
TO: Distribution

FROM: R. J. Feiertag

DATE: August 13, 1971

SUBJECT: The Multics Inpub/Output System

M0127

The attached document is a preprint of a paper to be presented at the Third Symposium on Orerating

Systems Principles to be held on October 18 - 20, 1971 in Palo Alto, California.

-

THE MULTICS INPUT/OUTPUT SYSTEM*

R. J. Feiertag
Massachusetts Institute of Technology

Cambridge, Massachusetts

and

E. I. Organick
University of Utah

Salt Lake City, Utah

ABSTRACT

An I/0 system has been implemented in the Multics system that facilitates dynamic switching of I/0 devices.
This switching is accomplished by providing a general interface for all I/O devices that allows all equivalent
operations on different devices to be expressed in the same way. Also particular devices are referenced by sym
bolic names and the binding of names to devices can be dynamically modified. Available I/O operations range
frorr. a set of basic I/O calls that require almost no knowledge of the I/O System or the I/0 device being used to
fully general calls that permit one to take full advantage of all features of an I/O device but require consi
derable knowledge of the I/0 System and the device. The I/0 System is described and some popular applications
of it, illustrating these features, are presented.

Introduction

In many early operating system designs the soft
ware known as the input/output control system (IOCS)
played a central conceptual and functional role. In
the pre-multiprogramming, batch operating systems,
many supervisory functions had to do with input/output
control --e.g., control over queued jobs, control for
management and operation of secondary storage, control
for operation of display devices and other peripheral
equipment, etc. A system programmer (or subsystem
designer) for such operating systems could hardly
prove his professional competence without acquiring
a reasonable familiarity with the intricacies of the
IOCS for his "installation". By contrast the role
played by the input/output control system in a Multics
system is decidedly secondary, at least from a concep
tual point of view. In fact, many or even most sub
system designers are able to achieve their respective
objectives while remaining entirely oblivious to the
IOCE details of Multics.

This is possible partly because two operations
sometimes associated with the roes have been separated
intc separate functional units which are made use of
by ether parts of the system as well as the roes.
First, the file system [1] makes known and dynamically
lin~s files that are stored within the system to pro
cesses that legitimately request this service. It
does not matter on what storage device these files
reside at the time of the request. The users (or for
that matter other supervisory modules) are unaware
of any explicit data movement in accessing these
segrr.ents even though physical transfer from actual
secondary devices to central memory may occur.
Secondly, the traffic controller [2] handles all multi
ple~ing of processors including the relinquishing of
a processor by a process and the awakening of pro
cesses which have been waiting for I/0 transactions to
be completed. What remains for the roes is strategic
control of I/O devices and the binding of these devices
with symbolic names used to represent them. Figure 1
illustrates the interrelationships of these modules.

*Work reported herein was supported in part by Project
MAC, an M.I.T. research program sponsored by the
Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract N0014-
70-A-0362-0001. Reproductio~ is permitted for any pur
pose of the United States Government.

The secondary role of the I/0 System does not mean
that Multics attempts to erect a barrier that prevents
the ·(system or user) programmer from acquiring and
exercising full control over I/O devices. On the con
trary, user processes are able to "negotiate" with the
system administrator, who controls distribution of
I/0 resources, to acquire particular I/0 devices. Then,
with user code, the user process may program the con
trol of these I/O devices and operate them with the
full freedom that is normally accorded a system pro
grammer.

In brief, the Multics I/O System has been designed
using two important guidelines:

a) the simplest, most commonplace use of it
requires only a minimum of knowledge and
skill -- and the overhead for such simple
(common mode) use is also minimized.

b) to extract more tailored (special purpose)
services there is added cost -- both in the
time that must be committed to understand
how the tool works and in the actual over
head that will be incurred in execution.

The system to be described here stresses symbolic,
hardware independent references to input/output devi
ces. This scheme permits programs to be written
largely independently of the devices they use and
allows the devices to be assigned at the time the com
putation is performed and changed dynamically during
the run. Although other systems [3,4,5] have made use
of symbolic referencing, the Multics system attempts
to provide extreme ease of modification and almost
total device independence, to the limits possible.

The I/0 System does not in itself provide for
matted I/0 such as that typically found in many lang
uages and library subroutines. Also, the details of
operating specific devices are relegated to a minor
role. \olhat remains is an intermediate level of I/0
software that forms the conceptual heart of the I/O
System in Multics and will now be described.

Overview of the I/O System

A primary objective of Multics is to make the
input/output operations stated in the programs or ser
vice procedures that a user writes specify only those
device functions that are required for the application
at hand, leaving to the system the responsibility for

gauging the degree of device independence implied by
the user's request. In this way a user who invokes
such service procedures is free to designate substi
tute devices as may be appropriate, while adhering to
the device dependencies that are implied by the stated
I/O function requests. For example, a program may
output a long string of characters. If the device
currently associated with this output is a typewriter
the I/0 System should insert carriage returns when the
end of the carriage is reached. However, if the output
device is a tape then no carriage returns are neces
sary. For this reason user-coded I/0 operations should
ordinarily be independent (or as independent as feasi
ble) of the particular device and model, or even of
the type of device, e.g., typewriter, as opposed to
teletype or paper tape.

There are two clear motivations for this crucially
important objective. First, we must presume that at
any given time a system will generally accommodate
several types of I/0 devices and models. Each is
likely to require different programmed control. Each
may have different character sets, and may be intrin
sically different in various respects (e.g., line
printers are not backspaceable, magnetic tapes are;
some tapes cannot be read backwards as well as for
wards, while card readers are never designed to read
cards backwards, etc.). It is, however, desirable to
be able to run programs using devices other than those
for which they were originally written. Second, we
presume that I/O devices become obsolete and, over
time, are replaced by new models of the same or
different types, e.g., video keyboards may replace
typewriters. Clearly, if programs are to be usable
over long periods of time, if programs are to be
repeated with minor or no variation in the nature or
effect of their I/0 operations, then recognition of
device independence must be a planned part of the pro
gramming system for I/O operations.

One approach to design for the needed device
independence is to regard the I/O resource needed to
complete any given I/0 operation not as a real or
physical resource, as for instance a particular card
reader, but as a virtual (pseudo) I/0 resource that is
described in terms of the functions it must be capable
of performing, which is mapped by the system to a
particular real resource at run-time. Such an approach
implies that all available input devices, regardless
of type (or location) are in some sense acceptable
equivalents and all output devices are correspondingly
equivalent.

The user must, when he so chooses, be able to
decide what I/0 devices of the ones available to him
he wants used. In other words the user must be able
to specify which physical resources the pseudo
resources correspond to. It may also be necessary
for the user to provide detailed I/0 coding for the
control of a device if such a device is not already
known to the system.

The particular design approach taken in Multics
is based on two practical requirements, one having to
do with the system's responsibility for dispensing
and recovery of all real I/0 devices, and the other
having to do with the run-time mapping of valid
user-coded I/0 operations, regardless of their degree
of specificity, onto specific devices and in the
manner and with controls appropriate to those specific
devices.

First, it is recognized that at any given time,
as a consequence of the I/0 device needs of a process,
certain specific I/0 devices (or device capabilities)
must be exclusively allocated to specific processes

or sets of processes. The question of how the I/O
System decides how to allocate devices, how to reclaim
devices, and how to insure exclusive use of a device
by the intended processes is largely independent of
the central theme of this discussion, the structure of
the I/O System, and, although important, will not be
discussed here.

Second, any programmed I/0 operation should at
source level, at least, be expressed (coded) in a
general way that specifies the I/O source or sink,
not by its device designation but only by a place
holder name for that source or sink. (Moreover, as an
added convenience to users, it may be possible to code
certain standard I/0 operations so that even this name
may be inferred from context.)

For example, [and here we illustrate only sche
matically], rather than use a specific device designa
tion such as in the following form:

read from "card_reader_2" into area_23;
or

read ("device 35", area_23);

we might instead say:

(1)

read from the stream named "Billy" into area 23; (2)
or

read ("my_console", area_23);

depending on the syntax of the coding language being
used.

Here in example (2), "Billy" and "my_console" are
simply identifiers for sources of data. For such a
read statement to have any meaningful effect, the
specific device represented by that identifier must
be bound to or "attached" to (i.e., associated in some
way with) "Billy" or "my console" at some time after
the device is allocated to the process and before the
read statement is executed. The Multics I/O System
is responsible for maintenance and supervision of these
device-source name associations. Similarly for output,
names for sinks are used in write statements rather
than actual output device designations. Thus by anal
ogy to the read examples in (2) above we could con
ceivably picture something like

write ("his_console", "format 12", area_22); (3)

in which "his_console" is here intended to suggest the
name of some sink (output device). The attachment at
any given time may be to one of a set of several
(different) devices. Thus, if a single process had
several consoles allocated, the process could simulate
a "party line" conversation on the several consoles
where th; name "his_console" could be attached and
reattached, possibly cyclically, among the several
different allocated devices.

The name chosen for elements of the set {source,
sink} is stream. Conceptually, the attaching of a
stream name to a particular device is a form of para
meter binding. The device designation plays the role
of the actual argument and the stream name that of
the formal parameter. In order to apply more than one
"argument" to the same "parameter" Multics provides
for the detaching of a device (designation) from a
stream name so that subsequently another device can be
attached to the same stream name.

To carry out a read or write operation (call) of
the type suggested in (2) and (3) above, the following
steps can now be visualized. The system module that
received and is responsible for "interpreting" this
call must first perform a table look-up to determine
the device designation (and type of device, constraint
rules, if any, for use, etc.) that is currently

associated with the named I/0 stream parameter. In
principle, assuming the I/0 call parameters are con
sistent with the data kept in this so-called Attach
Table, this same I/O control module can then ~t
th~request into an I/0 action -- i.e., by initiating
the desired I/0 operations after generating the re
quired channel commands, etc. Because the system
must be capable of supporting an open-ended number of
devices, device types, and controllers, considerably
more modularity is called for. So, in actual fact,
th·~ I/0 control module (called the I/O switch) merely
transmits the now more specific I/O request as a call
to an appropriate "specialist" module, a Device Inter
fa•:e Module (DIM), for each type of device. A list
of DIMs currently in general use in Multics is given
in Appendix B. This DIM in turn takes charge of
gel:ting the I/0 request accomplished as suggested in
Figure 2.

It is, therefore, the function of the DIM to con
vert the I/O request into a set of specific channel
commands for the particular device associated with this
DIH. The DIM knows both the conventions of the I/O
Sy1tem and the conventions of a particular I/O device
anc functions as a translator from one set of conven
ticns to the other. In order that all devices may be
fully exploited it is necessary that the I/0 System
"language" be carefully chosen. The I/O System calls
of Multics are described more fully later and in
Appendix A.

Description of the I/O System

The Device Interface Module converts a generalized
I/O request into specific instructions understandable
by a particular device. In doing this, it must compile
a program for the hardware General Input Output
Controller (GIOC) [6] which it can in turn supply to
the target channel. The compiled program reflects
the idiosyncracies of the particular device to which
the stream is attached. It (the program) may include
lin.~ controls in the case of remote terminals,
select instructions in the case of tapes, and so forth.
In .1ddition, the DIM may need to convert the internal
cha·:acter code used by the system into an appro-
pri.lte character code for the device. Typewriter
tenainals for example, come in many different vari
eties. Virtually every different variety has different
cha1:acter codes.

The Device Interface Module after compiling a
program for the GIOC, calls a module that serves as an
intE,rface for the GIOC to start the I/0 using this
GIOC: program. It is the DIM's responsibility to inter
act with the GIOC Interface Module (abbreviated as GIM)
until this I/0 request has been completed.

The GIOC Interface Module is responsible for the
overall management of the GIOC. Thus, the GIM is
alsc responsible for overall monitoring of the opera
tion of the GIOC. This requires answering interrupts
(i.e., that its code acts as an interrupt handler for),
recognizing completion of tasks, and transmitting
to its caller status information deposited by the
GIOC.

It may be necessary for the DIM to wait for a
particular I/0 operation to complete and/or be awak
ened when it does occur. For this purpose an entry
is provided in the traffic controller that causes the
proc~ss to be suspended until it is reawakened. When
the ~waited operation completes, the GIM (which is
invo~ed by a hardware interrupt from the GIOC) calls
the traffic controller to awaken the suspended process.
This is the interface between the traffic controller
and the I/0 System. All multiplexing of processors
is, :herefore, accomplished by the traffic controller.

The I/O System is implemented by a set of sub
routine calls, twenty at present. The stream-DIM
association is established by the attach call:

call attach (stream_name, DIM_name, device_name);

This call creates an entry in the Attach Table for the
stream identified by stream name, if one does not
already exist, and associat;s the DIM identified by
DIM_name with it. The DIM itself is then invoked to
initialize (establish communication with the device
and prepare it for further transactions) the device
identified by device_name.

Once the device has been attached it may be
utilized by issuing a read or write call:

call read (stream name, buffer);
call write (strea;_name, buffer);

Where stream_name identifies the stream with which
the desired DIM and device are associated, and
buffer indicates the area from which data is to be
written or into which data is to be read. The I/0
switch, upon receiving a read or write call, finds
the entry in the Attach Table associated with this
stream and invokes the associated DIM at the read
or write entry. The read and write calls represent
the primary means by which all data enters or leaves
the system.

In order to dissolve an attachment the detach call
is used.

call detach (stream_name);

This call causes the association of the specified
stream with any DIMs and devices to be dissolved.
The I/O switch invokes the associated DIM which in
turn terminates (releases the device and ends commu
nication with it) the associated device or devices.
When the DIM returns control to the I/0 switch the
stream-DIM association in the Attach Table is deleted.

There are many other I/O System calls which
concern aspects of the I/0 System that are not of
immediate concern to this discussion. These include
calls to set device modes (readable only, writeable
only, forward spaceable only, etc.), calls to operate
devices synchronously or asynchronously (e.g.,
readahead and writebehind), calls to establish input
delimiters, calls to determine the current device
status, and calls to reposition the current read or
write position of a device (e.g., tape spacing).
A short description of these calls is given in Appen
dix A.

A final I/O System call that is of interest here
is the order call. This call provides the escape
mechanism when an operation not implementable by any
of the other generalized I/O System calls must be
performed.

call order (stream_name, request_name,
other_information) ;

This call is transmitted by the I/0 switch to the
appropriate DIM which performs the operation indicated
by request_name making use of data supplied in
other_information if necessary. Examples of order
requests might be to repunch a card on a card punch
or lock the keyboard of a console.

Up to this point discussion of input-output has
been in terms of communication with physical devices.
It has been shown that the only software that deals
specifically with any single device is the DIM asso
ciated with that type of device. The I/0 System,
other than the DIMs, knows nothing of devices. It,
therefore, follows that the I/0 System does not
necessarily have to communicate with a physical device,

but that DIMs may be written to operate on the data to
be input or output in any manner whatsoever. Such
DIMs are said to be associated with a virtual or pseudo
device and are termed pseudo-DIMS.

The most important pseudo-DIM is the File System
Interface Module (FSIM) which treats a segment in the
Multics File System as an I/0 device. When a segment
in the file system is attached to a stream via the
FSIM, read and write calls on that stream will cause
data to be read from or written into the segment. The
FSIM provides the interface between the I/O System
and the File System in Multics. However, unlike many
systems this interface is not heavily used because the
File System is usually called directly.

Another class of DIM is one that translates one
I/0 call to another I/0 call, i.e., its pseudo-device
is a stream. A stream that is used as a pseudo-device
is termed an object stream. The most important of
this class of DIMs is the "synonym" module. When an
attachment is made via the synonym module the speci
fied device is another stream. Any subsequent calls
to the first stream is transformed by the synonym
module to the same call on the latter stream. The
stream names are, therefore, synonymous.

Applications
In the Multics system certain stream names are

established, by convention, for normal use. The
first of these is "user i/o". This stream is normally
associated with the use~'s primary I/0 device, e.g.,
in a normal console session "user_i/o" will be attached
to the user's console. Two other stream names are
also established: "user_input" and "user_output".
These streams are normally attached to "user_i/o"
via the "synonym" module as illustrated in Figure 3a,
i.e., they are made equivalent to "user_i/o". Since
at present most programs that perform I/0 intended
to do so with the user's console, the stream names
"user_output" and "user_input" are the ones used in
calls to the I/0 System in these programs. This
illustrates one of the important purposes of the
"synonym" DIM, to permit the manipulation of stream
attachments without having to attach and detach physi
cal devices. The streams "user_input" and "user_output"
could normally be attached directly to the user's
console as shown in Figure 3b. However, this would
force the console to be detached whenever these streams
were attached to some other device. Detachment and
subsequent reattachment implies that certain physical
hardware action has been taken with regard to the
device. In the use of a console this might include
termination of communication with the console and
subsequently having to reestablish this communication.
It would not be difficult to indicate to the DIM to
keep the device active, however, the use of synonyms
is more straightforward and makes more visible the
states of various devices, i.e., if they are attached
they are active. In other words, synonyms are an
easy, efficient method of changing the binding of
streams to devices. Because of this use of synonyms
the "synonym" DIM has been highly optimized for the
simple switching described above.

Some important and heavily used features of
Multics serve to illustrate some of the advantages
of this organization of the I/0 System. A user of
Multics may sometimes desire to redirect the output
that could normally appear on his console to some
other device. This situation usually arises because
the output is lengthy and would require excessive
amounts of time to print on a console. The Multics
system provides a service by which the contents of
segments in the file system may be printed on a high
speed printer. Therefore, it is a fairly common

occurrence for a user to redirect his output to a seg
ment in the file system using the FSIM mentioned above
so that it may be printed by the high speed printer or
examined using a text editor. To do this the following
I/O System calls must be made:

call attach ("file output stream", "fsim",
"segm;nt_nam;");

call detach ("user output");
call attach ("user-output", "synonym",

"file:::output_stream");

The first call causes the segment, "segment_name", to
become the receiver of all subsequent data directed to
the stream "file output stream" by a write call. The
second and third-calls -;;-ause the stream "user_output",
the stream on which all standard write calls are made,
to be disassociated from "user i/o", the stream asso
ciated with the user's console; and instead be
attached to the new stream "file_output_stream".
Again the use of synonyms is not mandatory but is
included for the reason mentioned earlier. All sub
sequent output that would normally have appeared on
the user's console would now be placed in the segment
"segment_name". This new situation is depicted by the
graph in Figure 3c.

There are many instances in which a user wishes
to issue the same set of commands (a command is a
line typed at a user's console requesting some action
to be performed by the computer) many times. Rather
than doing so manually he may instead put the set of
commands in a segment and then cause this segment to
be read as input one command at a time. This may be
done by the following I/0 calls:

call attach ("file_input_stream", "fsim",
"input segment name");

call detach ("user_input") ;-
call attach ("user_input", "synonym",

"file_input_stream");

The segment whose name is "input_segment_name" contains
the commands to be executed. The action performed by
these calls is analogous to those performed by the
above calls concerning output. All subsequent standard
read calls will cause input to be taken from the seg
ment "input_segment_name".

Consider now the situation that results when
both the standard input and output streams are attached
to segments simultaneously. In this case direct com
munication with the user has been eliminated. The user
controls his process only indirectly through the input
segment. A process that is in this state, i.e., whose
standard input and output streams are attached to seg
ments rather than to an interactive console, for its
entire lifetime is called an absentee process (see
Figure 3d) . Absentee processes are the means by which
background or batch jobs are implemented in Multics.
The advantage of an absentee process from the system
view is a better allocation of resources since absentee
jobs may be scheduled at periods of low interactive
demand. The point of interest here is that an absentee
process, as opposed to an interactive process, is
obtained by a few slightly different calls to the I/O
System during process initialization and that no other
special user or system programming is necessary.

In order to restore the situation to the interac
tive state just two I/0 calls are necessary for each
of the standard input and output streams. Thus for
the input stream there would be:

call detach ("user_input");
call attach ("user_input", "synonym", "user_i/o");

Upon completion of these two calls the standard input
stream is again attached to the user's console. The

stream "file_input_stream" remains attached to the
input segment.

'.che "synonym" DIM, as mentioned earlier, is one
examp:_e of a DIM that uses another stream as the device
upon uhich it acts. Such modules are effectively
splicE~ into the flow of control in that each such
module gains control and in turn passes control onto
another DIM invoked as a consequence of its call to
the I/O System on its object stream. The "synonym"
simply results in an identical call to the object
stream. However, such a DIM could easily perform
some useful operation before passing the call on. A
good E:xample of such an operation is code conversion
on the data to be read or written. A simple example
could be to reformat a string of characters meant to
be written on a console with a wide carriage for
writirg on a narrow carriage by properly placing
carriage returns in the data.

Similarly such an intermediary could be used to
make one device appear as another device. For
example, if a light pen were to be added to the system
as a new input device, a DIM could be written to make
data read from a segment via the FSIM simulate the
input from the light pen in order that all the asso
ciated software may be checked out before the actual
installation of the device.

A final example of such intermediate modules is
the brJadcaster. This DIM allows fan out of I/O System
calls. Rather than having one stream as its object,
the br·Jadcaster may have several. A call on a
stream attached via the broadcaster is transmitted to
all streams attached to this stream via the broad
caster. This is simply an extension of the synonym
module. For example, a user may wish to record all
the ou:put typed on his console in a segment of the
file s:rstem. To do this he simply attaches the stream
"user_output" to both "user_i/o" and "file_output_
strea~' as indicated in Figure 3e.

Conclusion

II: is the purpose of the Multics I/O System to
permit I/O operations to be specified in a device
independent manner, thereby permitting easy inter
change of devices while programs are in execution.
The de1:igners of the I/0 System have been able to
achieve' this goal largely because certain functions
associ1.ted with I/0 (file system, processor multi
plexinfi) have been provided as independent facilities
in Multics which are invoked by the I/0 System as well
as other programs. The method used to attain device
indeperdence is to define a set of I/0 calls which are
used tc specify all I/0 operations in a general manner.
All de>ices are addressed symbolically by stream name
and the binding of streams to devices can be modified
dynamically.

The modular structure of the I/0 System facili
tates introduction of new devices. In order to logi
cally add a device to the system, a user or system
programmer need only provide the detailed I/0 coding
for that device in the form of a Device Interface
Module. This ability to add new devices is necessary
to assure the system's longevity.

Users of the I/O System, may if they desire,
bypass the general mechanism. Instead of making a
general I/0 call, programs can invoke Device Interface
Modules or even the GIOC Interface Module directly.
The user who takes this approach loses the switching
capabilities, device independence, and other advan
tages that the general mechanism provides. So far,
no Multics user has needed or chosen to bypass the

general mechanism.
own DIMs making use
special requests.

Some users, however, write their
of the order call to specify

The applications described earlier indicate some
of the most common uses of the I/0 System. The faci
lities of file input and output and absentee are
achieved easily both conceptually and in practice and
could not have been provided, in such a general manner,
without device independence and stream switching. The
I/O System has also proved very useful for system
development, e.g., when testing a program that normally
uses the high-speed printer it is advantageous to use
a less critical more accessible device than one of the
two printers available. The capabilities present in
the Multics I/O System, as described here, have, there
fore, proved well worth the careful design effort
necessary for its development.

Acknowledgement

During the many years since the Multics project
began a great number of people have contributed in
the formulating of ideas for the I/O System. People
who have contributed significantly to this effort are
F. J. Corbato, R. c. Daley, S. I. Feldman, E. L.
Glaser, D. Levenson, J. Ossanna, D. Ritchie, J. H.
Saltzer, and V. L. Vyssotsky. The authors would also
like to acknowledge the work of S. Dunten, N. I. Morris,
T. Skinner and D. Widrig for their work in designing
the GIOC Interface Module.

Appendix A

The following is a list of general I/O System
calls and a brief description of their functions.
This list serves only as an indication of the type
of operations that are thought to be necessary in
Multics, not as a complete description of their
operations. Complete descriptions are given in [7].

attach establishes an association between a stream
name, a device's control software (DIM), and a device.
All subsequent operations on this stream will invoke
the associated control software and will be performed
on the associated device.

detach
cill-:--

destroys an association created by an attach

read causes input to be taken from the device asso
ciated with the given stream and placed in the indicated
buffer area.

write causes output to be taken from the indicated
buffer area and written to the device associated with
the given stream.

seek modifies the current position of the read and
write pointers for the device associated with the
given stream.

tell returns the current position of the read and
write pointers for the device associated with the
given stream.

changemode changes the current mode of the device
associated with the given stream and returns the old
mode. Modes determine attributes of a device such as
whether reading or writing is permitted.

readsync determines whether or not the DIM asso
ciated with the given stream will perform read-ahead
on the associated device. Performing read-ahead is
to read input from a device before the read call is
issued.

writesync determines whether or not the DIM asso
ciated with the given stream will perform write-behind
on the associated device. Performing write-behind is

to write output on a device after the write call has
returned.

resetread erases all currently accumulated read
ahead from the device associated with the given stream.

resetwrite erases all currently accumulated write
behind intended for the device associated with the
given stream.

worksync determines whether the device associated
with the given stream is in workspace synchronous or
asynchronous mode. Being in workspace synchronous
mode means that when a read or write call returns,
the I/0 System is finished using the provided buffer
area associated with this call. If the call was a
read call the desired input has been placed in the
buffer area. If the call was a write call the data
has been taken from the buffer area. Being in work
space asynchronous mode means that buffers may still
be in use by the I/O System after the call has re
turned. If a read call then the buffer area may not
yet contain the desired input, but it will be filled
in at some later time. If a write call then the data
may not yet have been taken from the buffer, but the
I/O System will do so at some later time. workspace
asynchronous mode allows programmers to perform asyn
chronous I/0 transactions and multiplex their I/O
calls.

upstate returns the current status of a specific
asynchronous transaction on the device associated with
the given stream.

iowait returns the current status of a specific
asynchronous transaction on the device associated
with the given stream. The iowait call will not return
until the indicated transaction is complete, i.e., the
I/O System is finished with the buffer area.

abort causes the indicated transaction or transac
tions on the device associated with the given stream
to be aborted.

getdelim returns the current break characters and
read delimiters for the device associated with the
given stream. Break characters define the extent of
canonicalization and erase and kill processing of
input [7]. Read delimiters determine on which input
characters a single read call is to cease reading.

setdelim modifies the current break characters and
read delimiters for the device associated with the
given stream.

getsize returns the length, in number of bits, of
the size of a basic element to be read or written on
the device associated with the given stream. For
example, Multics uses seven bit ascii right adjusted
in a nine bit field as its standard character set so
the element size for character oriented devices is 9.

setsize modifies the element size for the device
associated with the given stream.

When a specific function on a specific device cannot
be logically specified by any of the above general
calls the order call is used:

order is used to specify device dependent requests
to be executed by the DIM associated with the given
stream. Examples include locking the keyboard of a
console and unloading a magnetic tape.

Appendix B

The following list briefly describes the Device
Interface Modules (DIMs) generally available and
widely used in Multics. Detailed descriptions are
given in [7].

Typewriter DIM - currently operates all devices used

as user consoles in Multics. These include Teletype
Models 33, 35, and 37, IBM 1050 and 2741, Datel 30,
ARDS, and Terminet 300.

Synonym DIM - causes two streams to become synonymous,
i.e., all I/0 calls (except attach and detach) on
either stream result in the same I/O operations being
performed.

File System Interface Module - causes segments of the
file system to be treated as input and output devices.

Multics Standard Tape DIM - is used for reading and
writing tapes in Multics standard tape format.

Nonstandard Tape DIM - is used for reading and writing
tapes in any format.

Card DIM - is used for reading and punching punched
cards.

Printer DIM - is used for writing to the high speed
printers.

ARPA Network DIM - is used to input and output from
the ARPA Network of which the M.I.T. Multics installa
tion is a part.

Communications Line DIM - is used to read from and
write to a dedicated PDP-8 over a high speed communi
cations line that is connected to the M.I.T. Multics
installation. This PDP-8 is used for monitoring of
Multics and for graphics.

References

[1] Daley, R.C. and Neumann, P.G., "A General-Purpose
File System for Secondary Storage", AFIPS, 1965
Fall Joint Computer Conference, Vol. 27, Part 1,
Spartan Books, Washington, D.C., pp. 213-229.

[2] Saltzer, J.H., "Traffic Control in a Multiplexed
Computer System", Sc.D. Thesis, Department of
Electrical Engineering, M.I.T., June (Available
as M.I.T., Project MAC Technical Report No. 30).

[3] Lett, A. and Konigsford, w., "TSS/360: A Time
Shared Operating System", AFIPS, 1968 Fall Joint
Computer Conference, Vol. 33, Part 1, MDI Publi
cations, Wayne, Pennsylvania, pp. 15-28.

[4] CP-67/CMS User's Guide, IBM, October, 1970.

[5] System/360 Operating System Concepts and Facili
ties, IBM, Form 128-6535-1, June, 1967.

[6] Ossanna, J.F., Mikus, L., and Dunten, S., "Commu
nications and Input-Output Switching in a Multi
plex Computing System", AFIPS, 1965 Fall Joint
Computer Conference, Vol. 27, Part 1, Spartan
Books, Washington, D.C., pp. 231-242.

[7] Multics Programmers' Manual, Preliminary Edition,
M.I.T., April, 1971.

Figure 1 - The I/O System's relationship
to some other important Multics facilities.

-

etc.

called
11I/O switch 11

user

segments in
file system

called
"At tach Table 11

Figure 2 - Simplified view of I/0 System organization.

user __ input

user_output

typewriter
DIM user_ i/o _ __;;..:::.:..._ __ console

Figure 3a - The standard attachment graph.

t.ser _input

user_ output

Figure 3b - A standard attachment graph
without the use of the
synonym DIM.

-- synonym typewriter user input~

DIM DIM
user_i/o _ __;::....:::.:.....--console

synonym DIM FSIM segment
user_output--=-==-file_output_stream ---in file

system

Figure 3c - Output attached to a segment in
the file system.

synonym
. t _ ___::D:..::Io:.!M'-- f . l . F S IM user_~npu ~ e_~nput_stream

segment
in file
system

,-- --typewrfFer- --!
I . Dlli !
Luser_~/o console _j

- - - - ----- - ·- ·-
synonym

DIM FSIM segment
user_output--=-=- file_output_stream---in file

system

Figure 3d - Absentee attachment graph. For
a true absentee process that has
never been attached to a console
the attachment in the dashed box
is unnecessary.

user_ input

broadcast
DIM

user_output-~~~~

typewriter
DIM user_i/o-~~~---console

FSIM segment
file_output_stream---in file

system

Figure 3e - Attachment graph with standard output
written to both the user's console
and a segment in the file system.

.. -

