unconcerned with the origin of

the requests for its block/wakeup services, e.g., inter-console messages,

input-output completion signals, alarm clock services, etc,

Interprocess Communication - 3.1

3. Fundamentals of IPC

A limited number of basic (implementation-independent) and, for the

most part, self-evident considerations form the foundation of .IPC. We sur-

vey them here.

Communication among processes that coexist within a private universe

can only be achieved by an exchange of messages in a commonly accessible

mailbox (shared data base) whose identity is known to each by conmon

convention. Moreover, in order to exchange meaningful messages, an added

convention is necessary by which communicating processes may interpret the

state of the mailbox.

The mechanism by which, within some universe U, some process A may

send a message Sa to some other process B is summarized in the following

two stages:

ipc-setup (stage 1)

a) By convention, both processes gain knowledge of a commonly accessible

mailbox M; for example, by its distinct file system name.

b) By convention, both processes agree to interpret a specific state S
0

of M to imply "mailbox is empty". The mailbox should be initialized accordingly.

basic-mechanism (stage 2)

a) Process A sets the state of M to some state Sa which is different

from S0 •

b) Process B interprets any non-S
0

state of M to imply "message has arrived".

Depending upon its convention with A, process B may or may not then consider

state S to be meaningful. a

Interprocess Communication - 3.2

We observe that in order for the processes to be able to communicatl' at

all, there is a need for some "previous conununication", or convention, which

we name ipc-setup. In a multi-processing (computer) "universe", the ipc-sl'tup

normally consists of conventions that are made at program-coding time among

the authors of interactive programs (often, the convention is established

by the single author of such programs), to the effect that an unambiguous

(symbolic) address is used to reference mailbox M. Also, a value is pre-assign-

ed at coding time to state S
0

or perhaps to one or more of the non-S
0

states.

Once an initial ipc-setup has been achieved, additional ipc-setup's may be

achieved by possibly re-using the same mailbox M and by transmitting in it

(in either direction) the names of additional mailboxes. This is one appli-

cation in which the specific values of non-S states becomes meaningful.
0

As a rule, the ipc-setup must occur in a universe that is "external" to

(and perhaps "containing", or "responsible for") universe U in which the com-

munication is to take place. Admittedly, the term "universe" is a little vague,

and the interrelationships mentioned (external, containing, responsible) are

even less meaningful. We do, however, wish to convey the idea that an ipc-

setup cannot occur within the same framework as its associated communication;

rather, that every IPC communication depends upon an ipc-setup that has hap-

pened previously, and that the "universe" in which the ipc-setup was made is

in some difficult-to-define way the "ancestor" of universe U.

The actual interprocess communication is achieved by exchanging messages

in mailbox M. The basic mechanism shown above is the most primitive and

elementary way for processes to communicate; it allows only for a single,

one-way message transmission. As will be seen, the basic mechanism may be

Interprocess Communication - 3.3

expanded and made more useful by the introduction of additional conventions

among the communicating processes. Thus, the design of a general-purpose

!PC facility has largely to do with the establishment of useful conventions.

A familiar example of a very primitive IPC mechanism (though slightly more

sophisticated than the basic mechanism in that it allows the ~epetitive

transmission of one-way messages), is that by which an I/O channel sends

signals to interrupt a processor (CPU) when serving notice of an I/O com

pletion or an I/O error. The channel and the CPU both share a mailbox (a

special, but commonly accessible memory cell) whose location in this case

is predesignated in the hardware (ipc-setup). (Also predesignated is another

cell for holding a transfer instruction for sending control to an appropriate

interrupt handler.) The channel sets one or more bits in the mailbox (the

message) to indicate the nature of the event being signalled, and concurrent

ly sets a flip flop which is interrogated by the CPU at the end of each

instruction cycle, which is the "grain of time" in this case. If the CPU

finds the flip flop has been set (non-S 0 state), the interpretation is,

"I have been interrupted by the I/0 channel. 11

The basic IPC mechanism places no a priori restrictions either upon the

size of the mailbox or on the amount of information that may be contained in

it. An actual !PC facility, such as the one in Multic~ may be designed as an

event qriented mechanism for the communication of control items, rather than

as a general-purpose clearing house for bulk data exchange. Thus, the Multics

!PC has restricted data transmission capabilities, i.e., it handles small,

fixed-length messages, adequate for items of control information. These items

Interprocess Communication - 3.4

are, however, large enough to serve as effective pointers to-larger

messages.

We have in the introduction defined any change of state as an "evtmt."

However, for the purposes of IPC, we are interested only in a small subset of

all events, namely those which are known to be of interest to some process

other than the one whose state has changed. The subset is limited by the

actual coding of the programs which these processes execute. For the purpose

of this paper, we use the term "event'' in the context of "subset"-event.

Although every event is necessarily a unique occurrence in time, it

is often the case that the significance of an event is indistinguishable

from that of other events in a given category. Typically, we would then

associate all such related events with a common event type and may think of

the occurrence of an event as being the cyclic reoccurrence of its associated

event type.

In the Multics IPC, it is the event type, rather than the individual

event, which may be put into correspondence with a mailbox. The ipc-setup

includes, therefore, an association (by agreement) of a particular event

type with a particular mailbox.

By convention, the ipc-setup is made between a single potentially

interested process, which we name Recipient, and one or more potentially

observing processes which we name Senders.

Interprocess Communication - 4. 1

4. Design Objectives and Decisions

In designing the Multics IPC facility, two types of objectives are

defined, a) primary objectives which are of a general nature, and b) second-

ary objectives which are related to the Multics environment. Decisions:are

made in order to achieve an implementation that effectively and efficiently
I

meets the design objectives. Remember too, that the facility strived f~r here

is supplementary to, and not a replacement for, the basic IPC mechanism. Pro-

grammers are free to ignore an IPC facility entirely, if they choose to esta-

blish their own mailboxes and the conventions for their use among the processes

that share them.

4.1 Primary objectives

Our primary objective is to design an IPC facility which offers the;

programmer an opportunity to design and code complex multi-process compu-

tations without a disproportionate attendant growth in complexity. At ~he

same time we wish to add to, or at least conserve, the useful properties

inherent to the multiplexed computer system, i.e., 1) virtual parallel-pro-

cessing, and 2) efficient hardware processor resource management. An

additional primary objective is modular implementation and simplicity of

application. We shall now show, by expanding from the basic IPC mechani.sm,

one way to achieve these primary objectives.

First, we examine the behavior of the basic IPC mechanism in a multi-

plexed system by applying this mechanism in a generalized example and by·

trying to assure ourselves that its behavior characteristics do not, possibly,

have the effect of "incapacitating" the system.

In our example, suppose that Sender A is a cyclic process which, at a

certain point in its loop wishes to send a message S11 to Recipient B by

using an agreed upon mailbox M. Suppose recipient B is also a eye lie proct>ss:

Interprocess Communication- 4.2

in every loop transit process 8 reaches a wait point ~1urc it cannot proceed

unless it finds a message in mailbox M. By convcntiPn, statL' S,1 of M is

interpreted as "mailbox is empty".

In Figures 1-4 we shall make use of a "freL~ style" PL/I, inspi.red by

Dijkstra 1 . We shall apply functions lock and unlock tu insure mutual

exclusive access to mailbox M1' 8 . These primitives have been implemented

l h . lt. (. h d d . t. 8) e sew ere ~n Mu ~cs us1.ng a ar ware test an set ~nstruc ~on , so we

freely use them here.

Figure l shows coding for an ipc-setup and for the basic IPC meclwnism.

To follow the coding in this and in subsequent figures note that we have

found it convenient to define a new type of variable to type "mailbox"

with the following attributes:

l) A mailbox variable is a shared data base. It is associated with a

single Recipient.

2) A mailbox M of a recipient process is, more precisely, a struc-

tural variable (we shall here nickname it an 11M-structure"), con-

sisting of four components: M.t, M.i, M.p, and M.m.

where: M.t is a "lock-word" operated on by functions lock and unlock.

M.i is a binary indicator which may assume states "empty" or

"not-empty" (the empty state corresponds to the above-

mentioned state S0). The Boolean function test (M.i) is

11 true" for m. i="empty".

~ is the unique identifier of the associated Recipient process.

M.m is a single interprocess message.

Interprocess Communication - 4.3

It is also convenient to employ the notion of a variable of type

11 message 11 to indicate an interprocess message ''attribute." We also note that

the function initialize (M) resets mailbox M to its 11 empty" state. Lastly,

observe the use of the coding brackets "PARBEGIN" and "PAREND" within which

we define processes A and B to be timing-independent and executing in parallel.

The IPC mechanism shown in Figure 1 is functionally deficient; it can

not normally be doing any meaningful work because if A's speed of execution

exceeds that of B then A may overwrite (and hence lose) its own messages.

rf, on the other hand, B is faster than A, it might "read" the same message

several times. We are clearly confronted with a synchronization problem.

One improvement that comes to mind is to synchronize the two processes

by adding to A's computation a wait loop (similar to B's) to prevent it

from sending a message if M. i="empty'' and by having process B reset M

to the "empty11 state after copying the message into its local memory space.

This solution however deprives us of the opportunity to have virtual parallel

processing, a primary design objective, and is therefore unacceptable.

For this reason we choose an alternative solution which is to provide an infinite

buffering capability, so that the Sender may always be able to ''unload" his

message regardless of the Recipient's degree of interaction.

We can achieve this effect by re-defining the mailbox's fourth component,

as suggested in Figure 2. Hereafter we shall assume that M.m is in fact a

FIFO (!irst _!n, £irst .Qut) queue of interprocess messages. Thus, we use

notations initialize(M), M.~append(Si,M) and Si=remove(M) to convey the

ideas of "initialize-", ''append to-" and "remove from-" mailbox.

Interprocess Communication - 4.4

The coding in Figure 2 also removes another weakness of the Figure l

mechanism, namely, a failure to meet the primary design objective of efficient

hardware processor management. Note that in Figure l process B's wait loop

is wasteful. We would prefer instead a way for process B to willingly

abandon its processor. Moreover, we know that B has no need for a processor

until A has actually put a message in M. We therefore make use of the Traffic

Controller's block/wakeup function, inserting a call to block into B's

wait loop and adding to A's message-sending logic the responsibility to

wakeup process B, which is potentially blocked, after having appended a

message to M. By definition, a mailbox may be associated with a single

Recipient only, so use of the notation wakeup (M.p) means "wakeup the process

that is known to be assOciated with M." Our improved mechanism can now be

seen in Figure 2.

In order to meet the final design objective, that of modularity and

simplicity, it behooves us now to isolate in our IPC mechanism that part which

is common to all communicating processes, and achieve a simplifying general

ization. This can be done by establishing a set of two IPC primitives which

we shall here name wait and n~tify. These new primitives are event-oriented

extensions of block and wakeup, respectively and are defined as follows:

notify(M,S) causes message S to be appended to mailbox M, and a wakeup

to be signalled to the process associated with M.

St=watt(M) assigned to St the value of a message S which was removed

off the top of M. The wait function has the property that it is

associated with a "grain of time" of unpredictable dimension.

Figure 3 shows the wait and notify functions and Figure 4 shows our example

communication using the generalized IPC functions.

Interprocess Communication- 4.5

4.2 Secondary Objectives

Our secondary objectives are to implement functions wait and notify in

Multics*~ and if necessary adapt them to the Multics environment.

The implementation of wait and notify calls for the availability of a

number of difficult-to-provide capabilities~ namely a) the ability to

attain a shared data base through the use of its unambiguous file system name,

2) lock and unlock primitives~ 3) block/wakeup services~ and 4) the ability

to implement the "mailbox"-type variable.

Fortunately the very "cornerstone" of the Multics design embraces the

first three capabilities, so the only significant implementation problem that

remains is that of providing an efficient and inexpensive "mailbox" queueing

mechanism. The ideal mailbox is an infinite FIFO queue of variable-length

messages. As already mentioned, a design decision has been made to restrict

the size of an interprocess message to the minimum necessary in order to be

able to communicate control information. Two design problems reamins~ l) to

set a limit to the mailbox's capacity, and 2) to prevent the saturation of the

system's storage media by a multitude of independent and space consuming mailboxes.

The solution adopted ts that of allocating the queue-containing M-structures

(one per mailbox) in a single table of generous proportions. By dynamically

allocating space in that table as needed, for each element of the queue in an

M-structure, it is possible to allow for considerable size fluctuations in the

individual queues, within the limits of the table's dimensions.

* Terminology used in this paper is not necessarily keyed to that used in
internal documents of the Multics project. Thus the wait and notify functions
actually have, for historical reasons, other names in ''actual" Multics.

Interprocess Communication- 4.6

This implementation approach permi~s us to physically separate the

mailbox (which by definition has an agreed-upon "address") from the actual

M- structure which is managed ay the system and whose addll~Ss is a priori

unknown. In Multics, we name the M-struction "event channel" and associate

it with a system-provided, i.e., system-generated, event channel ~ which

is an (internal and unambiguous) address that is meaningful to the IPC

facility (only).

It is the IPC facility's responsibility to correctly manage and manipulate

the event channels. The only interface which the programmer needs is provided

in the three function references, initialize(M), notify(M.S) and s~wait(M).

The implementation-dependent functiun initialize(M) which creates

an "empty" event channel, associates it with a Recipient process' identifi

cation, and with an unambiguous (internal) event channel name, and finally

places the event channel name into mailbox M. Any subsequent invokation of

wait or notify that uses M as an argument then allows the IPC facility to

retrieve the event channel name that is stored in M and with it locate the

appropriate event channel (~structure).

Physical separation of the mailbox from the M-structure was achieved

after it was recognized that the mailbox M need only be large enough to

contain an event channel name. Thus the mailbox serves only to hold a "pointer"

to the place (event channel) that actually holds (or is to hold) the inter

process message. Moreover, it was also recognized that the system-provided

event channel name happens to be more compact and convenient to use than the

mailbox's file system name. Hence it was in practice found useful to

modify the arguments for wait and notify, so that the caller directly spec

ifies the event channel name rather than the file system name of the mailbox

that holds the event channel name. It is the event channel name, therefore,

that is the "key" to the Multics !PC facility.

Interprocess Communication- 4.7

The interprocess message in theM-structure's queue has a format such

that it may contain an event channel name. This adds an additional sophis

tication to the IPC facility in that a mailbox requiring a file-system

name is needed only for the establishment of the very first ipc-setup.

Subsequent ipc-setups may use the initialized event channel(s) to provide

further "mailbox services".

Interprocess Communication - 5. 1

5. The Actual Implementation

The implemented wait and notify functions have been slightly expanded

to allow for additional sophistication as discussed below.

(a) The notify function returns some control information feedback con-

. cerning the Recipient process so that the Sender process may learn, if this

is indeed of interest to him, whether or not the Recipient process is still

in working order. Thus a Sender may discover, if he examines the return infor-

mation, that his would-be Recipient no longer exists as an active process.

(b) The IPC appends, as part of each message the identification of the

Sender process so that a Recipient process may, if it chooses, inspect the

origin of the message and act accordingly. For example, a system process

in Multics, called System Control, maintains an event channel in which to

receive messages that request termination of any of the processes now being

served. Inspecting the origin of the received message helps determine the

reason for the termination request, e.g., hangup, logout, system shutdown,

out of funds condition, etc., and the appropriate action to be taken in each

case.

(c) The wait function has been expanded so that a process may wait for a

compound event to happen, e. g., a process may specify that it is waiting

fore je2 .. ,.e l····le (where "I" is the inclusive or and e. are messages
l 3 n ~

in event channels of type i). This additional function is made possible

by expanding the wait function into a module named the wait coordinator

which acts as a broker· for event messages.

(d) One further (and perhaps the most interesting) extension of the wait

function allows a programmer to incorporate event-driven multi-programming

Interprocess Communication - 5.2

of separate tasks within a single process. This inherent capability which

is part of the IPC's wait coordinator has found application in certain key

system processes, in particular in the system's System Control process. An

appreciation of this feature may well lead to insight for future research

and to the identification of new system objectives.

Because a Multics process is a single virtual computer, i.e., consists

of a single address space (virtual memory) and a single execution point

(virtual processor), it is natural to think of it as having a single purpose.

There are two occasions when a single-purpose process would call upon the

wait coordinator's services:

1) The process has reached a wait point at .lim interim stage in its execu

tion path and cannot proceed until an event message has been received,

hence wishes to be put into the blocked state.

2) The process has reached an end point, i.e., it has executed to the com

pletion of its single purpose and it wishes to be put into the blocked

state, either to be terminated by its creator or to await the arrival

of an event message indicating that the purpose (of the process) is

to be repeated.

Suppose that for reasons of economy (mainly conservation of the work

required to maintain address spaces), one wished to coalesce (and condense)

into a single process (or rather into a single virtual computer) the indivi

dual purposes of a number (n) of separately conceived, though possibly re

lated, processes. Each of the separate purposes may be conceptually re

garded as a program to be executed following receipt of a "triggering" event

message. We now have a virtual computer that makes the wait coordinator

Interprocess Communication - 5.3

its homebase; upon receipt of a "triggering" event message the wait coor

dinator invokes the associated program (purpose) which, upon reaching its

end point, returns to the watt coordinator.

It may be useful to name such a process a "Multi-purpose process" and

observe that the multi-purpose process blocks itself only if none of its n

purposes (or member programs) is capable of running. An additional requirement

imposed on our multi-purpose process is that whenever a currently-executing

program reaches a wait point it should be able to recursively invoke the

wait coordinator and relinquish control in favor of a member program without

forcing all other member programs to depend upon the arrival of the first

program's peculiar event message.

The Multics implementation of the wait function in fact obeys all of

the principles and requirements of the model just described. Hence, we observe

that for multi-purpose processes the wait coordinator can serve as an event

driven controller that "multi-programs" the separate tasks (programs) within

the process. On the other hand it is conceded that there are limitations

in the use of this device. Thus, the response to the receipt of any one event

message will tend to deteriorate as the number of separate tasks within a

process becomes excessive. Also, with the current implementation of the

Multics virtual computer, it is possible for some task within a process to

reach an intermediate wait point and thereby indirectly degrade the response

of some other task within the same process.

Interprocess Communication - 6.1

6. ~ Applications ~ Systems Designers

The following discussion may provide the reader some insight as to

how an IPC facility like Multics' may be used by system programmers and

subsystem designers in the processing of I/0 interrupts.

We have, in the introduction, discussed the design decision to

convert device signals into IPC messages. In this way there need be no a

priori recipient associated with a device signal. A process may "attach"

an I/0 device by entering its identifier and an event channel name into a

table entry which is associated with that specific device (ipc-setup). An

incoming interrupt is intercepted by a dedicated interrupt handler proce

dure which then notifies the intended process over the appropriate event

channel.

For certain devices, in particular the user consoles, the interrupt

handler actually notifies different processes of different types of

interrupts. For example, a console's interrupts are grouped into

three types, i.e., "power on/off", "attention", and "end of transmission".

The end of transmission interrupts are signalled to the process that is

currently "using" the console, however the power on/off and (perhaps) the

attention interrupts are signalled to special system processes (typically

the above-mentioned system control process) which have the privilege to

intervene and perhaps destroy a user process whose console "went dead''.

One of the advantages of using an IPC interface at interrupt time is

that the system programmer who codes the interrupt handler may concentrate

on the intricacies of correctly interpreting the I/0 channel's status infor

mation without having to bother with the additional problems of processor

management and process synchronization. An additional advantage is that

Interprocess Communication - 6.2

any process may, if given the privilege to do so, simulate an I/0 channel.

This is very useful in substituting a process for a temporarily disabled

I/0 device without affecting the corresponding user processes. Also, it

is possible to simulate and study some experimental I/O device and use

the same interface that would be used in conjunction with the actual device.

Interprocess Communication - 7.1

7. Recapitulation

Mechanisms for communicating among coexisting proc~sses are required

in any multi-programmed computer system. In Multics these essentials are

achieved largely as a byproduct of other capabilities that lie at the heart

of that system's design, i.e., shared data bases by virtue of unambiguous

file system names, lock and unlock primitives, and block/wakeup services

for processor multiplexing. A judicious selection of additional system

wide conventions has led to the installation of an IPC facility t~at builds

on these central capabilities. The resulting extension of the Multics

supervisor provides general and functionally modular wait and notify ser

vices. These are simple to implement and ma:in tain because their application

is independent of the specific nature or purpose of the communication or

of the Sending and Receiving processes.

The IPC facility is used extensively by the system itself, for instance

in handling I/O interrupts after converting these hardware signals to soft-

ware calls to the notify function. As additional applications for the IPC

facility were recognized the facility has evolved in its sophistication

(and may infact evolve further). Thus the wait function in particular has

evolved into a (recursive~y called) wait coordinator which polls for various

event messages coming to a process and, if desired, acts as an event driven

controller that can multi-program separate tasks;:within a process. All

these services simplify the logical structure of the applications and

systems programs that communicate with the shared, central supervisor.

Interprocess Communication- 7.2

Control over the complexity in various computer applications is one

of the important promises our profession has made to those it serves.

Wait/notify services like those described in this paper appear to offer

promise as tools for limiting the growth in complexity of useful multi

process computations and subsystems which operating systems are designed

to support.

Interprocess Communication

BEGIN
ipc-setup-a: declare M mailbox;
ipc-setup-b: initialize(M);
?~•RBEGIN

A.: :DEGIN
declare Sa message;
local initialization of A;
A1:first part of A's computation;

lock (M. ;,) ;
basic-mechanism-a: M.m=Sa;
unlock(M. p,);
second part of A's computation;
goto A1 ;

El\rn;

B: BEGIN
declare Sb message;
local initialization of B;
B1:first part of B's computation;
B2: lock(M. ;,) ;

basic-mechanism-b:
if test(M.i) then
BEGIN

unlock(M. t);
goto B2;

END;
Sb=M.m;
unlock(M. t);
second part of B's computation;
goto B1;

END;

PAREND;
END;

Figure 1: Application of the basic
IF'C mechanism to a generalized inter
pxocess communication problem.

Interprocess Communication

BEGIN
ipc-setup-a: declare M mailbox;
ipc-s~tup-b: initialize(M);
PARBEGIN

A: BEGIN
declare Sa message;
local initialization of A;
A1:first part of A's computation;

lock(M. p);
ba~ic-mechanism-a: M.m=append(Sa,M);
wakeup(M.p);
unlock(M. t);
second part of A's computation;
goto A1;

END;

B: BEGIN
declare Sb message;
local initialization of B;
Bi:first part of B's computation;
B2: lock(M. 1,);

basic-mechanism-b:
if test(M.i) then
BEGIN

unlock(M. t);
block;
goto B2;

END;
Sb=remove(M);
unlock(M. t);
second part of B's computation;
goto B1;

END;

PAREND;
END;

Figure 2: Basic mechanism improved by
introduction of block/wakeup functions
and by addition of queuing capabilities
to the "mailbox" variable.

Interprocess Communication

BEGIN 1~·(the notify function *I
notify: procedure(M,S);
declare l•l mailbox, S message;

lock(M. J,);
M.m=append(S,M);
wakeup(M.p);
unlock(M. ;_);

END;

BEGIN /k the wait function ~>cl
wait: procedure(M) returns(S);
declare M mailbox, S message;
declare St message; I* temporary*/
W1: lock(M. J.,);

if test(M.i) then
BEGIN

unlock(M • .t);
,-. block;

goto W1;
END;
St==remove (M);
unlock(M. J.,);
return(St);

END;

Figure 3: The generalized notify and
wait functions.

Interprocess Communication

BEGIN
ipc-sct:up-a: declare roi: n1ailbox;
ipc-setup-b: initialize(M);
PAI\.BEGI::-i

A: BEGIN
declare sa message;
local initialization of A;
A1:first part of A's computation;

basic-mechanism-a:notify(M,Sa);
second part of A's computation;
goto A1;

END; .

B: BEGIN
declare Sb message;
local initialization of B;
B1:first part of B's computation;

basic-mechanism-b:
sb =wait (M) ;
second part of B's computation;
goto B1;

END;

PAREND;
END;

Figure 4: Application of the generalized
IPC mechanism.

' '

Interprocess Communication

References

1. Dijkstra E.W., "Synchronizing Primitives," an appendix to "The
Structure of the 'THE'-Multiprogramming System," first ACM Sym
posium on Operating System Principles, Gatlinburg, Tennessee,
October 1967. Published in the Communications of the ACM,
May 1968, pp. 345-346.

2. Corbato, F.J. and Vyssotsky, V.A., "Introduction and Overview of
the Multics System," AFIPS Conf. Proc. 27 (1965 FJCC), Spartan
Books, Washington, D.C., pp. 185-196.

3. Saltzer, J.H., "Traffic Control in a Multiplexed Computer System,"
Sc.U Thesis, M.I.T, Department of Electrical Engineering, May 1966.
Available as M.I.T, Project MAC Technical Report TR-30.

4. Rappaport, R.L., "Implementing Multi-Process Primitives in a
Multiplexed Computer System," S.M. Thesis, M. I. T. Department
of Electrical Engineering, August 1968. Available as M.I.T. Project
MAC Technical Report TR-55.

5. Dennis, J.B., and Van Horn, E.C., "Programming Semantics for Multi
programmed Computations," ACM Programming Languages amd Pragmatics
Conf., San Dimas, California, August 1965. Published in the Comm
unications of the ACM, March 1966.

6. Bensoussan, A., Clingen, C.T., and Daley, R.C., "The Multics Vit:tual
Memory," second ACM Symposium on Operating System Principles,
Princeton, New Jersey, October 1969.

7. Graham, R.M., "Protection in an Information Processing Utility,"
first ACM Symposium on Operating System Principles, Gatlinburg,
Tennessee, October 1967. Published in the Communications of the ACM,
May 1968, pp. 365-369.

8. Lampson, B. W., "A Scheduling Philosophy for Multiprocessing Systems,"
first ACM Symposium on Operating System Principles, Gatlinburg,
Tennessee, October 1967. Published in the Communications of the ACM,
May 1968, pp. 347-360.

9. Witt, B.I., "The Functional Structure of OS/360: Part II, Job and
Task Management," IBM System Journal, 5, Part 1, (1966), pp. 12-29.

10. Saltzer, J.H., "CTSS Technical Notes", Massachusetts Institute of
Technology, Project MAC Technical Report TR-16, March 1965.

M0114
Addendum

The following acknowledgement was inadvertantly omitted and
should be added to "The Multics Interprocess Communication Facility''
by Michael J. Spier and Elliot I. Organick.

ACKNOWLEDGEMENT

The research reported in this paper is part of the Multics
development effort of Project MAC at M.I.T., Bell ~elephone Laboratories
and the General Electric Company, Inc. Following is the (alphabetically
ordered) list of (some of) the persons who have contributed to the work
described in this paper:

A. Bensoussan, F. J. Corbato, R. C. Daley, L. Lambert, K. J. Martin,
J. F. Ossanna, R. L. Rappaport, J. H. Saltzer, P. Schicker, M. D.
Schroeder, B. A, Tague and C. M. Vogt.

