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The Multiplexed Information and Computing Service (Multics) 
of Project-nAC at M.I.T. runs on a General Electric 645 computer 
oystem. The processors of this hardware system contain logic for 
both paging and segmentation of addressable memory. They 
directly accept two-part addresses of the form (segment number, 
word number) which they translate into absolute memory • addresses 
through a series of indexed table lookups. To speed this address 
translation each processor contains a small, fast associative 
nemory which remembers the most recently used address tranalation 
table· entries. This paper reports the result• of pe~fonance 
meaau~ements on this associative memory. Tho meaaureMnta were 
made by attaching an electronic counter directly to a procei&Or 
while Multics was in operation; and were taken for several 
associative memory sizes. The measurements show that for the 
observed load 16 associative registers are enouqh. 
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Introduction 

The t1ultiplexed Information and Computing Service (Hultics) 
of Project--r:1AC at t17I.T. [1] incorporates both .paging . and 
segmentation. The information stored in the syst7m ~s organ~z7d 
as a collection of segments. Memory for segments ~s allocated ~n 
fixed-sized blocks ~1hich are paged in a multi-level memory 
system. Segmentation allows controlled sharing of information 
and provides considerable help to a program in organizing 
storage, even at the level where the program is expressed. in 
machine language. Paging simplifies the problem of phys~cal 
storage allocation in a time-shared computer system. (For a 
general discussion of paging and segmentation see [2].) 

The use of paging and segmentation by Multics is made 
possible and practical by the hardware on which Multics operates, 
the General Electric 645 computer system. The 645 central 
processing units [3] are designed to allow paging and 
segmentation of addressable memory (core memory in this case). 
The algorithm implemented by the addressing logic of these 
processors applies a segmented, paged structure to the core 
memory. This addressing logic accepts two-dimensional (segment 
number, word number) addresses which it translates to the 
corresponding absolute core addresses. The translation algorithm 
involves a series of indexed lookups in address trans-lation 
tables in core. 

Each processor contains a small, fast associative n;emory 
tlhich remembers ··the address translation table entries . most 
recently used· in address translation. The associativ~ memory 
expl6its the premise that most programs exhibit sufficient 
locality of reference to cause consecutive reuse of a small set 
of address translation table entries. Under these conditions the 
associative memory allows most two-dimensional addresses to be 
translated to absolute form without reference to the tables in 
core. 

This paper reports the results of a series of experiments 
performed on the associative memory of a GE-645 processor to 
verify the locality of reference premise •. An electronic counter 
ltas attached to the logic of a processor while Multics was in 
operation and a normal user load was present. The counter 
recorded the occurrence of various events associated with 
processor and associative memory operation. The measurements 
allow various performance parameters of the associative memory to 
be calculated, and the validity of the locality of reference 
premise to be determined. The same set of measurements were 
taken for associative memory sizes of 16, 8, and 4 registers, and 
uith the associative memory turned off. 

The paper is presented in four parts. First the segmented, 
paged structure applied to core memory is described and the 
address translation algorithm used by a processor is specified. 
Uext the role of the associative memory in address translation is 
presented. The third section describes the measurement 
experiments and presents the results obtained. In the last 
section the significance of these results is discussed. 
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Address translation 

The addressing logic of the GE-645 processors functions at 
two levels and solves two distinct problems. At the first level 
is segmentation. A machine language program for a GE-645 
processor executes in a two-dimensional address space. The 
address space is a collection of independent segments identified 
by number. Each segment is an arbitrary length array of 36-bit 
\lords. An address of the form (s ,w) identifies the wth word of 
the segment numbered s. 

The collection of segments in the address space is defined 
by a descriptor segment. The descriptor segment· contains an 
array of segment descriptor words (SOWs), each of which describes 
~ ~ingle s7gment in the address space. The number of a segment 
~s JUSt ti1e ~ndex of the corresponding SOW in the descriptor 
segment. Among other things, an SOW contains the absolute 
address of the beginning of the corresponding segment in core. 
The absolute address of the beginning of the descriptor segment 
is contained in the descriptor base register (OBR) of a 
processor. 

Address translation in this (simplified) environment is 
straightforward. To determine the absolute core address 
corresponding to the two-dimensional address (s,w) a two step 
calculation is made. First, the segment number s is added to the 
address in the DBR to calculate the absolute address of the sow 
corresponding to the segment. Then, the word number w is added 
to the address contained in this SOW to calculate the absolute 
address corresponding to the address space location (s,w). The 
addressing logic of the processors performs this calculation each 
time a two-dimensional address is used. 

At the second level of function is paging. Paging 
complicates the simplified address translation algorithm just 
sketched. Storage for segments in core, including the descriptor 
segment, is not a contiguous array of locations as the simplified 
algorithm implies. Rather, storage for segments is allocated in 
scattered 1024-word blocks. A page table, also in core, lists in 
an array of page table words (PTWs) the blocks of core occupied 
by the consecutive pages of a particular segment. This paging of 
segments is transparent at the machine language level, but is 
tak~n into account by the address translation algorithm in 
converting a two-dimensional address to absolute form. The 
absolute address in the OBR of a processor is actually the 
address of the beginning of the page table for the descriptor 
segment. The absolute addresses in SOWs are the beginning 
locations for the page tables of the segments in the address 
space. 

The address translation algorithm used by the GE-645 
processors, then, takes into account both segmentation and 
paging. Figure 1 illustrates this algorithm. The steps in 
translating the address (s,w) are shown. The absolute addresses 
in the DBR, the PTWs, and the sows are represented by arrows. It 
.ls assumed that all information is in core, as only this primary 
.level of memory is directly accessible to the processors. Page 
·t:.ables and pages not in core would be indicated by fault flags in 
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descriptor segment 
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page table for segment 11 S 11 
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T 
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l 

Figure 1: Translation of address (s,w) by GE-645 processor 

* [ ••• ] indicates 11 integer part of 11 
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the appropriate SDWs and PTWs, respectively. The addressing 
logic of the processors "traps" when such a fault flag is 
encountered during address translation. 

Note that simply changing the value in the DBR of a 
processor will cause the address translation algorithm to 
interpret two-dimensional addresses relative to a different set 
of address translation tables. In fact, this property is used by 
Uultics to provide a separate two-dimensional address space for 
each on-going computation. (These address spaces may overlap.) 
An on-going computation together with its address space is called 
a process. The address space of a typical Multics process 
contains about 200 segments. (For a more complete de·scription of 
segmentation and paging in 1-iultics, and the addressing logic of 
the GE-645 processor, see [4]). 

~ 2! associative memo;y 

The address translation algorithm described above implies 
that reference to a word in the address space of a process 
requires three core references for address translation in 
addition to the requested address space reference. In order to 
reduce this ratio of four absolute core references per address 
space reference, each GE-645 processor contains a 16 register 
associative memory. This fast memory retains the 16 most 
recently used SDWs and/or PTWs. (PTWs for the descriptor segment 
are an exception, and are never placed in the associative 
memory.) Under conditions of consecutive reuse of a small set of 
PTWs and sows, the associative memory can eliminate some of the 
core references for PTWs and sows that would otherwise occur. 

Each time the addressing logic of a processor is activated 
to translate a (segment number, word number) address, it 
interrogates the associative memory before referencing any SOWs 
or PTWs in core. The search key is the segment number and word 
number from the address being translated. Three results of this 
interrogation are possible: 

1. PTW found 
2. SDW found 
3. no match 

In case 1 the associative memory contained the PTW for the 
particular page of the segment being referenced. No further 
address translation references are needed. Adding the word 
number modulo 1024 to the absolute address contained in the found 
PTW yields the absolute address corresponding to the address 
space location being referenced. 

In case 2 the associative memory did not contain the needed 
PTW, but did contain the SDW for the segment being referenced. 
Address translation may be completed with one PTW reference to 
core. 

In 
memory. 
made. 

case 3 nothing of assistance was in the associative 
All three address translation references to core must be 

The 
recentness 

SDWs 
of 

and PTWs in the associative memory are ordered by 
use. Each time an SDW or a PTli from the 
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associative memory is used it goes to the head of the use queue. 
Hhenever an SDW or a PTW is referenced in core because it was not 
in the associative memory, it is placed in the associative 
memory. It replaces the item at the tail of the use queue and 
then goes to the head of the queue. Thus, the replacement 
algorithm used in the associative memory is strictly "least 
recently used" • 

The processor hardware performs the search of the 
associative memory in 200 to 600 nanoseconds (depending on the 
result of the search). By comparison, a core reference for an 
address translation table entry (an SDW or a PTW) requires 1.2 
microseconds. The associative memory search is slow by 1971 
standards because of the discrete component logic used. 

The information in the associative memory of a processor is 
a copy of information that is also in core. The associative 
memory thus generates a "multiple copy" problem, and some way is 
required to keep the potential multiple copies of SOWs and P~vs 
identical. For this purpose there is a special "clear 
associative memory" feature on the processors. It is invoked by 
program whenever an SDW or a PTW in core is changed. If a 
multi-processor configuration is in use, the associative memory 
of each processor must be cleared. This feature is also invoked 
\ihen the absolute address in the DBR of a processor is changed to 
cause the processor to execute in a different address space. 
When such an address space change occurs the associative memory 
will contain sows and PTWs for the previous address space which 
could cause errors if left. 

Performance measurements 

By attaching an electronic counter to a GE-645 processor 
\lhile Multics was running, the effectiveness of the associative 
memory has been measured. A general problem with any large, 
complex computer system is the difficulty of predicting 
performance in advance of actual operation. The problem is that 
there is no convincing way to simulate the demand placed on the 
system by an actual user load. This was true of Multics in 
general, and of the associative memory of a 645 processor in 
particular. Although a simulation model for the associative 
memory was developed and exercised, its authors concluded that 
little confidence could be placed in the results produced. They 
reported that: 

In general, as the proportion of random references 
increases, and as the total number of relevant pages 
and segments increases, the number of associative 
memory cells required for "near optimum" performance 
also increases. Therefore, the results given ••• 
should not be assumed to indicate overall auxiliary 
memory performance. [5] 

In other words, there was no convincing way to model the sequence 
of address space references that would be generated by a 



-7- • M0124 

Uultics-like system with an actual user load. Curiosity about 
the relation of the number of associative registers to actual 
oystem performance could only be satisfied by experiments on an 
actual system. The experiments were to test the judgement 
implicit in the processor design that 16 associative registers 
are the right n urnbe r. 

The meti1od was to isolate points in the processor logic 
where pulses corresponding to events of interest could be 
detected by an electronic counter. The four events chosen were 
instruction executions, associative memory searches, "no match" 
associative memory search responses, and absolute core references 
by the processor. A series of counts for 10 second periods was 
made for each event. During the time the counts were being made 
the processor \las part of the hardware configuration runninq 
l1ultics for a normal user load. This configuration included one 
processor and 256,000 words of core memory. 

The same measurements were taken for associative memory 
sizes of 16, a, and 4 registers, and with the associative memory 
turned off. (Users began to complain only in the last case.) 
The size of the associative memory was varied by making temporary 
modifications to the processor logic while the processor was not 
in service. The measurements were made in June, 1970 over the 
time of several days. During the measurements the number of 
simultaneous users of the system varied from 6 to 35. Hultics 
limits the number of simultaneous users to maintain adequate 
response time. This limit has continuously risen during the 
development of Multics. At the time of the measurements the 
limit was 35. The user load during the measurements included 
approximately equal numbers of system programmers, application 
programmers (mainly using PL/1), and students. At least 25 
counts were made for each event. 

An electronic counter is an ideal instrument for such an 
experiment, because it does not influence the system being 
measured. Very elaborate counter-like devices with data 
recording capabilities have been constructed to perform similar 
measurements on computer systems (for example, see [6]), but- for 
this experiment a simple digital frequency meter with a seven 
digit display was used. For each courit the meter was directly 
connected to some pin in the logic of the processor. 

Figure 2 presents a summary of the results obtained by these 
experiments. The figure is largely self-explanatory. The 
"range" values are the percentage difference between the average 
of all counts for an event, and the maximum and minimum count 
remaining after deleting the lowest and highest quarter of the 
counts, respectively. 

The uidest variation of results occurred for the three "no 
match" events. This variation is caused by the short-term 
fluctuations in the computation load which are characteristic of 
an interactive system. Under Multics, when the processor is not 
busy performing user and system computations it executes in an 
"idle loop" waiting for more work. The "idle loop" is very 
small, and references only a few pages of code and data. Thus, 
\thile in the "idle loop", "no match" responses to associative 
memory searches will occur less frequently than otherwise. The 
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Measurement Average observed Range 
per second rate 

InstructJ.on 341,945 +2% 
executions -2% 

M1 search 414,688 +2% 
requests -4% 

with 
16 AM "no match" 5,180 +13% 
associative responses -5% 
registers 

absolute core 419,425 less than 1% 
references both ways 

InstructJ.on 322,912 +2% 
executions -1% 

AM search 377,912 +1% 
requests -2% 

with 
8 M1 "no rna tch" 11,002 +13% 
associative responses -6% 
re<Jisters 

absolute core 418,284 +1% 
references -2% 

InstructJ.on 286,531 +2% 
executions -1% 

AM search 337,442 +1% 
requests -1% 

with 
4 AM "no rna tch" 35,710 +5% 
associative responses -6% 
registers 

absolute core 451,895 +1% 
references -1% 

InstructJ.on 123,198 less than 1% 
with no executions both ways 
associative 
memory absolute core 541,832 less than 1% 

references both ways 

Figure 2 Summary of results of measurement experiments 
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number of "no match" responses per second will vary with the 
proportion of time the processor is executing in the "idle loop", 
and thus will vary with user activity. The variation in the 
number of users during the measurements amplified this effect. 

Figure 3 presents the data of Figure 2 graphically. It is 
obvious from Figure 3 that the size of the associative memory has 
a direct effect on the instruction execution rate of the 
processor. All of the decrease in this rate that occurs as the 
size of the associative memory is decreased is caused by the 
retrieval from core of more and more sows and PTWs. Figure 4 
illustrates this point quite well. The number of address space 
references (associative memory searches) per· instruction 
execution remains relatively constant as the size of the 
associative memory decreases, while the number of absolute core 
references per instruction execution rises dramatically. That 
the number of address space references per instruction execution 
remains constant is a good check on the consistency of the 
various measurements. 

Discussion of reaits -
Two conclusions can be drawn from the results of these 

measurements. The first concerns the cost of segmentation and 
paging (block allocation) in terms of core references for address 
translation. Given that the decision to support segmentation and 
paging has been made, there are two obvious alternative 
implementations. One uses only internal processor registers for 
address translation information. The other places address 
translation information in core. The latter seems to be a less 
restrictive implementation and to require fewer hardware 
registers, but appears to cause core references for address 
translation not required by the former. The measurement 
experiments show that a small associative memory can reduce to a 
negligible number the core references for address translation 
required with the second implementation. With 16 associative 
registers on the GE-645 an average of approximately 5,000 "no 
match" associative memory search responses were observed each 
second. Each of these generates at most three absolute core 
references. Thus, out of the approximately 420,000 absolute core 
references observed each second only 15,000 are attributable to 
address translation, or about 3.5%. Put another way, each 
address space reference required qnly 1.03 core references rather 
than the four implied by the address translation algorithm. 

It is interesting to note that over half of the address 
translation references to core may be associated with the 
clearings of the associative memory discussed earlier. 
Independent measurements show that the associative memory is 
cleared about 170 times a second. Because up to 16 "no match" 
responses are generated by each associative memory clearing, up 
to 16*170*3 = 8160 of the "no matches" each second - over half of 
them are attributable to the clearings of the associative 
memory. 

~ The second conclusion is that 16 associative registers are 

• 
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Figure 3: Performance with various associative memory sizes 
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absolute core references/instruction 

3/1 

2/1 

Ratio 

1/1 address space references/instruction 

0 4 8 16 

Number of associative memory registers 

Figure 4: Core and address space references per instruction 

with various associative memory sizes 
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enough for a 645 processor running ~!ultics. At 16 registers the 
curve of the instruction execution rate with respect to the 
number of associative registers in Figure 3 has become quite 
flat. Furthermore, any increment in the number of associative 
registers above 16, no matter how large, could do no more than 
eliminate some fraction of the 3.5% of all core references 
attributable to address translation. Thus, the prospect of 
significantly increased performance with more associative 
registers seems remote. Apparently 16 is approximately the 
largest number of associative registers that can be effectively 
utilized. 

Whether 16 or a smaller number is the proper number of 
registers to include in the processor depends on the cost of 
associative registers. Reduction of the number of associative 
registers to 8 resulted in a 6% decrease in the instruction 
execution rate. This might be acceptable if associative 
registers were very expensive. A cost/performance tradeoff must 
be calculated in order to decide between 16 and 8 registers. 
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