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l. Introduction 

This paper describes the Inter-Process Communication (IPC) facility 

which was developed for the Multics (Multiplexed Information and Computing 

System) system and which is part of the latter's central supervisor pro

gram. Not unlike other central functions of the supervisor, the IPC 

facility began with an implementation, followed by successive redesign/ 

re-implementation cycles during which we gained increased understanding 

of the function and found an increasing number of applications for it. 

An IPC capability of one form or another must and does exist in any 

multi-programmed computer system. It is an essential requirement for any 

parallel-processing computation, as the examples below will suggest. 

There is a marked trend in modern system design towards a multi

plexing of most hardware resources to the end that a single job (task, 

computation) may behave, to all outward appearances, as if it were an 

independent computer. In this paper we refer to such a virtual (pseudo) 

computer as a process. Later, we shall present our definition for the term 

"process". For the present we shall bootstrap by using this term to 

present a preliminary sketch of !PC and its uses. 

An important characteristic of a process is its degree of independence 

of fellow processes. Full independence may easily be achieved by contain

ing all operations of a single-purpose job (task, computation) within a 

single self-sufficient process. Such an implementation, however, tends 

to be wastE!ful in terms of CPU or other resource usage. An example would 

be a computation that includes slow input output (I/0) steps. A more 

efficient implementation would be achieved if the computation merely init

iates its I/0 requests letting the actual I/0 operations be executed by 

some other, perhaps dedicated process. This arrangement enables the com-

putation to proceed to the point at which it actually needs the result of 

the I/O operation. At this point the computation (i.e., the 
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first process) should be able to wait for the notification th3t the awaited 

event has occurred. Moreover, for efficient C~U resource management, the 

first process should be able to abandon its hardware processor until the 

event occurs. This type of implementation of a single computation involves 

~~ cooperating_processes. 

Another example is that of two processes which operate on a single 

buffer. Process A puts items into the buffer; process B removes items from 

it. By virtue of their independence of one another, no assumptions about the 

relative speeds of process A and process B should be necessary. Thus if 

process A is "faster" then process B, the former will eventually fill up 

and overflow the buffer. If, on the other hand, process B is the faster, 

a point will be reached when B will attempt to extract a non-existant item 

from an empty buffer. This problem is easily solved by making process A 

wait for the "buffer not full" event whenever.the overflow condition is 

detected, by making process B wait for the "buffer not empty" event whenever 

the buffer is empty, and by making processes A and B notify one another of 

the "buffer not empty" and "buffer not full" events respectively when it 

is appropriate that they should do so. 

In the foregoing example one process is permitted to execute asyn

chronously of the other, to the extent that its relative independence allows. 

Cooperating processes synchronize or coordinate their activities only when 

necessary (i.e., when they enter their respective "critical sections", as 

Dijkstra has put it~. Now picture an arbitrary computation that involves 

n (~2) cooperating processes. What system-provided facilities can be pro

vided that will assist the designer of such a computation to effectively 
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program the required coordination among these n processes when n is large? 

This is the problem that has been attacked and effectively solved in the 

Multics IPC effort. The current solution, albeit one of perhaps many, 

wil::. hopefully be of interest to the reader of this paper. 

As evolved in Multics, the IPC capability is now a completely gen

eralized, and effective modular unit. This development was made possible 

by the availability, in the Multics system, of certain other capabilities, 

namely the ability to freely share data bases among ( or protect them from) 

different users, the ability for several of them to access such a shared 

data base by referring to it under a single symbolic name~ the ability to 

achieve mutual exclusion among competing computations and the availability 

of efficient processor multiplexing capabilitiss. In the past the problems 

involved in providing all those functions may have seemed so insurmountable 

that they may have completely obscured the actual issues of IPC and may 

have prevented a general pu'Ipose IPC function from ever evolving beyond the 

stage of ad hoc implementations. 

The Inter-Process communication facility is itself oblivious to the 

type of, or reason for, the communication that it supports between 

processes. The facili,ty provides wait and notify services. It does so 

~1ithout ever compromising a process' independence, without restricting 

the number of possible events, without restricting the number of com

nlunicating processes and without differentiating between types of events. 

It works for hardware-originated events (e.g., interrupts) as well as for 

s:oftware originated (e. g., "buffer not empty/not full") event:s. This 

last ability has proven to be useful because it allows the intermixing 

of hardware and software originated events so as to give them a common 
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interpretation without ever actually having to know their origin. 

An example taken from the actual Multics :!Jnplementation is the "process 

termination'' event which may be triggered by any of the following causes: 

the logout command, console hangup (power off), general system shutdown, 

fatal error condition within the same process, out of funds condition, 

preemption by a higher priority user, etc. Any of these occurrences 

causes a dedicated system process to be notified that a "process 

termination" event has occurred for a given process. The 'etcetera' 

following the list of occurrences implies that the list is by no means 

closed. Any other condition may be added to that list in the future 

without affecting, in any way, any of the existing implementations of this 

event. 
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2. Background 

Before proceeding, we offer several background concepts and definitions 

to explain the framework (Multics system environment) in which the IPC operates. 

The concept of "process" is an abstraction. It has been defined in 

2 3 4 5 8 
different ways ' ' ' ' depending upon the computer and information system 

model one wishes to explain. We begin here with a definition for process 

which, though perhaps abstract to an extreme, may ultimately facilitate 

development of the intercommunication model that is wanted. We way that a 

process is ~ discret~ progression, in time, o~ ~iscernable changing ~tates. 

If each discernable state change is called an ~' we may abbreviate 

the foregoing by sayin-g that a process is ! (discrete) sequence of events4 . 

Two processes normally communicate with one another when some of the events of 

one are, or may be, of interest to the other1' 4 ' 8' 9• Our definition allows 

us to think of the process as being an abstract execution point whose prog-

ression manifests itself in the form of changing states which may be observed 

(i.e., events). The word discrete suggests that the observer is free to 

choose different units ("grains") of time. 

It is convenient to think of a multi-processing system (one that dis-

tributes its resources over a group of processes) as a collection of coopers-

ting processes that exist within a special world, or private universe. This 

approach allows us, later on, to talk about a universe that is external to 

that of a multi-processing system. 

To the programmer, the notion of process is (intuitively) easily under-

5 stood to be the equivalent of "program in execution" This maps nicely into 

the above definition if we say that the "grain of time" is a hardware 
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instruction cycle and if the states which we observe are those of the 

hardware registers. Let us name it a "hardware-level" process. 

Alternatively, we may choose a larger grain of time. An example is a 

program coded in some high-level language (e.g., FORTRAN or PL/I etc.) 

wherein, as far as the programmer is concerned, the process' progression 

is of interest only as it passes from one source statement to another, and 

where the observations relate to changes in the values of source-language 

variables. 

In the Multics system, the word "process" has a well defined meaning. 

It is a "hardware-level" process whose address space is a collection of 

named segments, each with defined access, and over which a single execution 

point is free to "roam" i.e., fetch ins true tions and make data references 

3,4,6. A central supervisor module sees to it that at most one execution 

point is ever awarded to an address space. 

Interprocess communication implies an exchange of data communications 

among cooperating processes; this data exchange must take place in a s.hared 

data base and implies read/write access in that data base for all communi-

eating processes. By design, sharing a data base (for whatever reason) 

presents no difficulty in the Multics system. After agreeing on the segment 

to be shared for storage and retrieval of messages each of the cooperating 

processes is free to reference the segment by its distinct file system name. 

Such a reference causes the same segment (same physical copy in primary 

6 memory) to be accessed by each process . 
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To control multi-process access to a single data base and to guard 

against reference to data that may be briefly in inconsistent states, 

there is need for a locking mechanism to insure mutual exclusion among 

potentially interfering processes
1' 5' 8 . In this paper, whenever we discuss 

shared data bases, we assume that availability of such a mechanism (later 

referred to as functions lock and unlock), based on a hardware test and set 

instruction, and its application whenever necessary. 

IPC is conceived, primarily, as a standard means of communication 

among processes. However, a process which is engaged in input output 

operations (1/0) is, in fact, communicating with some independent dedicated 

hardware processor (commonly known as m I/0 Channel) which is external to the 

process' universe. I/O channels are capable of producing signals indicating 

completion or trouble. The signals are transmitted to the system in the form 

of processor interrupts (device signals). We may think of the processor 

and the I/0 channel as being two cooperating processes which exist in a 

common universe. 

Device signals are unpredictable and may arrive at any given time to 

interrupt any currently-executing process. Logically, however, they "belong" 

to the process that is currently "responsible" for the interrupting I/O channel. 

In a multiplexed computer system, it is of interest to be able to 

distinguish between the concepts of "hardware" processor and ''virtual" 

3 4 8 (i.e., pseudo, or software) processor·' ' A program that is written for a 

computer ( as opposed to process) may make assumptions about the (hardware) 

processor's speed of execution. If, however, the program is written for a 

process, even though the actual execution is done by the very same hardware 
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processor, the process is not guaranteed to keep that processor for any 

predetermined length of time. Consequently, the time gap ("grain of time'') 

between the execution of any two consecutive mach '.ne instructions is 

unpredictable. 

Central to Multics is a module called the Traffic Controller 3•4 under 

whose control independent computations may compete fairly for (i.e., share) 

the computer resources of the system. But, more importantly for consideration 

here, the Traffic Controller also provides block/wakeup services. Block and 

wakeup are general functions that govern the transmission of control communi-

cation which, for example, permit two or more processes to cooperate or 

synchronize their activities8. The block function is invoked by a process 

to force its virtual processor to pause. The wakeup function is invoked 

by some other process in order to restore to the (possibly blocked) first 

process its execution capabilities. 

The job of the Traffic Controller is to make the multiplexed system 

look like a dedicated processor system by creating one virtual processor for 

each process. The virtual processor may be thought of as "always executing"4 ; 

from its point of view the effect of the block function is to insert an un

predictably large "grain of time" between two events. 

Although a process is always "conscious" of giving up the processor 

when (and because) it invokes the block function, the mechanics of processor 

switching, apart from real-time "clock jumps'', are essentially invisible 

to the affected process. This means that a process can complet~ly ignore 

the multiplexing being performed by the Traffic Controller. In the same 
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spirit of modularity, the Traffic Controller of Multics, unlike its counter

part in the forerunner, CTSs 10, is itself unconcerned with the origin of 

the requests for its block/wakeup services, e.g., inter-console messages, 

input-output completion signals, alarm clock services, etc, 
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3. Fundamentals of IPC 

A limited number of basic (implementation-independent) and, for the 

most part, self-evident considerations form the foundation of .IPC. We sur-

vey them here. 

Communication among processes that coexist within a private universe 

can only be achieved by an exchange of messages in a commonly accessible 

mailbox (shared data base) whose identity is known to each by conmon 

convention. Moreover, in order to exchange meaningful messages, an added 

convention is necessary by which communicating processes may interpret the 

state of the mailbox. 

The mechanism by which, within some universe U, some process A may 

send a message Sa to some other process B is summarized in the following 

two stages: 

ipc-setup (stage 1) 

a) By convention, both processes gain knowledge of a commonly accessible 

mailbox M; for example, by its distinct file system name. 

b) By convention, both processes agree to interpret a specific state S
0 

of M to imply "mailbox is empty". The mailbox should be initialized accordingly. 

basic-mechanism (stage 2) 

a) Process A sets the state of M to some state Sa which is different 

from S0 • 

b) Process B interprets any non-S
0 

state of M to imply "message has arrived". 

Depending upon its convention with A, process B may or may not then consider 

state S to be meaningful. a 
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We observe that in order for the processes to be able to communicatl' at 

all, there is a need for some "previous conununication", or convention, which 

we name ipc-setup. In a multi-processing (computer) "universe", the ipc-sl'tup 

normally consists of conventions that are made at program-coding time among 

the authors of interactive programs (often, the convention is established 

by the single author of such programs), to the effect that an unambiguous 

(symbolic) address is used to reference mailbox M. Also, a value is pre-assign-

ed at coding time to state S
0 

or perhaps to one or more of the non-S
0 

states. 

Once an initial ipc-setup has been achieved, additional ipc-setup's may be 

achieved by possibly re-using the same mailbox M and by transmitting in it 

(in either direction) the names of additional mailboxes. This is one appli-

cation in which the specific values of non-S states becomes meaningful. 
0 

As a rule, the ipc-setup must occur in a universe that is "external" to 

(and perhaps "containing", or "responsible for") universe U in which the com-

munication is to take place. Admittedly, the term "universe" is a little vague, 

and the interrelationships mentioned (external, containing, responsible) are 

even less meaningful. We do, however, wish to convey the idea that an ipc-

setup cannot occur within the same framework as its associated communication; 

rather, that every IPC communication depends upon an ipc-setup that has hap-

pened previously, and that the "universe" in which the ipc-setup was made is 

in some difficult-to-define way the "ancestor" of universe U. 

The actual interprocess communication is achieved by exchanging messages 

in mailbox M. The basic mechanism shown above is the most primitive and 

elementary way for processes to communicate; it allows only for a single, 

one-way message transmission. As will be seen, the basic mechanism may be 
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expanded and made more useful by the introduction of additional conventions 

among the communicating processes. Thus, the design of a general-purpose 

!PC facility has largely to do with the establishment of useful conventions. 

A familiar example of a very primitive IPC mechanism (though slightly more 

sophisticated than the basic mechanism in that it allows the ~epetitive 

transmission of one-way messages), is that by which an I/O channel sends 

signals to interrupt a processor (CPU) when serving notice of an I/O com

pletion or an I/O error. The channel and the CPU both share a mailbox (a 

special, but commonly accessible memory cell) whose location in this case 

is predesignated in the hardware (ipc-setup). (Also predesignated is another 

cell for holding a transfer instruction for sending control to an appropriate 

interrupt handler.) The channel sets one or more bits in the mailbox (the 

message) to indicate the nature of the event being signalled, and concurrent

ly sets a flip flop which is interrogated by the CPU at the end of each 

instruction cycle, which is the "grain of time" in this case. If the CPU 

finds the flip flop has been set (non-S 0 state), the interpretation is, 

"I have been interrupted by the I/0 channel. 11 

The basic IPC mechanism places no a priori restrictions either upon the 

size of the mailbox or on the amount of information that may be contained in 

it. An actual !PC facility, such as the one in Multic~ may be designed as an 

event qriented mechanism for the communication of control items, rather than 

as a general-purpose clearing house for bulk data exchange. Thus, the Multics 

!PC has restricted data transmission capabilities, i.e., it handles small, 

fixed-length messages, adequate for items of control information. These items 
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are, however, large enough to serve as effective pointers to-larger 

messages. 

We have in the introduction defined any change of state as an "evtmt." 

However, for the purposes of IPC, we are interested only in a small subset of 

all events, namely those which are known to be of interest to some process 

other than the one whose state has changed. The subset is limited by the 

actual coding of the programs which these processes execute. For the purpose 

of this paper, we use the term "event'' in the context of "subset"-event. 

Although every event is necessarily a unique occurrence in time, it 

is often the case that the significance of an event is indistinguishable 

from that of other events in a given category. Typically, we would then 

associate all such related events with a common event type and may think of 

the occurrence of an event as being the cyclic reoccurrence of its associated 

event type. 

In the Multics IPC, it is the event type, rather than the individual 

event, which may be put into correspondence with a mailbox. The ipc-setup 

includes, therefore, an association (by agreement) of a particular event 

type with a particular mailbox. 

By convention, the ipc-setup is made between a single potentially 

interested process, which we name Recipient, and one or more potentially 

observing processes which we name Senders. 
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4. Design Objectives and Decisions 

In designing the Multics IPC facility, two types of objectives are 

defined, a) primary objectives which are of a general nature, and b) second-

ary objectives which are related to the Multics environment. Decisions:are 

made in order to achieve an implementation that effectively and efficiently 
I 

meets the design objectives. Remember too, that the facility strived f~r here 

is supplementary to, and not a replacement for, the basic IPC mechanism. Pro-

grammers are free to ignore an IPC facility entirely, if they choose to esta-

blish their own mailboxes and the conventions for their use among the processes 

that share them. 

4.1 Primary objectives 

Our primary objective is to design an IPC facility which offers the; 

programmer an opportunity to design and code complex multi-process compu-

tations without a disproportionate attendant growth in complexity. At ~he 

same time we wish to add to, or at least conserve, the useful properties 

inherent to the multiplexed computer system, i.e., 1) virtual parallel-pro-

cessing, and 2) efficient hardware processor resource management. An 

additional primary objective is modular implementation and simplicity of 

application. We shall now show, by expanding from the basic IPC mechani.sm, 

one way to achieve these primary objectives. 

First, we examine the behavior of the basic IPC mechanism in a multi-

plexed system by applying this mechanism in a generalized example and by· 

trying to assure ourselves that its behavior characteristics do not, possibly, 

have the effect of "incapacitating" the system. 

In our example, suppose that Sender A is a cyclic process which, at a 

certain point in its loop wishes to send a message S11 to Recipient B by 

using an agreed upon mailbox M. Suppose recipient B is also a eye lie proct>ss: 
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in every loop transit process 8 reaches a wait point ~1urc it cannot proceed 

unless it finds a message in mailbox M. By convcntiPn, statL' S,1 of M is 

interpreted as "mailbox is empty". 

In Figures 1-4 we shall make use of a "freL~ style" PL/I, inspi.red by 

Dijkstra 1 . We shall apply functions lock and unlock tu insure mutual 

exclusive access to mailbox M1' 8 . These primitives have been implemented 

l h . lt. ( . h d d . t. 8) e sew ere ~n Mu ~cs us1.ng a ar ware test an set ~nstruc ~on , so we 

freely use them here. 

Figure l shows coding for an ipc-setup and for the basic IPC meclwnism. 

To follow the coding in this and in subsequent figures note that we have 

found it convenient to define a new type of variable to type "mailbox" 

with the following attributes: 

l) A mailbox variable is a shared data base. It is associated with a 

single Recipient. 

2) A mailbox M of a recipient process is, more precisely, a struc-

tural variable (we shall here nickname it an 11M-structure"), con-

sisting of four components: M.t, M.i, M.p, and M.m. 

where: M.t is a "lock-word" operated on by functions lock and unlock. 

M.i is a binary indicator which may assume states "empty" or 

"not-empty" (the empty state corresponds to the above-

mentioned state S0 ). The Boolean function test (M.i) is 

11 true" for m. i="empty". 

~ is the unique identifier of the associated Recipient process. 

M.m is a single interprocess message. 
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It is also convenient to employ the notion of a variable of type 

11 message 11 to indicate an interprocess message ''attribute." We also note that 

the function initialize (M) resets mailbox M to its 11 empty" state. Lastly, 

observe the use of the coding brackets "PARBEGIN" and "PAREND" within which 

we define processes A and B to be timing-independent and executing in parallel. 

The IPC mechanism shown in Figure 1 is functionally deficient; it can 

not normally be doing any meaningful work because if A's speed of execution 

exceeds that of B then A may overwrite (and hence lose) its own messages. 

rf, on the other hand, B is faster than A, it might "read" the same message 

several times. We are clearly confronted with a synchronization problem. 

One improvement that comes to mind is to synchronize the two processes 

by adding to A's computation a wait loop (similar to B's) to prevent it 

from sending a message if M. i="empty'' and by having process B reset M 

to the "empty11 state after copying the message into its local memory space. 

This solution however deprives us of the opportunity to have virtual parallel 

processing, a primary design objective, and is therefore unacceptable. 

For this reason we choose an alternative solution which is to provide an infinite 

buffering capability, so that the Sender may always be able to ''unload" his 

message regardless of the Recipient's degree of interaction. 

We can achieve this effect by re-defining the mailbox's fourth component, 

as suggested in Figure 2. Hereafter we shall assume that M.m is in fact a 

FIFO (!irst _!n, £irst .Qut) queue of interprocess messages. Thus, we use 

notations initialize(M), M.~append(Si,M) and Si=remove(M) to convey the 

ideas of "initialize-", ''append to-" and "remove from-" mailbox. 



Interprocess Communication - 4.4 

The coding in Figure 2 also removes another weakness of the Figure l 

mechanism, namely, a failure to meet the primary design objective of efficient 

hardware processor management. Note that in Figure l process B's wait loop 

is wasteful. We would prefer instead a way for process B to willingly 

abandon its processor. Moreover, we know that B has no need for a processor 

until A has actually put a message in M. We therefore make use of the Traffic 

Controller's block/wakeup function, inserting a call to block into B's 

wait loop and adding to A's message-sending logic the responsibility to 

wakeup process B, which is potentially blocked, after having appended a 

message to M. By definition, a mailbox may be associated with a single 

Recipient only, so use of the notation wakeup (M.p) means "wakeup the process 

that is known to be assOciated with M." Our improved mechanism can now be 

seen in Figure 2. 

In order to meet the final design objective, that of modularity and 

simplicity, it behooves us now to isolate in our IPC mechanism that part which 

is common to all communicating processes, and achieve a simplifying general

ization. This can be done by establishing a set of two IPC primitives which 

we shall here name wait and n~tify. These new primitives are event-oriented 

extensions of block and wakeup, respectively and are defined as follows: 

notify(M,S) causes message S to be appended to mailbox M, and a wakeup 

to be signalled to the process associated with M. 

St=watt(M) assigned to St the value of a message S which was removed 

off the top of M. The wait function has the property that it is 

associated with a "grain of time" of unpredictable dimension. 

Figure 3 shows the wait and notify functions and Figure 4 shows our example 

communication using the generalized IPC functions. 
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4.2 Secondary Objectives 

Our secondary objectives are to implement functions wait and notify in 

Multics*~ and if necessary adapt them to the Multics environment. 

The implementation of wait and notify calls for the availability of a 

number of difficult-to-provide capabilities~ namely a) the ability to 

attain a shared data base through the use of its unambiguous file system name, 

2) lock and unlock primitives~ 3) block/wakeup services~ and 4) the ability 

to implement the "mailbox"-type variable. 

Fortunately the very "cornerstone" of the Multics design embraces the 

first three capabilities, so the only significant implementation problem that 

remains is that of providing an efficient and inexpensive "mailbox" queueing 

mechanism. The ideal mailbox is an infinite FIFO queue of variable-length 

messages. As already mentioned, a design decision has been made to restrict 

the size of an interprocess message to the minimum necessary in order to be 

able to communicate control information. Two design problems reamins~ l) to 

set a limit to the mailbox's capacity, and 2) to prevent the saturation of the 

system's storage media by a multitude of independent and space consuming mailboxes. 

The solution adopted ts that of allocating the queue-containing M-structures 

(one per mailbox) in a single table of generous proportions. By dynamically 

allocating space in that table as needed, for each element of the queue in an 

M-structure, it is possible to allow for considerable size fluctuations in the 

individual queues, within the limits of the table's dimensions. 

* Terminology used in this paper is not necessarily keyed to that used in 
internal documents of the Multics project. Thus the wait and notify functions 
actually have, for historical reasons, other names in ''actual" Multics. 
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This implementation approach permi~s us to physically separate the 

mailbox (which by definition has an agreed-upon "address") from the actual 

M- structure which is managed ay the system and whose addll~Ss is a priori 

unknown. In Multics, we name the M-struction "event channel" and associate 

it with a system-provided, i.e., system-generated, event channel ~ which 

is an (internal and unambiguous) address that is meaningful to the IPC 

facility (only). 

It is the IPC facility's responsibility to correctly manage and manipulate 

the event channels. The only interface which the programmer needs is provided 

in the three function references, initialize(M), notify(M.S) and s~wait(M). 

The implementation-dependent functiun initialize(M) which creates 

an "empty" event channel, associates it with a Recipient process' identifi

cation, and with an unambiguous (internal) event channel name, and finally 

places the event channel name into mailbox M. Any subsequent invokation of 

wait or notify that uses M as an argument then allows the IPC facility to 

retrieve the event channel name that is stored in M and with it locate the 

appropriate event channel (~structure). 

Physical separation of the mailbox from the M-structure was achieved 

after it was recognized that the mailbox M need only be large enough to 

contain an event channel name. Thus the mailbox serves only to hold a "pointer" 

to the place (event channel) that actually holds (or is to hold) the inter

process message. Moreover, it was also recognized that the system-provided 

event channel name happens to be more compact and convenient to use than the 

mailbox's file system name. Hence it was in practice found useful to 

modify the arguments for wait and notify, so that the caller directly spec

ifies the event channel name rather than the file system name of the mailbox 

that holds the event channel name. It is the event channel name, therefore, 

that is the "key" to the Multics !PC facility. 
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The interprocess message in theM-structure's queue has a format such 

that it may contain an event channel name. This adds an additional sophis

tication to the IPC facility in that a mailbox requiring a file-system 

name is needed only for the establishment of the very first ipc-setup. 

Subsequent ipc-setups may use the initialized event channel(s) to provide 

further "mailbox services". 
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5. The Actual Implementation 

The implemented wait and notify functions have been slightly expanded 

to allow for additional sophistication as discussed below. 

(a) The notify function returns some control information feedback con-

. cerning the Recipient process so that the Sender process may learn, if this 

is indeed of interest to him, whether or not the Recipient process is still 

in working order. Thus a Sender may discover, if he examines the return infor-

mation, that his would-be Recipient no longer exists as an active process. 

(b) The IPC appends, as part of each message the identification of the 

Sender process so that a Recipient process may, if it chooses, inspect the 

origin of the message and act accordingly. For example, a system process 

in Multics, called System Control, maintains an event channel in which to 

receive messages that request termination of any of the processes now being 

served. Inspecting the origin of the received message helps determine the 

reason for the termination request, e.g., hangup, logout, system shutdown, 

out of funds condition, etc., and the appropriate action to be taken in each 

case. 

(c) The wait function has been expanded so that a process may wait for a 

compound event to happen, e. g., a process may specify that it is waiting 

fore je2 .. ,.e l····le (where "I" is the inclusive or and e. are messages 
l 3 n ~ 

in event channels of type i). This additional function is made possible 

by expanding the wait function into a module named the wait coordinator 

which acts as a broker· for event messages. 

(d) One further (and perhaps the most interesting) extension of the wait 

function allows a programmer to incorporate event-driven multi-programming 
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of separate tasks within a single process. This inherent capability which 

is part of the IPC's wait coordinator has found application in certain key 

system processes, in particular in the system's System Control process. An 

appreciation of this feature may well lead to insight for future research 

and to the identification of new system objectives. 

Because a Multics process is a single virtual computer, i.e., consists 

of a single address space (virtual memory) and a single execution point 

(virtual processor), it is natural to think of it as having a single purpose. 

There are two occasions when a single-purpose process would call upon the 

wait coordinator's services: 

1) The process has reached a wait point at .lim interim stage in its execu

tion path and cannot proceed until an event message has been received, 

hence wishes to be put into the blocked state. 

2) The process has reached an end point, i.e., it has executed to the com

pletion of its single purpose and it wishes to be put into the blocked 

state, either to be terminated by its creator or to await the arrival 

of an event message indicating that the purpose ( of the process) is 

to be repeated. 

Suppose that for reasons of economy (mainly conservation of the work 

required to maintain address spaces), one wished to coalesce (and condense) 

into a single process (or rather into a single virtual computer) the indivi

dual purposes of a number (n) of separately conceived, though possibly re

lated, processes. Each of the separate purposes may be conceptually re

garded as a program to be executed following receipt of a "triggering" event 

message. We now have a virtual computer that makes the wait coordinator 
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its homebase; upon receipt of a "triggering" event message the wait coor

dinator invokes the associated program (purpose) which, upon reaching its 

end point, returns to the watt coordinator. 

It may be useful to name such a process a "Multi-purpose process" and 

observe that the multi-purpose process blocks itself only if none of its n 

purposes (or member programs) is capable of running. An additional requirement 

imposed on our multi-purpose process is that whenever a currently-executing 

program reaches a wait point it should be able to recursively invoke the 

wait coordinator and relinquish control in favor of a member program without 

forcing all other member programs to depend upon the arrival of the first 

program's peculiar event message. 

The Multics implementation of the wait function in fact obeys all of 

the principles and requirements of the model just described. Hence, we observe 

that for multi-purpose processes the wait coordinator can serve as an event

driven controller that "multi-programs" the separate tasks (programs) within 

the process. On the other hand it is conceded that there are limitations 

in the use of this device. Thus, the response to the receipt of any one event 

message will tend to deteriorate as the number of separate tasks within a 

process becomes excessive. Also, with the current implementation of the 

Multics virtual computer, it is possible for some task within a process to 

reach an intermediate wait point and thereby indirectly degrade the response 

of some other task within the same process. 
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6. ~ Applications ~ Systems Designers 

The following discussion may provide the reader some insight as to 

how an IPC facility like Multics' may be used by system programmers and 

subsystem designers in the processing of I/0 interrupts. 

We have, in the introduction, discussed the design decision to 

convert device signals into IPC messages. In this way there need be no a 

priori recipient associated with a device signal. A process may "attach" 

an I/0 device by entering its identifier and an event channel name into a 

table entry which is associated with that specific device (ipc-setup). An 

incoming interrupt is intercepted by a dedicated interrupt handler proce

dure which then notifies the intended process over the appropriate event 

channel. 

For certain devices, in particular the user consoles, the interrupt 

handler actually notifies different processes of different types of 

interrupts. For example, a console's interrupts are grouped into 

three types, i.e., "power on/off", "attention", and "end of transmission". 

The end of transmission interrupts are signalled to the process that is 

currently "using" the console, however the power on/off and (perhaps) the 

attention interrupts are signalled to special system processes (typically 

the above-mentioned system control process) which have the privilege to 

intervene and perhaps destroy a user process whose console "went dead''. 

One of the advantages of using an IPC interface at interrupt time is 

that the system programmer who codes the interrupt handler may concentrate 

on the intricacies of correctly interpreting the I/0 channel's status infor

mation without having to bother with the additional problems of processor 

management and process synchronization. An additional advantage is that 
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any process may, if given the privilege to do so, simulate an I/0 channel. 

This is very useful in substituting a process for a temporarily disabled 

I/0 device without affecting the corresponding user processes. Also, it 

is possible to simulate and study some experimental I/O device and use 

the same interface that would be used in conjunction with the actual device. 
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7. Recapitulation 

Mechanisms for communicating among coexisting proc~sses are required 

in any multi-programmed computer system. In Multics these essentials are 

achieved largely as a byproduct of other capabilities that lie at the heart 

of that system's design, i.e., shared data bases by virtue of unambiguous 

file system names, lock and unlock primitives, and block/wakeup services 

for processor multiplexing. A judicious selection of additional system 

wide conventions has led to the installation of an IPC facility t~at builds 

on these central capabilities. The resulting extension of the Multics 

supervisor provides general and functionally modular wait and notify ser

vices. These are simple to implement and ma:in tain because their application 

is independent of the specific nature or purpose of the communication or 

of the Sending and Receiving processes. 

The IPC facility is used extensively by the system itself, for instance 

in handling I/O interrupts after converting these hardware signals to soft-

ware calls to the notify function. As additional applications for the IPC 

facility were recognized the facility has evolved in its sophistication 

(and may infact evolve further). Thus the wait function in particular has 

evolved into a (recursive~y called) wait coordinator which polls for various 

event messages coming to a process and, if desired, acts as an event driven 

controller that can multi-program separate tasks;:within a process. All 

these services simplify the logical structure of the applications and 

systems programs that communicate with the shared, central supervisor. 
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Control over the complexity in various computer applications is one 

of the important promises our profession has made to those it serves. 

Wait/notify services like those described in this paper appear to offer 

promise as tools for limiting the growth in complexity of useful multi

process computations and subsystems which operating systems are designed 

to support. 
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BEGIN 
ipc-setup-a: declare M mailbox; 
ipc-setup-b: initialize(M); 
?~•RBEGIN 

A.: :DEGIN 
declare Sa message; 
local initialization of A; 
A1:first part of A's computation; 

lock (M. ;,) ; 
basic-mechanism-a: M.m=Sa; 
unlock(M. p,); 
second part of A's computation; 
goto A1 ; 

El\rn; 

B: BEGIN 
declare Sb message; 
local initialization of B; 
B1:first part of B's computation; 
B2: lock(M. ;,) ; 

basic-mechanism-b: 
if test(M.i) then 
BEGIN 

unlock(M. t); 
goto B2; 

END; 
Sb=M.m; 
unlock(M. t); 
second part of B's computation; 
goto B1; 

END; 

PAREND; 
END; 

Figure 1: Application of the basic 
IF'C mechanism to a generalized inter
pxocess communication problem. 
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BEGIN 
ipc-setup-a: declare M mailbox; 
ipc-s~tup-b: initialize(M); 
PARBEGIN 

A: BEGIN 
declare Sa message; 
local initialization of A; 
A1:first part of A's computation; 

lock(M. p); 
ba~ic-mechanism-a: M.m=append(Sa,M); 
wakeup(M.p); 
unlock(M. t); 
second part of A's computation; 
goto A1; 

END; 

B: BEGIN 
declare Sb message; 
local initialization of B; 
Bi:first part of B's computation; 
B2: lock(M. 1,); 

basic-mechanism-b: 
if test(M.i) then 
BEGIN 

unlock(M. t); 
block; 
goto B2; 

END; 
Sb=remove(M); 
unlock(M. t); 
second part of B's computation; 
goto B1; 

END; 

PAREND; 
END; 

Figure 2: Basic mechanism improved by 
introduction of block/wakeup functions 
and by addition of queuing capabilities 
to the "mailbox" variable. 
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BEGIN 1~·( the notify function *I 
notify: procedure(M,S); 
declare l•l mailbox, S message; 

lock(M. J,); 
M.m=append(S,M); 
wakeup(M.p); 
unlock(M. ;_); 

END; 

BEGIN /k the wait function ~>cl 
wait: procedure(M) returns(S); 
declare M mailbox, S message; 
declare St message; I* temporary*/ 
W1: lock(M. J.,); 

if test(M.i) then 
BEGIN 

unlock(M • .t); 
,-. block; 

goto W1; 
END; 
St==remove (M); 
unlock(M. J.,); 
return(St); 

END; 

Figure 3: The generalized notify and 
wait functions. 
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BEGIN 
ipc-sct:up-a: declare roi: n1ailbox; 
ipc-setup-b: initialize(M); 
PAI\.BEGI::-i 

A: BEGIN 
declare sa message; 
local initialization of A; 
A1:first part of A's computation; 

basic-mechanism-a:notify(M,Sa); 
second part of A's computation; 
goto A1; 

END; . 

B: BEGIN 
declare Sb message; 
local initialization of B; 
B1:first part of B's computation; 

basic-mechanism-b: 
sb =wait (M) ; 
second part of B's computation; 
goto B1; 

END; 

PAREND; 
END; 

Figure 4: Application of the generalized 
IPC mechanism. 
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Addendum 

The following acknowledgement was inadvertantly omitted and 
should be added to "The Multics Interprocess Communication Facility'' 
by Michael J. Spier and Elliot I. Organick. 
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