
Performance of the GE-645 Associative Memory
While t~ul tics is in Operation

by l-!ichael o. Schroeder *

March 26, 1971

ABSTRACT

M0124

The Multiplexed Information and Computing Service (Multics)
of Project-nAC at M.I.T. runs on a General Electric 645 computer
oystem. The processors of this hardware system contain logic for
both paging and segmentation of addressable memory. They
directly accept two-part addresses of the form (segment number,
word number) which they translate into absolute memory • addresses
through a series of indexed table lookups. To speed this address
translation each processor contains a small, fast associative
nemory which remembers the most recently used address tranalation
table· entries. This paper reports the result• of pe~fonance
meaau~ements on this associative memory. Tho meaaureMnta were
made by attaching an electronic counter directly to a procei&Or
while Multics was in operation; and were taken for several
associative memory sizes. The measurements show that for the
observed load 16 associative registers are enouqh.

* t~ssachusetts Institute of Technology, Project MAC, Cambridqe,
Hassachusetts. Work reported herein was supported in part by
Project l.JAC, an M.I.T. research program sponsored by the Advanced
Research Project Agency, Department of Defense, under Office of
naval Research Contract Nonr-4102(01).

PREPRINT
This paper will be given at the ACM
SIGOPS liorkshop on Syo tem
Performance Evaluation at Harvard
university, April S-7, 1971.

M0124 -2-

Introduction

The t1ultiplexed Information and Computing Service (Hultics)
of Project--r:1AC at t17I.T. [1] incorporates both .paging . and
segmentation. The information stored in the syst7m ~s organ~z7d
as a collection of segments. Memory for segments ~s allocated ~n
fixed-sized blocks ~1hich are paged in a multi-level memory
system. Segmentation allows controlled sharing of information
and provides considerable help to a program in organizing
storage, even at the level where the program is expressed. in
machine language. Paging simplifies the problem of phys~cal
storage allocation in a time-shared computer system. (For a
general discussion of paging and segmentation see [2].)

The use of paging and segmentation by Multics is made
possible and practical by the hardware on which Multics operates,
the General Electric 645 computer system. The 645 central
processing units [3] are designed to allow paging and
segmentation of addressable memory (core memory in this case).
The algorithm implemented by the addressing logic of these
processors applies a segmented, paged structure to the core
memory. This addressing logic accepts two-dimensional (segment
number, word number) addresses which it translates to the
corresponding absolute core addresses. The translation algorithm
involves a series of indexed lookups in address trans-lation
tables in core.

Each processor contains a small, fast associative n;emory
tlhich remembers ··the address translation table entries . most
recently used· in address translation. The associativ~ memory
expl6its the premise that most programs exhibit sufficient
locality of reference to cause consecutive reuse of a small set
of address translation table entries. Under these conditions the
associative memory allows most two-dimensional addresses to be
translated to absolute form without reference to the tables in
core.

This paper reports the results of a series of experiments
performed on the associative memory of a GE-645 processor to
verify the locality of reference premise •. An electronic counter
ltas attached to the logic of a processor while Multics was in
operation and a normal user load was present. The counter
recorded the occurrence of various events associated with
processor and associative memory operation. The measurements
allow various performance parameters of the associative memory to
be calculated, and the validity of the locality of reference
premise to be determined. The same set of measurements were
taken for associative memory sizes of 16, 8, and 4 registers, and
uith the associative memory turned off.

The paper is presented in four parts. First the segmented,
paged structure applied to core memory is described and the
address translation algorithm used by a processor is specified.
Uext the role of the associative memory in address translation is
presented. The third section describes the measurement
experiments and presents the results obtained. In the last
section the significance of these results is discussed.

-3- M0124

Address translation

The addressing logic of the GE-645 processors functions at
two levels and solves two distinct problems. At the first level
is segmentation. A machine language program for a GE-645
processor executes in a two-dimensional address space. The
address space is a collection of independent segments identified
by number. Each segment is an arbitrary length array of 36-bit
\lords. An address of the form (s ,w) identifies the wth word of
the segment numbered s.

The collection of segments in the address space is defined
by a descriptor segment. The descriptor segment· contains an
array of segment descriptor words (SOWs), each of which describes
~ ~ingle s7gment in the address space. The number of a segment
~s JUSt ti1e ~ndex of the corresponding SOW in the descriptor
segment. Among other things, an SOW contains the absolute
address of the beginning of the corresponding segment in core.
The absolute address of the beginning of the descriptor segment
is contained in the descriptor base register (OBR) of a
processor.

Address translation in this (simplified) environment is
straightforward. To determine the absolute core address
corresponding to the two-dimensional address (s,w) a two step
calculation is made. First, the segment number s is added to the
address in the DBR to calculate the absolute address of the sow
corresponding to the segment. Then, the word number w is added
to the address contained in this SOW to calculate the absolute
address corresponding to the address space location (s,w). The
addressing logic of the processors performs this calculation each
time a two-dimensional address is used.

At the second level of function is paging. Paging
complicates the simplified address translation algorithm just
sketched. Storage for segments in core, including the descriptor
segment, is not a contiguous array of locations as the simplified
algorithm implies. Rather, storage for segments is allocated in
scattered 1024-word blocks. A page table, also in core, lists in
an array of page table words (PTWs) the blocks of core occupied
by the consecutive pages of a particular segment. This paging of
segments is transparent at the machine language level, but is
tak~n into account by the address translation algorithm in
converting a two-dimensional address to absolute form. The
absolute address in the OBR of a processor is actually the
address of the beginning of the page table for the descriptor
segment. The absolute addresses in SOWs are the beginning
locations for the page tables of the segments in the address
space.

The address translation algorithm used by the GE-645
processors, then, takes into account both segmentation and
paging. Figure 1 illustrates this algorithm. The steps in
translating the address (s,w) are shown. The absolute addresses
in the DBR, the PTWs, and the sows are represented by arrows. It
.ls assumed that all information is in core, as only this primary
.level of memory is directly accessible to the processors. Page
·t:.ables and pages not in core would be indicated by fault flags in

i
f

M0124 -4-

descriptor segment

T
[s/1024] *
_l

page table for segment 11 S 11

PTW

T
[w/1024]

~----~1

word (s,w) of
address space

page of descriptor segment

page of segment 11 S"

T
w mod 1024

l

Figure 1: Translation of address (s,w) by GE-645 processor

* [•••] indicates 11 integer part of 11

-5- M0124

the appropriate SDWs and PTWs, respectively. The addressing
logic of the processors "traps" when such a fault flag is
encountered during address translation.

Note that simply changing the value in the DBR of a
processor will cause the address translation algorithm to
interpret two-dimensional addresses relative to a different set
of address translation tables. In fact, this property is used by
Uultics to provide a separate two-dimensional address space for
each on-going computation. (These address spaces may overlap.)
An on-going computation together with its address space is called
a process. The address space of a typical Multics process
contains about 200 segments. (For a more complete de·scription of
segmentation and paging in 1-iultics, and the addressing logic of
the GE-645 processor, see [4]).

~ 2! associative memo;y

The address translation algorithm described above implies
that reference to a word in the address space of a process
requires three core references for address translation in
addition to the requested address space reference. In order to
reduce this ratio of four absolute core references per address
space reference, each GE-645 processor contains a 16 register
associative memory. This fast memory retains the 16 most
recently used SDWs and/or PTWs. (PTWs for the descriptor segment
are an exception, and are never placed in the associative
memory.) Under conditions of consecutive reuse of a small set of
PTWs and sows, the associative memory can eliminate some of the
core references for PTWs and sows that would otherwise occur.

Each time the addressing logic of a processor is activated
to translate a (segment number, word number) address, it
interrogates the associative memory before referencing any SOWs
or PTWs in core. The search key is the segment number and word
number from the address being translated. Three results of this
interrogation are possible:

1. PTW found
2. SDW found
3. no match

In case 1 the associative memory contained the PTW for the
particular page of the segment being referenced. No further
address translation references are needed. Adding the word
number modulo 1024 to the absolute address contained in the found
PTW yields the absolute address corresponding to the address
space location being referenced.

In case 2 the associative memory did not contain the needed
PTW, but did contain the SDW for the segment being referenced.
Address translation may be completed with one PTW reference to
core.

In
memory.
made.

case 3 nothing of assistance was in the associative
All three address translation references to core must be

The
recentness

SDWs
of

and PTWs in the associative memory are ordered by
use. Each time an SDW or a PTli from the

f.

M0124 -6-

associative memory is used it goes to the head of the use queue.
Hhenever an SDW or a PTW is referenced in core because it was not
in the associative memory, it is placed in the associative
memory. It replaces the item at the tail of the use queue and
then goes to the head of the queue. Thus, the replacement
algorithm used in the associative memory is strictly "least
recently used" •

The processor hardware performs the search of the
associative memory in 200 to 600 nanoseconds (depending on the
result of the search). By comparison, a core reference for an
address translation table entry (an SDW or a PTW) requires 1.2
microseconds. The associative memory search is slow by 1971
standards because of the discrete component logic used.

The information in the associative memory of a processor is
a copy of information that is also in core. The associative
memory thus generates a "multiple copy" problem, and some way is
required to keep the potential multiple copies of SOWs and P~vs
identical. For this purpose there is a special "clear
associative memory" feature on the processors. It is invoked by
program whenever an SDW or a PTW in core is changed. If a
multi-processor configuration is in use, the associative memory
of each processor must be cleared. This feature is also invoked
\ihen the absolute address in the DBR of a processor is changed to
cause the processor to execute in a different address space.
When such an address space change occurs the associative memory
will contain sows and PTWs for the previous address space which
could cause errors if left.

Performance measurements

By attaching an electronic counter to a GE-645 processor
\lhile Multics was running, the effectiveness of the associative
memory has been measured. A general problem with any large,
complex computer system is the difficulty of predicting
performance in advance of actual operation. The problem is that
there is no convincing way to simulate the demand placed on the
system by an actual user load. This was true of Multics in
general, and of the associative memory of a 645 processor in
particular. Although a simulation model for the associative
memory was developed and exercised, its authors concluded that
little confidence could be placed in the results produced. They
reported that:

In general, as the proportion of random references
increases, and as the total number of relevant pages
and segments increases, the number of associative
memory cells required for "near optimum" performance
also increases. Therefore, the results given •••
should not be assumed to indicate overall auxiliary
memory performance. [5]

In other words, there was no convincing way to model the sequence
of address space references that would be generated by a

-7- • M0124

Uultics-like system with an actual user load. Curiosity about
the relation of the number of associative registers to actual
oystem performance could only be satisfied by experiments on an
actual system. The experiments were to test the judgement
implicit in the processor design that 16 associative registers
are the right n urnbe r.

The meti1od was to isolate points in the processor logic
where pulses corresponding to events of interest could be
detected by an electronic counter. The four events chosen were
instruction executions, associative memory searches, "no match"
associative memory search responses, and absolute core references
by the processor. A series of counts for 10 second periods was
made for each event. During the time the counts were being made
the processor \las part of the hardware configuration runninq
l1ultics for a normal user load. This configuration included one
processor and 256,000 words of core memory.

The same measurements were taken for associative memory
sizes of 16, a, and 4 registers, and with the associative memory
turned off. (Users began to complain only in the last case.)
The size of the associative memory was varied by making temporary
modifications to the processor logic while the processor was not
in service. The measurements were made in June, 1970 over the
time of several days. During the measurements the number of
simultaneous users of the system varied from 6 to 35. Hultics
limits the number of simultaneous users to maintain adequate
response time. This limit has continuously risen during the
development of Multics. At the time of the measurements the
limit was 35. The user load during the measurements included
approximately equal numbers of system programmers, application
programmers (mainly using PL/1), and students. At least 25
counts were made for each event.

An electronic counter is an ideal instrument for such an
experiment, because it does not influence the system being
measured. Very elaborate counter-like devices with data
recording capabilities have been constructed to perform similar
measurements on computer systems (for example, see [6]), but- for
this experiment a simple digital frequency meter with a seven
digit display was used. For each courit the meter was directly
connected to some pin in the logic of the processor.

Figure 2 presents a summary of the results obtained by these
experiments. The figure is largely self-explanatory. The
"range" values are the percentage difference between the average
of all counts for an event, and the maximum and minimum count
remaining after deleting the lowest and highest quarter of the
counts, respectively.

The uidest variation of results occurred for the three "no
match" events. This variation is caused by the short-term
fluctuations in the computation load which are characteristic of
an interactive system. Under Multics, when the processor is not
busy performing user and system computations it executes in an
"idle loop" waiting for more work. The "idle loop" is very
small, and references only a few pages of code and data. Thus,
\thile in the "idle loop", "no match" responses to associative
memory searches will occur less frequently than otherwise. The

M0124 -8-

Measurement Average observed Range
per second rate

InstructJ.on 341,945 +2%
executions -2%

M1 search 414,688 +2%
requests -4%

with
16 AM "no match" 5,180 +13%
associative responses -5%
registers

absolute core 419,425 less than 1%
references both ways

InstructJ.on 322,912 +2%
executions -1%

AM search 377,912 +1%
requests -2%

with
8 M1 "no rna tch" 11,002 +13%
associative responses -6%
re<Jisters

absolute core 418,284 +1%
references -2%

InstructJ.on 286,531 +2%
executions -1%

AM search 337,442 +1%
requests -1%

with
4 AM "no rna tch" 35,710 +5%
associative responses -6%
registers

absolute core 451,895 +1%
references -1%

InstructJ.on 123,198 less than 1%
with no executions both ways
associative
memory absolute core 541,832 less than 1%

references both ways

Figure 2 Summary of results of measurement experiments

-

-9- M0124

number of "no match" responses per second will vary with the
proportion of time the processor is executing in the "idle loop",
and thus will vary with user activity. The variation in the
number of users during the measurements amplified this effect.

Figure 3 presents the data of Figure 2 graphically. It is
obvious from Figure 3 that the size of the associative memory has
a direct effect on the instruction execution rate of the
processor. All of the decrease in this rate that occurs as the
size of the associative memory is decreased is caused by the
retrieval from core of more and more sows and PTWs. Figure 4
illustrates this point quite well. The number of address space
references (associative memory searches) per· instruction
execution remains relatively constant as the size of the
associative memory decreases, while the number of absolute core
references per instruction execution rises dramatically. That
the number of address space references per instruction execution
remains constant is a good check on the consistency of the
various measurements.

Discussion of reaits -
Two conclusions can be drawn from the results of these

measurements. The first concerns the cost of segmentation and
paging (block allocation) in terms of core references for address
translation. Given that the decision to support segmentation and
paging has been made, there are two obvious alternative
implementations. One uses only internal processor registers for
address translation information. The other places address
translation information in core. The latter seems to be a less
restrictive implementation and to require fewer hardware
registers, but appears to cause core references for address
translation not required by the former. The measurement
experiments show that a small associative memory can reduce to a
negligible number the core references for address translation
required with the second implementation. With 16 associative
registers on the GE-645 an average of approximately 5,000 "no
match" associative memory search responses were observed each
second. Each of these generates at most three absolute core
references. Thus, out of the approximately 420,000 absolute core
references observed each second only 15,000 are attributable to
address translation, or about 3.5%. Put another way, each
address space reference required qnly 1.03 core references rather
than the four implied by the address translation algorithm.

It is interesting to note that over half of the address
translation references to core may be associated with the
clearings of the associative memory discussed earlier.
Independent measurements show that the associative memory is
cleared about 170 times a second. Because up to 16 "no match"
responses are generated by each associative memory clearing, up
to 16*170*3 = 8160 of the "no matches" each second - over half of
them are attributable to the clearings of the associative
memory.

~ The second conclusion is that 16 associative registers are

•

M0124

Events in
one second

600,000

500,000

400,000

300,000

200,000

100,000

0

0 4

-10-

absolute core references

~associative memory
searches

"instruction executions

/"no match" responses to
associative memory searches

8 16

Number of associative memory registers

Figure 3: Performance with various associative memory sizes

-11- M0124

5/1

4/1

absolute core references/instruction

3/1

2/1

Ratio

1/1 address space references/instruction

0 4 8 16

Number of associative memory registers

Figure 4: Core and address space references per instruction

with various associative memory sizes

M0124 -12-

enough for a 645 processor running ~!ultics. At 16 registers the
curve of the instruction execution rate with respect to the
number of associative registers in Figure 3 has become quite
flat. Furthermore, any increment in the number of associative
registers above 16, no matter how large, could do no more than
eliminate some fraction of the 3.5% of all core references
attributable to address translation. Thus, the prospect of
significantly increased performance with more associative
registers seems remote. Apparently 16 is approximately the
largest number of associative registers that can be effectively
utilized.

Whether 16 or a smaller number is the proper number of
registers to include in the processor depends on the cost of
associative registers. Reduction of the number of associative
registers to 8 resulted in a 6% decrease in the instruction
execution rate. This might be acceptable if associative
registers were very expensive. A cost/performance tradeoff must
be calculated in order to decide between 16 and 8 registers.

Acknowledgements

John Ammons of the General Electric Company's Cambridge
Information Systems Laboratory (now part of Honeywell Information
Systems, Inc) contributed much time and effort to performing the
measurement experiments. Roger Schell of M.I.T. suggested that
the paper be written~ F.J. Corbat6, R.P. Goldberg, and J.H.
Saltzer, all from M.I.T., provided helpful suggestions on the
content of the paper.

References

[1] Corbat6, F.J., et al, "A New Remote-Accessed Man-Machine
System", AFIPS Conference Proceedints 27 (1965 FJCC), Spartan
Books, Washington, D.c., 1965, pp.S5-2l7.

[2] Denning, P.J., "Virtual Memory", Computing Surveys_!, 3
(September, 1970), pp. 153-189.

[3] GE-645 PECessor Reference Manual, Cambridge Information
Systems~oratory, General Electr1c Company, August, 1970.

(4] Bensoussan, A., c.T. Clingan,- and R.c. Daley, "The Multics
Virtual Memory", Second ACM Symposium on Operatin~ Systems
Principles (October, 1969) ,-princeton University, pp. 3 -42.

[5] Shemer, J.E., and G.A. Shippey, "Statistical Analysis of
Paged and Segmented Computer Systems", IEEE Transactions on
Electronic Computers ~-15, 6 (December, 19~ pp. 855-863.

[6] Schulman, F. D., "Hardware measurement device
system/360 time sharing evaluation", Proceedings of 22nd
Conference of ACM (ACM Publication P-67), Thompson Book
tvash1ngton n:C.-;-'!967, pp. 103-109.

for IBH
National
Company,

