
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

The following is Section IV of the Design Notebook.

DISTRIBUTION

v~ Vyssotsky

J. Couleur

R. Fano

E. Glaser

F. CorbatO"

R. Graham

M. Daggett and M. Wagner

R. Daley and 0. Wright

s. Dunten and M. Child

G. Schroeder and L. Pouzin

P. Crisman and D. Oppert

J. Poduska and J. Saltzer

c .. Garman and R. Stotz
,-

M. Bailey

D. Edwards

Reply 101 Project MAC
545 Technology Squore
Cambridge. Mass. 02139

Telephone• 16171 864-6900 x5851

April 2, 1965

,,

1-
' I ;
t:
' I
l
\·

I
!1

SUBJECT: The SHELL: A Global Tool for Calling and

Chaining Procedures in the System

FROM:

DATE:

I.

II.

III.

IV.

v.

Vl.

VII.

VIII.

IX.

x.

XI.

XII.

XIII.

Louis Pouzin .

April 2, 1965

Definition of Commands

Requirements

Commands as Subroutines

The SHELL

Stack Management

Arguments Management

Requests Stacking

Meta-arguments

Permanent Options

SHELL Organization

SHELL Flowcharts

CONTENTS

Further .Needs for Common Procedures

Summing Up

* * * * *

ABSTRACT

See chapter 13, page R-34.

Page

R-1

R-1

R-2

R-3

R-7

R-18

R-21

R-22

R-24

R-27

R-29

R-33

R-34

R-1

I. Definitions of Commands

In order not to forget the particularities of commands, it is useful

to restate some d<efinitions.

A command is a program which can be initiated from a console, by

typing a message directly to the supervisor.

This means that no subsystem need by called first, in order to

interpret the user message.

Furthermore, for convenience, the calling message is interpreted

according to some general convention: any blank gap is a delimiter of

arguments; the first argument is specifically the name of the command;

the other arguments are passed over to the command as actual values of

formal parameters.

II. Requirements.

2.1 The previous definitions imply that a command MUST be designed

while keeping in mind the user, sitting at his console, wondering about

what might be going on, mistyping or forgetting arguments, even if fully

aware of the conventions, and possibly interfering with the command by

hasty quits, ·carriage returns, and other temperamental reactions. These

aspects, much more than the particular form of calling procedure, make

commands a certain more elaborate class of routines. Indeed, unlike a

calling program, a user is barely satisfied with a list of values or

error codes, as mere results ·of th·e execution. A minimum editing is

necessary so as 1:o make the outcome meaningful without looking up a

deciphering table. And if s:ome unexpected situation has occurred, the

command must specify clearly what the user has to know for further

action. Again, unlike a calling program, a user is not assigned once

and for all a predetermined set of instructions. One does not know

what he plans to do next, and he will eventually overlook some yet

highly recommendable checking, if the command does not warn him against

any possible misunderstanding as to what has been performed.

R-2

2.2 Since the arguments may be typed from a console, they appear

as strings of printable BCD characters. Conversion is usually required

for those arguments that are to be processed under a different mode,

(integer, floating-point) or need a different editing (left or right

justification, filling zeros or blanks). Nothing but the command itself

is able to perform those conversions, since each command uses a particular

format, the variation of which may require a decoding of the whole string

of arguments. It amounts to the same thing to say that each command

requires a particular decoder for its arguments string.

2.3 For identical reasons, any output sent to a console must be in

printable form, and usually inserted into a message intended to clarify

• the meaning of the output.

III. Commands as Subroutines

3.1 One might imagine a command as a common procedure with two sets

of en~ries, one set for calls initiated from a console, one set for calls

from an internal p·rogram. Each set of entries could belong to an associated

segment, and end up by calling a common main segment. Similarly, the main

segment of the connnand could branch toward either appropriate terminating

segment, depending on the typE~ of the calling procedure. Such an organi­

zation (double head, double tail) is not recommended because it would settle

the difference of nature between a call from a console, and a call from a

program. It would also likely result too often in partial implementations,

as private ones usually are, with one head, or one tail missing. Moreover,

it would downgrade subroutines by making them inappropriate for being used

as commands.

3.2 Indeed, the fact that commands ought to be more elaborate does

not imply that othE~r subroutines be never used as commands, through direct

calls from the console. The ability~ .£!!.!1: any subroutine ·E.l ~ entry

~' whether~~ console. or a program brings about a high level of

generality, as the difference between commands and subroutines comes out

of a matter of degree, ·rather than a matter of nature.

R-3

3.3 For example, it would be very convenient to be able to test

from a console a subroutine designed to be normally imbedded in a set

of surrounding calling programs, and which in turn calls other subrou-

tines. Present techniques require the writing, and unfortunately also

the debugging of a complete set of dummy programs. Such an extraneous

task is often overlooked and the complete checkout of the program is

postponed until all the components are available. As a result the de­

bugging is all the more difficult and more bugs keep hiding for long

periods of time.

3.4 In the following we are going to develop some scheme of

implementation which is hoped to meet the general principles outlined

above.

IV. The SHELL

4.1 We may envision a common procedure called automatically by

the supervisor whenever a user types in some message at his console,

at a time when he has no other process in active execution under con­

sole control (presently called command level). This procedure acts

as an interface between console messages and subroutine. The purpose

of such a procedure is to create a medium of exchange into which one

could activate any procedure, ~ if _g ~ called~~ inside of

another program. Hereafter, for simplification, w·e shall refer to that

procedure as the ''SHELL".

4.2 The description given in the following is ba,sed on the pro­

posals for GE 636 segment conventions as sketched out by Professor

Corbato and the proposals for the GAP assembler by R.M. Graham. But

the basic ideas seem to be adaptable as well to some changes if these

were necessary.

It is assumed that the supervisor initializes a stack whenever

it initiates a process for a user; so should it be for commands, and

generally speaking, whenever the user talks to the supervisor. In.

other words, typing.! message _!2 the supervisor amounts only _!2 ~ ..!:!£

·,)

R-4

2 call to the SHEI~. The supervisor stores the console message in the

stack and calls the SHELL with one argument pointing to the message so

that the SHELL is also a regular segment, with an entry name making it

possible to call it directly from the console, or from a subroutine,

either. Passing arguments via the stack allows all recursive calls.

Suffice it to say here that such a property is in prevision of a macro­

command scheme. Clearly, if the call is issued from the supervisor, the

descriptor of the "present procedure" base is set so that it creates a

trap to the supervisor when the SHELL attempts to execute a return to

the calling program.

4.3 It is suggested that the SHELL be equipped with a comprehen­

sive set of error returns. This would allow complete control of error

conditions. at the program level and pave the way for automat;Lc runs

using no console. Although a complete proposal would require further

study one can yet propose the following options:

ERR¢R 1:

ERR¢R 2:

ERR(])R 3:

ERR¢R 4:

ERR¢R 5:

Need more arguments

Some anomaly occurred in user's data.

Possibly not fatal.

Some fatal error due to user's setting.

Interruption due to restrictions in system used.
'

(Track quota, time runout, device not available, etc.)

Restart possible if the environment is modified.

Some error for unidentified reason.

Maybe hard~rmre trouble.

Interruption as is.

Some more experience is necessary to estimate how many error returns

would be really useful, and what conditions should be grouped altogether.

4.4 The message typed on the console is stored by the supervisor

into the stack. It seems desirable that no argumE;nt breaking be performed

up to this point. The string of characters is stored as is, with a charac­

ter count in the first nine bits of the string according to the.general

conventions to be established. throughout the system for BCD strings.

R-5

It is possible that we put, some day, more refinement in the

definition of an argument in a command list. For example, QUOTE sign

allowing literals including blanks. Hence, there is some reason to

maintain the complete pictm:e of the message up to the point where

there is a necessity to break it into a set of arguments. On the

other hand, some commands might perform their own scanning for spe­

cial purposes, and use different delimiters, like arithmetic opera­

tors.

4.5 However, the breaking of the console message uses far more

frequently blanks as delimiters. Therefore, the SHELL makes up a list

of words, each one being a single string headed by its bit count and

sets up a calling sequence with t'ivO arguments, and all the possible

error returns, (even those unused). Breaking is done wherever one or

more spaces or tabs occur in the message.

The first argument is the number of strings (single words of text),

and the second is the beginning of the list, stored in consecutive machine

words. For convience, it may be desirable to store every string begin­

ning at an even location. The storage conventions should be the same

as those retainE~d for the STRING pseudo-operation in GAP.

The very first string of the list is used as the name of the pro­

cedure segment to be called. A class name is automatically provided,

according to the system conventions. Then the SHELL executes a CALL

to the specified segment, using only the stack for storage of data.

Although it is arbitrary, one may assume for simplicity that the entry

name used is the same as the proc:edure name. If it were not, another

symbol recognized through a meta-argument, such as (¢RIG),· should spec­

ify the symbol reference of the particular entry to be used. (See more

details in paragraph 5.7~

4. 6 Although the "bindern is not yet designed, it is certain

that a user must have some way t(> specify whethe-r he wants to use a

common segment, supplied by the system, or one of his own. Presumably,

some pointer in an area of his file directory will carry the answer.

R-6

Thus, by using this standard mechanism, the call issued by the SHELL

activates either a common segment, say a command, or a private segment

of the user, which he may prefer to substitute for a time to the sys­

tem jp>I'Ocedure.

4.7 The called procedure is executed, and interprets the successive

arguments according to its own conventions. If exceptionally the complete

picture of the message is necessary, the procedure can trace back one call

in the stack, to get the message as it has been transmitted to the SHELL,

namely a single string with spacesand tabs as typed by the user. Inter­

actions with the console are controlled by the procedure (there may be

none). Finally, when the execution is completed, the procedure restores

registers and executes a return to the calling program, which here happens

to be the SHELL. One of the error returns may be used if there is such a

need.

4.8 In case of a normal return, the SHELL saves arguments returned

by the called procedure, as it will be discussed later. Then it returns

to the calling program, usually the supervisor.

In case of an error return, a standard error procedure is called,

from the common package, or from the user's package, according to the

previous setting of an "error" segment, (see permanent options in chap~er

nine).

If the procedure called is missing, it is assumed that a trap to the

supervisor will automatically ~nitiate a generating process in an attempt

to create the missing segment. Otherwise, an error return in the SHELL

could do it.

4. 9 An. important facility .ts that the SHELL being itself a common

procedure may be replaced: _£y.! private~ supplied by th~ user. On that

way, not only a particular procedure can be replaced on user's choice,

but all conventions about typing commands may be tailor-made to user's

wishes just by providing his own SHELL. One can,for example, build his

own set of meta-arguments (see chapter eight for discussion on meta­

arguments) or use"," as a delimiter between arguments, or convert all

numeric arguments into floating point numbers, etc •••

R-7

4.10 We already mentioned in various places that users should be

able to provide their own segments to be substituted for the system tools,

whenever they wish. One can think of many ways in order to implement such

a facility. The following way is suggested, although not better than others.

Whenever there is a need to establish a link to a segment which is

not in core, the supervisor searches the user's file directory for that

missing segment. If there is one, it uses it. This segment may be just

the standard system tool if the user has set up a linked file entry in his

directory. Otherwise, the supervisor will attempt to find the segment

among the set of common procedures. If it does not suceed, the process

is interrupted, and diagnostics procedures are called.

V. Stack Management

5.1 As we have said, the sta9k is initiated by t?e supervisor as

part of the initialization of a user's process. Normally, a fresh stack

is started for every request to the supervisor, i.e. the previous contents

of the stack is lost. Inde1~d there must be some automatic cleaning out

policy, otherwise user's would let grow their live information without

much consciousness of system overhead.

5.2 However, this drastic policy is not always satisfactory, since

it would be convenient to keep f~rfawhile the previous contents of the stack.

A particular entry to the supervisor may solve the problem, by setting a

read only flip-flop which can be modified only· through the supervisor.

Whenever the supervisor initiates a new process, it starts a fresh stack

if the switch is off, or it stores its own calling information from the

current pointer if the switch is on, and turns it off.

This technique is preferred to a permanent setting, since anything

permanent may be overlooked.

Procedures which do not want to leave information after their execu­

tion may call the supervisor to turn the switch off. Needless to say, if

they are embedded in a larger procedure, the master program may modify

this setting.

R-8

By convention, the QUIT signal sets the switch on, in order to

allow any saving request without killing first the status. to be saved.

5.3 For easy reference in the following, we call the switch

BR00M. The corresponding entry to the supervisor allows four types

of calls (distinguished by a single argument code for example:)·

No change

Turn ¢N

Turn f/JFF

Invert

Any call returns as a function value the status of the switch before

modification, permitting to save it.

5.4 When controlling the execution of a procedure, the SHELL does

not normally alter the setting of the BR¢¢M, i.e. the saving of the stack

depends upon the procedure itself. But one can use some conventional meta­

arguments, when calling the SHELL, so that it preserves in any case the

contents of the stack by turning the BR¢¢M on before the return. This

provides the possibi~ity to issue any sequence of requests from the con­

sole, while keeping a dormant status of a process partially executed,

without having to enter explicitly the SAVE and REST¢R procedures.

5.5 In order to make this point clear, let us take some examples.

5.5.1 - A C¢MBIN procedure reads several files and makes up

a new file out of components. First, the supervisor sets up a

call to the SHELL with the string of arguments to the Cf/JMBIN pro­

cedure. Assuming that the BR¢0M is OFF, the supervisor initializes

a fresh stack on calling the SHELL. Then the Cf/JMBIN. procedure is

called in turn, and assuming that no error condition occurs, re­

turns to the SHELL. Since the only information to keep after

execution is the created file, Cf/JMBIN does not request the set-

ting of the BR00M, which is still OFF when the SHELL returns to

the supervisor. Consequently, no dormant status has been kept

on beginning, and the terminating status of the C0MBIN procedure

will be lost on starting .the next procedure. This means that the

descriptor segment of the process itself will be lost, and the super­

visor will forget all about the process.

R-9

5.5.2. - A hypothetical DEBUG system is called from the console

in order to behave as a monitor system for debugging any collection

of procedures. During a typical session, several programs must be

edited, printed, assembled, some segments are to be created, or re­

named, etc ••• , while the user proceeds debugging. All such tasks

may be accomplished by using separate tools available in the system.

However, they are completely independent from the DEBUG package;

nevertheless the user wants to call on them, without loosing control

thus far reached throughout DEBUG. The solution is simple. A QUIT

signal, or a PAUSE request built in DEBUG will release control to

the SHELL, then to the supervisor, but with the BROOM set ON. Con­

sequently the next request typed to the supervisor will be stored

~ the top of the current stack, as a new call to the SHELL, and

the procedure requested, whatever it is, will be executed without

disturbing in any way the status of the DEBUG system. Then control

is returned to the SHELL, which executes a return to the calling

program. But, this point is important, the second supervisor call

to the SHELL carried the machine condition of the interrupted DEBUG

system; therefore the return from theSHELL lands directly into

DEBUG, as if the procedure just executed had been initiated at the

DEBUG level. Depending on the interrupting conditions, the program

may be restarted immediately, or it hangs up on a waiting message

instruction. One may ask why only one procedure can be executed

before returning to the_previous process. As we have said before,

a reason is that some automatic restriction must prevent the user

from letting unconsciously unterminated process pile upon one

another at system overhead expenses. On the other hand there are

several possibilities of executing on purpose any number of in­

between procedures, such as: enter an appropriate sub-system

(e.g. macro-commands), explicitly SAVE and later on REST0R, or

as discussed below.

5.5.3. - In the previous example, we might have preferred a

slight variation in the imp.lementation of our DEBUG system. For

R-10

example, once a PAUSE request has been typed, all returns from the

SHELL (i.e •. after execution of in-between procedures) trigger a

return from DEBUG to the supervisor. But, normally the BROOM has

been set OFF on starting the first procedure following the pause~

and consequently the next request should destroy the process. The

normal solution is that DEBUG sets the BROOM ON before returning

to the supervisor, then an indefinite number of procedures may be

executed during the pause. In order to get DEBUG restarted, one

may for example type the name of a procedure that is the "restart"

entry to DEBUG itself. There are obviously some other methods for

reentrance.

5.5.4. - We have seen that setting the BROOM ON is enough to

allow keeping the process available. There are two other places

where this can be done. First, the procedure called may be de­

signed so that it always sets the BROOM ON before returning to

the SHELL. An example would be a PATCH SEGMENT procedure, supposed

to act upon a dormant process. Second, the SHELL may be directed

to perform the setting,. regardless of what conditions are left by

the procedure. This is done through the meta-argument (SAVE),

which forces the BROOM ON if it is encountered on scanning a request.

5.5.5. - It is hoped that the above examples have sufficiently

pointed out the flexibility of the BROOM scheme, which quickly kills

abandoned status, while providing conscious users with all gimmicks

for interrupting and iritertwining various levels of processes.

5.6 Any procedure called with a set of arguments may·return results

by modifying the data specified by the pointers in the argument list. In

addition, the procedure itself may yield a "value", as when used in a func­

tion-like call. There will be some conventions in the system as to which

registers on which locations in the stack are used to carry the function

value. Therefore, when the SHELL takes back control on returning from

the executed procedure, it saves the "value" registers in the stack in

order to pass them back to its calling program, and to keep .them available

for any need. This saving may be s'uppressed if it is ascribed for aonven­

tion to the procedure called ..

R-11

In other words, when leaving the S"HELL, one can get access to all

the arguments returned from the particular procedure called, and the "value"

of the procedure is also available in some machine registers, or some loca­

tion specified according to the general conventions followed in the software.

How to use these data will be discussed in paragraph 5.10 and 6.3.

5.7 Unless specified otherwise by the user (see paragraph 6.3) the

SHELL stores in the stack all the data specified by the arguments. In other

words, the SHELL contains a CALL macro of the form:

where PR(OC and AL are the addresses, relative to the current pointer in the

stack, where the SHELL has stored the pointers to the procedure to be called,

and to its arguments, as explained in the following. (For understanding of

the symbolisms used here, one should refer to section III of the dasign

notebook: A Proposal for a Minimal Assembler, GAP, for the GE636 by R. M.

Graham.)

Both PR(OC and AL can be constants of assembly in the SHELL. But

variables determined at execution time may be used if this turns out more

convenient for implementing the SHELL. The CALL macro then comes:

CALL spto, Xl ·k (@ spf·o,X2)

where Xl and X2 are the index registers used to carry the variable addresses.

sp ~PR¢C points to the linka~ information to the procedure to be

executed. Indeed, one does not know at assembly time the name of all

possible procedures that the SHELL may have to call upon. Consequently,

the SHELL sets up in the stack the linkage information according to the

user requirements. The more general setting is:

1!.
spl PR~le

sp tsTP

sp fssTP

SEGAD

ARG

ARG

ARG

STRING

STRING

/,\

spiSTP,F

A
spiSSTP,F

EXP,M

m, name of the procedure segment

n, name of the selected entry

R-12

EXP,n is any expression, whose value is _.Erovided on calling the SHELL, to

be applied as modifier to the pair: PROCEDURE + ENTRY. The SHELL stores

in sp''I'STP and spt'ssTP the BCD strings of the procedure segment and entry .

names, and stores in sp~PR¢c + 3 the value provided as modifier.

The simpleat case is: PROCEDURE

where nothing but the procedure segment name is sent to the SHELL. Then

the entry name is assumed to be identical to the segment name, and the

modifier is set to zero.

An example of a somewhat sophisticated case is the following:

PR¢CEDURE (~RIGIN) [ENTRY] -5, ~'c7

The group [ENTRY]-5,*7 is a single string. The SHELL uses brackets and

commas for breaking it into proper components.

sptAL points to the list of pointers to the data. They are set up

as ITS pairs by STP's instructions this allows the specification of data

stored either in the stack (usual case), or in other segments indicated

by the user.

5.8 The number of pointers making up the argument list may be deter­

mined by the SHELL as a result of the scanning of the input message. But

the procedure which will be called may expect variable number of arguments,

and so far there is no information which tells when to stop picking up the

arguments from the SHELL. Therefore, we are proposing a classic method,

which could also be general~zed in the software.

The SHELL stores at the end of the argument list a special pointer,

(commonly known as a "fence"), which can be checked by the called procedure,

and indicates the end of the relevant argument pointers. A fence is pre­

ferred to an argument count, because it may be ignored by procedures that

are written for expecting always a fixed number of arguments.

The pattern of the fence pointer is all but arbitrary, as long as it

cannot be confused with an ITS pointer. However, the following suggestion

might lead to economic coding.

R-13

The fence could be an EP pair as:

ARG

ARG L\iiC

when ~'(* has been set from the SHELL procedure base register. An instruc­

tion as LDA apfn,* which attempts to pick up this pair from the called pro­

cedure, will execute the pair of instructions stored in L\iiC, in the SHELL.

But L\i)C contains

TRA

NOP

o,o

which return· to the procedure at the location specified by index register

Q. Thus a procedure expecting a variable number of arguments could execute

~ loop for getting blindly the successive arguments. The fence would auto­

matically transfer control to the location specified by index register 0.

Such a method is not mandatory, since the procedure could as well pick

up the successive pointers, and check for the EP modifier, as an arbitrary

data word.

5.9 As said in 5.6, the procedure called by the SHELL may return

results by storing new data into areas specified by the arguments of the

call. This classic method is unfortunately restrictive in the sense that

it requires that the calling program knows enough about the number of re­

sults, if not their size. This technique is not suitable for the SHELL,

which must call arbitrary procedures. Therefore, in addition to the classic

method, we are p~oposing a systematic way of handling resulting arguments,

whose number and size cannot be known before execution.

The principle is that the called procedure modifies the contents of

the old stack pointer, so that after return the area of the stack belong­

ing to the calling program contains then the pointer to the return argu­

ments list. The return argument list is a list of pointers to the data,

terminated by a fence pointer. The return argument list and the data may

be stored in any segments that the called procedure decides to use for that

purpose. Only the pointer to the argument list needs to be in the stack.

But nothing keeps from putting everything (argument list and pointers) in

the stack. The only requirement: is that the procedure, which is going to

R-14

return this information, modifies the old stack pointer according to the

amount of extra storage required. Using systematically the stack, rather

than creating segments, would insure that no conflict a.rise betw·een infor­

mations left by the same ·procedure called at different levels of recursion.

~he follow·ing instruct:ions perform the updating of the old stack pointer,

when transferring back to the calling program:

EAPbp
.,

spT16,* saving bases address

ADBsp EXSTOR EXSTOR contains the amount

STBsp bp~l8 of extra storage. Update top

LDB b ·ro p. restore bases

LDR Spl8 restore registers

RTD sp~20 return

The calling program may ignore this setting, if it decides not to pro­

cess the return arguments. However, they are available until control returns

to a higher calling program. If the return arguments are processed (and the

SHELL does), the following sequence is suitable in order to pick up the

arguments: .

EAPap

EAPap

spt 18, 'ic.

ap1-2, 'ic

Then ap points to the argument list returned by. the procedure the more

recently called. Indeed, the pointer to the argument list is stored just

below the new top of the stack.

Other methods can be imagined, as a pointer left in one pair of base

registers; ~ut this would create an exception in the restoring of machine

conditions, hence open the door to restrictions in the calls across inde­

pendent procedures. Consequently, the stack is preferred to any other form

of storage in order to preserve independence and recursivity among the

system tools.

We suggest that the expansion of the stack and the making of pointers

and argument lists be handled through a standard set of instructions gen­

erated by a RETURN macro. Indeed, there are three proposed options for

the CALL macro, viz.

R-15

CALL ENTRY

CALL ENTRY (@JARGLIST)

CALL ENTRY (ARGl, ARG2, ••• ARGn)

Similarly,there could be the same set of RETURN macros replacing

CALL by RETURN, and ENTRY by the location specifying the amount of extra

storage for stack expansion.

RETURN without argument would be assembled without stack expansion,

as shown in the GAP paper.

RETURN EXST¢R expands

EAPbp sp1'16, •'c

ADBsp EXST(OR

STBsp bp'hs

LDB bpi-0

LDR sp'jl8 ·

RTD spt20

RETURN EXST.V}R ((!;) ARGLIST) expands:

EAPbp spt16,•'c

ADBsp EXSTOR

STBsp bptls

EAPap ARGLIST

STPa.p sp 1\-2

LDB bp'l'o

LDR sp18

RTD sp1'20

RETURN EXST¢R (ARG1,ARG2, ••• ,ARGn) expands:

EAPbp spt 16,*

ADBsp EXSTOR

STBsp bp1tls

EAPap ARGl

STPap spf-2'/~n-4

EAPap ARG2

STPap spl-2*n-2

R-16

EAPap ARGn

STPap spl-6

EAPap FENCE

STPap sp'('-4

V.:Pap sp'i'- 2''<n-4

STPap sp'l·-2

.LDB bplo

LDR sp1'8

RTD sp12o

5.10 Thus, after a call to the SHELL, all possible results pro­

duced by the procedure called, are available in the stack. We have seen

in the previous paragraph 5. 9 how the SHELL can retrieve those unpredict­

able resulting arguments which might be returned, in addition to the

normal ones. We assume now being at the supervisor level, after a procedure

has been executed under the SHELL's control.

When the BR¢¢M is on, any request may be typed from the console,

while keeping all previous information gathered so far into the stack. By

using some conventional notations, it is possible to reenter as arguments

of a request some of the results left by the previous request.

Assuming for example, that a procedure segment, called C¢l1PUTE, prints,

and returns, the result of an arithmetic expression given as argument, one

might type:

CQlJ:viPUTE 25 + 7 - 10 (SAVE)

which prints: 22

followed by:

CQll:'[pUTE '''3-1

which prints: 65

The saving of the stack might be a systematic property of COMPUTE,

rather than controlled by a meta-argument. It is a matter of preference.

R-17

In the previous example~ we show that the n&~e of the procedure may

be assumed having the "valuen of the preceding request. But, in generaL

cases any of the previous arguments can be mentioned anywhere. For that

purpose we use the conventional notation

to specify the nth previous argument. The value of the request itself is

"given the rank 0; the name of the request is given the rank L (for label).

i.e. RQUEST ALFA 1!3 r/0

means: use previous third argument and previous value as second and third

arguments

while -# L 'i/ 1 cJ/ 2

means: execute the request set by the previous segment. (It may be the

same, if the arguments have not been altered.)

Return arguments (if any) need not a special handling; they are

considered as extra-arguments with a rank extending the list of the input

argum·ents. Thus, if a procedure is called with three arguments, and returns

two extra arguments, #1 # 2 and 11 3 are the input arguments (possibly modi·

fied by execution of the procedure); -:J-t 4 and :11 5 are the return arguments.

If an argument is mentioned and does not exist, the SHELL should send

some diagnostic message, and take the error exit two, with the BROOM ON.

Then, the user could retype a correct request without losing his status.

How this is going to work is quite straightforward. Upon entry from

the supervisor, the· SHELL notices by scanning, that previous arguments

should be retrieved, so does it, by tracing back into the stack. If there

are no previous arguments, (stack not saved) an error exit occurs.

N.B. The notations offered here are clearly arbitrary, and opened

to any better suggestion. Furthermore, as we have said, there is still

for a user who really does not like the system convention, the possibility

of supplying his own SHELL.

R-18

VI. Arguments Management

6.1 Up to now we have considered only the possibility of putting

in BCD arguments. This res t:riction of the present command sys tern should

not be carried through the system. In effect, strictly speaking, there

will not be any more co~nands, but only procedure segments, made up from

subroutines,.and nothing else. The broad denomination of commands will

likely remain however, but me:.:ely as applying to console oriented proce­

dures rather than program oriented ones. In terms of programming and

bringing into the system_, this will not make any difference.

Henceforth, the scheme would ·aot be complete if it did not allow

the putting in and out of any kind of arguments, as subroutines generally

deal with. The various types which one may encounter are:

single word values (octal;, floating, integers, BCD)

double word values (double precision)

arrays

addresses and double word pointers

procedure names

BCD strings

lists

structured blocks of arbit.rary data

etc.

An evident conclusion is that it does not seem easy to close out a

comprehensive list of all poss·ible types of argum<~nts. Consequently, we

assum·e a reasonable compromise, whereby arguments will be handled directly

up to a certain complexity; beyond, only pointers will be handled leaving

to some specific routines the charge of appropriating themselves to the

relevant data. For example, in the above list, the line could be between

BCD strings and list' structures. In other words, only linear structures

could be handled directly.

6.2 Specifying arguments requires a somewhat more detailed descrip­

tion than a plain list of BCD words. Therefore, a special mode of format­

ted input is entered through a meta-argument: 11 (l'11.ANUAL) 11 • Then the user

may type his input data, in MAD-like messages.

\
\

R-19

N.B. The H\~ technique is only suggested as the more flexible in

such a context. Evidently, the d2velopment of other languages

and the .GE I/cJ package may bring about some modifications if

they turn out more suit:able.

E.g. RQUEST A B c D

A= 0.31416, B=5 e=0.02236 E-3

D = $ALFA$, l. 414, 777K), 36~'c

Each formal argument is associated with the data block (single, double,

multiple words) specified in the consecutive data specifications. The """"

marks the end of the input phase.

Two more data definitions are necessary, since data may already be

present in the user's storage area ..

A = SEGMENT segment names

A = FILE file names

In case of a file, the SHELL enters automatical.ly the common proce­

dure provided in the system for generating segments. This does not apply

when the file is to be handled explicitly as a file, via the regular I/O

package.

Files, and segments, which are a specific class of ·files, are the

only possible sources of data to feed procedures with elaborate structures

as lists, trees, packed components), etc •••

In order to specify names inside segments there are some modifiers

recognizable by their particular pattern. These notations are similar to

.those proposed in paragraph 5. 7, and intend to keep as close as possible

to the GAP symbolism.

E.g. A= SEGMENT segment names [Z~(ilM]+5

means that the data of argument A starts at 5 locations after the symbol

ZOOM defined inside the specified segment.

The mechanism used by the SHELL to get access to those data is almost

identical to the one used for es.tablishing calls to procedures (as seen in

5. 7). The SHELL sets in the stack the follmvin vector

spl'A

'i'
sp 1 STP

sp'i'SSTP

SEGAD

A..."I\.G

ARG

ARG

STRING

STRING

'~'

spiSTP,F

A'.

spiSSTP,F

5

m, segment names

4, Z(il0M

6.3 After execution of the requested procedure, the results, if

any, are in the stack. Indeed, the M~UL\L mode provides for a breakpoint

in the SHELL before returning to the supervisor or the calling program,

whatever. Then the user may give re,:Jests to print some results, or to

store them away for later use. The requests are:

PRINT, arguments

P~INT OCTAL, arguments

PRINT BCD, arguments

PR!NT FORMAT (valid format), arguments

followed by the formal argumen·t names requested.

E.g. PRINT F¢RMAT (3¢6, Fl0.9), C, A, B *
The ~~~~" marks the last request.

Again there is a need for two more requests providing the means of

equating files, or segments, to data blocks. They are:

SEGMENT s egmen·t names, arguments

FILE file names, ar·guments

And the SHELL enters the procedure of creating a segment or a file, out of

the specified collection of arguments.

6.4 Another variation is proposed in the definition of arguments,

when the execution may be repeated. Instead of (MANUAL) one may type

(AUTQl) followed immediately by the name of a BCD file containing all the

requests of the type mentioned above. The execution of the procedure may

thus become entirely automatic.

R-21

Furthermore, (MANUAL) encountered in the file,switches the mode back

to the console, and (AUT¢) typed on the console switches back to the file.

Intertwining preset arguments and console input is thus possible. If several

requests attempt to define the same argument, the last one (dynamically) is

the only valid one.

VII. Requests Stacking

7.1 The chaining of requests, similar to those typed at the console,

is straightforward. Consecutive calls to the SHELL, from any procedure,

and at any level of recursion, allows an unlimited chaining of requests.

7.2 Another feature con~only used on the present system is the

execution of a stack of requests stored into a BCD file. This mode is

a easy variation, as it oonsist:s in reading a block of several BCD request

strings, and postpone the return to the calling program until the block has

been exhausted. Due to the present system conventions, the SHELL selects.

this mode of execution when the name of the request is RUNCCflM, while the

first argument is· the BCD namE! of the file. But any other convention may

work as well.

As a matter of fact, the SHELL calls the procedure RUNC¢M, which is

responsible for macro-expansion and substitution of actual parameters. The

RUNC¢M turns control back to the SHELL with a data block of req1.ests to

execute in a row. This data block may be the pure contents of the BCD

file if no macro processing is required.

7.3 Stacking requests typed from the console is also possible, as

long as a character is recognized as separator between successive requests.

The comma, for example, would mean the beginning of another request.

7.4 Whatever the various ways used to put in a list of requests,the

SP£LL manages eventually the storage of the list, extracts one set of argu­

ments at a time for calling one procedure, gets control back and repeats

the same step until the list of requests is exhausted.

7.5 Needless to say, any input device may be thought of a potential

source for lists of requests: tapes, card readers, high speed lines. A

typical batch process may be turned easily into a list of requests, which

R-22

are a much more elaborate fonn of "control cards.'' The fact of being able

to invoke all the tools available in the system, (as opposed to the only

features of a particular monitor) provides a very high flexibility for

chaining and inters?ersing tasks, and relieves from the handcuffs of the

linear stream of control cards and associated data.

7.6 The SHELL must not be seen as merely a console oriented tool,

even though some parts of it are specifically console oriented~ As a

point of fact the S}lliLL is first of all a general procedure-linking tool,

and as such fits equally the batch-type process requirements, where no

console is attached during execution.

VIII. Meta-arguments

8.1 It is a commonly used technique to use conventional words having

no meaning~ values, but only as modifiers to the procedure to be executed.

In the present system, each command may have its own conventions, as there

is usually a complete independence between the various commands. By using

the SHELL, it turns out that a. set of meta-arguments can be defined as

general conventions of the system. The S!lliLL strips o~f these arguments

that it recognizes, so relieving each particular common procedure of the

corresponding overhead.

8.2 We do not intend ~o .give a complete and definite list, because

the names are arbitrary, and their only justification is primarily a large

acceptance by the users.

(MQ/RE) as last word means that the next line is a normal continuation

of the BCD string of arguments. Whena list of request are not given at

the console level, (M0RE) may be also used as the first word of a request,

meaning that it is merely a continuation of the previous request. Because

this facility requires a look-·ahead, it cannot be used at the console level

for obvious reasons.

(SAVE) as any word means: keep stack for the next request, i.e. return

with the BROOM ON. As first word is recognized by the supervisor for keeping

the current stack.

(MANUAL) as any word means: enter the interactive process implied

in the present context.

R-23

(AUT0) enters the automatic process implied as the other alternative

in that context. The first time the automatic process is entered, the file

name (if any used) must follow immediately (AUT0). If nothing follows the

(AlT.i..' .. 1 argument> when no fUe has been yet specified, both (W..NUAL) and

(AUT0) phases are consid.ered through, and the process continues, if it can,

or control is returned to ·the caller. This is the way to get out of a

(MANUAL) mode entered by mistake.

(NIL) Stands for a void argument which cannot be omitted.

(BRIEF) Only emergency, or fatal error diagnostics messages are

printed on the console.

(LOUD) Restores print:Ln3 of all messages on the console. It is the

responsibility of the program which creates a message to determine whether

it is of emergency, or routine. When in BRIEF mode, routine m·essages are

discarded.

(MESPOT) Appends all console messages to a file.

(MESOUT) Restores printing messages on the console. The name of the

file may be set through a call to the supervisor, and is stored in a read­

only part of the user's storage. The initial setting is

MESPOT BCD

When in ~lliSPOT mode, all messages are written into a file regardless of the

BRIEF or LOUD mode, (which controls only the number of messages.)

(MESPIT) Reads all console messages from a file.

(MESIN) Restores reading messages from the console. The name of the

file is set through a call to the supervisor., and is stored. in a read-only

portion of the user's storage area. The initial setting is:

1-illSPIT BCD

There is no provision for emergency input messages. This means that a

process running in ~lliSPIT and MESPOT modes will likely fail if it has to

read in a message not supplied in the input file. On the other hand, the

user has the possibility to switch to the MESOUT and MESIN modes for those

parts of the process where some em~rgency action might be anticipated. Having .

R·-24

two classes of input messages acting simultaneously would require a

tedious preparation of the job as to which message should go into the

file, and which not, assuming in addition that a reliable documentation

exists for that matter.

(LIST) controls a general option co~~only used by assemblers, inter­

preters and compilers. Creates listi.ngs, whatever they are, according to

the particular meaning of the rmming process.

(NOLIST) Suppress listings. Same context as above.

(DEBUG) Another option frequently available in compilers, assemblers,

loaders, etc ••• Creates source information (symbol tables, patch areas,

trapping instructions,tracing links, etc ••.) used by debugging tools.

(NOBUG) Cut-off the generation of the above debug information.

(QUOTE) Applies to the following argument, including (QUOTE), so that

it will not be interpreted, but: taken as a literal value.

N.B. With the exception of (MORE),(SAVE) and (QUOTE) all meta­

arguments can be placed anywhere in requests. Their position

is meaningless; only their existence matters.

8.3 All the above meta-arguments will be identified by the SHEU..,

which strips them off the list of arguments, and sets accordingly the

associated bits of the permanent options. (see paragraph ~ for a more

complete discussion). As a matter of fact, the permanent options are

not modified, in their read-only box. Only their carbon copy, used by

the procedures in execution, is updated for the temporaEY duration of

the current procedure. Meta-arguments are thus a way of overriding

temporarily a permanent option for the current procedure (not the whole

process), and all deeper levels of calls. Before returning control, any

procedure restores to its initial value the carbon copy of the permanent

options.

8.4 As a general policy, all system tools should keep the same rules

as the-SHEU.. does with respect to meta-arguments. This would bring about

a clean consistency, and a logical behavior among all procedures.

R-25

IX. Permanent Options

9.1 There has always been the need for a permanent setting of

user's options,not for the duration of a single procedure, but for an

arbitrary long period of time. By convention, a certain amount of options

are assigned a permanent physical representation in the machine, and

eventually tested by procedures to fit the particular user's requirements.

9.2 A full machine -vwrd may be assigned to those permanent options

common through the system. Another 36-bit word may contain user's private

options.

An attempted list of the general options is following:

bit 1 - ¢FF

¢N

bit 2 - ¢FF

¢N

bit 3 - ¢FF

¢N

bit 4 - ¢FF

¢N

bit 5 - ¢FF

¢N

bit 6 - ¢FF

¢N

bit 7 - ¢FF

¢N

bit 8 - ¢FF

¢N

bit 9 - ¢FF

¢N

MANUAL mode

AUTO/mode

Full printing of all console messages

BRIEF mode. Sifts messages

Prints on console

Writes all console messages onto a file

Reads from console

Reads all console messages from a file

Process serialization fields, if they may have to

Ignore serialization fields

No BCD listings from assemblers or compilers

Create BCD listings

No "debug" tables from assemblers or compilers

Create "debug" tables

All system library, or common procedure allowed

Not allowed
..

Normal housekeeping of files

Question on the console, whenever an attempt

is made to change anything to a file

R-26

bit 10 ¢FF User is accessible by "mail"

¢N User is not accessible by "mailn

bit 11 ¢FF User does not accept inter-console messages

¢N User accepts inter-console messages

bit 12 ¢FF User does not accept I/¢ slaving

¢N User is in I/¢ slaving mode.

This list is to be completed when more options become of general

use.

9.3 All user permanent options can be stored into a read only segment,

in the user's file directory. The structure would be as follows:

SYMDEF COMOPT,PRIVOPT,MESPIT,MESPOT,ERROR, •••

CO:MOPT OCT u;set" common options

PR.IVOPT OCT user private options

ME SPIT STRING names of ME SPOT file

MESPOT STRING names of ME SPIT file

ERROR STRING names of ERROR segment

The,number and the variety of permanent options is somewhat arbitrary

and the problem is where to stop. Since the needs will grow with the users

and system sophistication, the segment of permanent options should be organized

in an open manner, with new classes of options assembled in whenever necessary.

Each option, or family group· is externally known by a symbol, therefore each

user option segment may be c•rganized freely, and contains as many private

entries as desired which are used by the user's private procedures of course,

but not by the system. However., in order to prevent the frequent mistakes

resulting from-.too large a freedom, the OPTIONS segment may not be altered

directly by the user. Use of common procedure is rtecessary to modify,

delete, or append entries to this segment.

R-27

9.4 All system functions which may be under control of an option,

such as console Input-Output, files protection, ~ail, console slaving,

should systematically check the corresponding information in the user

OPTIONS segment, during execution. This must be done at such a level

that it cannot be by-passed by user's programs. For example, there

should not be a direct entry to the supervisor allowing printing a

console without _checking the MESPOT bit. Evidently, there must be a

possibility of by-passing, but restricted to certain authorized users,

or certain privileged procedures. This policy is required for system

consistency, since there is no::guarantee that users programs play the

game, when there are ways not to do so.

9.5 In paragraph 8.3 we have discussed the effect of meta-arguments

on permanent options. There is no need to repeat here what has been said

on precedence and evanescence of meta- arguments. But we emphasize the

point that ,!!!ill.•arguments have 112 effect ..2!! the OPTIONS segment. When­

ever the supervisor initiates a process, it activates a segment called

CUROPTIONS, which is.also in read-only mode for safety consideration but

may be altered without intervention of~ supervisor. This segment is

a mere copy of the OPTIONS segment, and is to di.e with the process it is

associated with. All checking and updating of options is performed in the

CUROPTIONS segment.

9.6 Modifications of permanent options, i.e. the segment 0PTIONS,

·require using a system procedure called OPTION. The particular parameter

to be modified may be specifi~d by name, plus a modifier ON or OFF, (nothing·

assumes ON), or a literal value, and also by bit position for octal words

E.g. OPTION ME SPOT OFF same as OPTION MESOUT

OPTION MESPIT READ FILE (sets file name)

OPTION SYSTEM MANUAL NO BUG LOUD

OPTION USER 25 ON

Names like MANUAL, NOBUG, are associated with a 4efinite setting of

the option, (the bit may be set ON or OFF, depending on· the name). But, a

name followed by OFF (E.G. NOBUG OFF) means: set the option to the opposite

of the specified name. With bit specification, set bit ON is assumed, unless

explicitly indicated by ON or OFF.

R-28

9.7 There is a further need for having a set of permanent options

associated with some common procedures, and variable from a procedure to

another. This facility is included in the proposed scheme in the follow­

ing way.

A procedure written for using a tailor-made set of options would

access the CURpPTIONS segment through a particular entry name associated

with itself, and replace some parts of the CUROPTIONS setting by the spe­

cial status associated with the procedure. On return, the status in

CUROPTIONS should be restored to its original sett~ng.

This implies that a procedure which enjoys the privilege of having

its private optionshas to set them for itself. One may easily imagine

an automatic setting by the supervisor, but this looses generality and~

creates useless overhead. Indeed, the supervisor would have to initiate

an attempt for every procedure; and most of them do not require this set•
ting. Furthermore, any procedure may be executed~ i! tailor-~~

of options, as we are going to see now.

The user may create a file containing all the particular options

valid for a procedure only, specified as meta-arguments to the SHELL, then

include the procedure with its formal arguments, and wrap up the whole

thing as a macro-procedure

E.G. This is the file

CHAIN ALFA

(BRIE~) (DEBUG)

GAP AIJ!A

GAP BCD

(NOLIST) (MORE)

Then RUNCOM GAP BETA performs the assembly with all particular

options, without altering the constants. permanent options.

X. Shell Organization

10.1 The SHELL should make use as much as possible of other standard

common procedures, so that users will be able to alter its behavior in some

particular areas without having to provide a complete SHELL of their own.

R-29

A list of separate tools is suggested in the following, not only because

they fit logical divisions of the SHELL, but b·ecause they are to be used

widely by other procedures throughout the system.

10.2 String manipulation package. As BELL LABS are likely to con­

vert to GE636 their string macro-package, (used in SNOBOL for example)

some cooperative task could be undertaken in that area. Another area for

borrowing techniques is the SLIP system. Indeed, since naming in the sys­

tem will be string oriented, there is an obvious and general need for such

functions as:

grab a string and move it

count characters in a string

concatenate strings

break a string according to delimiters

create list of strings

traverse list of strings

get Nth string of a list

delete Nth string of a list

etc ••• etc ••• etc •••

10.3 The SCANNER is a particular implementation using a string pack­

age. It primarily breaks a string into a list of strings, according to

delimiters conventions, and yields values for string count, length, etc •••

10.4 LINKAGE is a procedure which converts a composite address

SEGMENT [ENTRY] GAPEXPRESS.ION, MODIFIER into a linkage vector.

10.5 ARGLIST makes up a list of pointers to a specified list of

data arguments. It also sets up the fence (or the argument count) bound­

ing the list.

· 10.6 A symbolic I/O procedure similar to the symbolic MAD I/0. On
I

input, accepts strings of the form used by the READ DATA statement in MAD;

On output, accepts strings as the MAD statements PRINT RESULTS. I/O and

conversion are automatically performed using a table of pointers to the

data and their symbolic nam1~s. Following a previous setting of external

devices, input-output may be associated indifferently with any file, console

or other.

R-30

XI. SHELL Flowcharts

11.1 A rough flowchart is outlined in the following. It ignores

a certain amount of particular situations, which are important, but at

the coding level. As a flowchart is usually a cryptic nonsense from

every but one's point of view, some remarks will attempt to clarrify

the major steps. Figures in parenthesis match the ones posted nearby

the boxes.

11.2 The SHELL has two entries. One is for the processing of one

or several requests given as a single string. The first thing to do (1)

is to break it down into components. Another entry by-passes this first

step when requests are supplied as a list of separate requests, each one

containing sepa~ate strings as arguments. All requests are stacked by (2).

Then the SHELL starts looking for meta-arguments (3), taking appro­

priate action on the CUROPTIONS segment. The occurence of (MORE) results

in saving the request (4) and going back fo't getting the rest of the

request.

If in (MANUAL) mo~e, or (AUTO) with a file to be read, the SHELL

constructs the table for the symbolic I/0 procedure (5), sets the appro­

priate vectors (6) for the source of data, and (7) calls the I/O proce­

dure, which replaces symbolic data by their values according to the

~pecified conversion.

There may be arguments specified (8) as results of the previous

procedure.

Then, everything being settled, linkages are established (9) to the

specified procedure and to those arguments givenby pointers to other
\

segments. Eventually (10) the SHELL calls the procedure, and hopefully

gets control back.

The output-phase takes place, if any. In effect, the procedure just

called may have already put out desirable results. It is only on user's

requirements, by (AUTO) or (MANuAL), that a specific result output phase

is performed. Again, the table for symbolic I/O is built (11), unless

this is already done. Then a proper setting takes place (12), in order

to feed the symbolic I/f/J·package with requests from the appropriate

R-31

source (console or file). Output requests are read (13), then decoded

and processed (14). Recycling the loop occurs until the output phase

is terminated.

Then the SHELL saves into the stack (15) all resulting arguments

which were not in yet. Those segments (data or procedures) that are

now useless, are released (1.6), and finally the current list of pending

procedure requests is accessed for a new cycling.

When there are no more waiting requests, the SHELL saves any of

its final status (18), restores the calling conditions,and returns to

whichever called it. In case the last request specified (MORE) argu­

ments; the SHELL expects to be called again with the rest of the re­

quest •. Consequently, the :SROOM is set on (17), so that the present

status will not be wiped out if we were at the supervisor level.

R-32

L Flowe harts S HE!:L:.!::-"----

. rocessed ~tring Unp
. • Processed Raw " \ENTRY Str~

2

"j

s!--.1~---- ~ 1 STRINGSc ~

8

9

10

(Cont.)

R-33

SHELL Flowcharts (Cont. 1)

14

SAVE RESU TS
and 15

ARGUMENT

RELEASE
.S.E.GMENTS 16

SET I/O 12 12 SET I/O
FOR FILE !--__,..--IF OR CONSO

R-34

XII. Further Needs for Common Procedures

12.1 Formatted input.. (See also design notebook, Appendix F,

paragraph 2.5.1.) One must be able to create a data file containing

any kind of preset data, i.e. integer or floating point numbers, octal

fields, as well as BCD strings. This may be realized by setting a mode

whereby input lines are interpreted according to conventinal notations

similar to the READ DATA statement in MAD.

12.2 For the same pu:rpose, data output, as PRINT commands, or

PRINT off line request, should accept a format specification in order

to get a readable hard copy.

Both of such implementations should use as hard core, the symbolic

I/0 package already mentioned in 10.6.

12.3 The concept ·of segmentation creates needs for some smooth

transformation between files and segments. Indeed, data segments and

data files are two forms of data storage, which users will likely use

concurrently to feed procedures. Furthermore, segments as long as they

are in the user's file directory, appear· just like onemore variety of

files~ Unless tools for handling files are general enough so that all

segments peculiarities show like ordinary file parameters, some specific

procedures would be necessary.

Hence we may fores=e the following needs:

FILE

SEGMENT

RENAME

DELETE

CHMODE

SEGMAP

SEGNET

SUBMAP

SUB NET

EQUATE

segment names file names

file names segment names

segment names segment names

segment names

segment names mode

list of segments presently accessible

list of segments, with all cross references

and internal symbols known-betwen segments

list of subroutines under procedure segments

cross·-references between subroutines in segments.

segment names segment names

R-35

This list is likely to be extended after further study. There is evidently

more to say about that subject.

12.4 Another set of procedures is associated with the permanent op­

tions. See description in 9. 6.

XIII. Summing Up

The ideas outlined in this paper come out roughly as follows:

13.1 There is no particular convention distinguishing commands

from any other private or common procedures.

13.2 ~here is a procedure, the SHELL, intended to control the overall

execution of procedures. It. has as properties:

.set arguments for procedures

,initiate procedures

.extract results

.act as a link between procedures not expressly linked by program

.recursive, may be called by any program, at any level

.is automatically called by the supervisor for requests typed

at the console level

.partially or entirely interchangeable with user's private

tools, so that the system language may be completely remodeled

by any user.

13.3 Private permanent user's options control the behavior of the

system in all critical areas·, particularly with regard to input-output

IPOdes and periphera1.1_ devices used. Thus, any procedure may be run

indifferently without regeneration under a batch process, or a console·

controlled job session.

