DESIGN NOTEBOOK = SECTION V

T

SUBJ: . RUNCOM - A Macro-Procedure Processor for the 636 System
FROM: Louis Pouzin‘_ ‘ L .
DATE: April 7, 1965 = 3

Kk k kk *
"CONTENTS

1, - Pfinciples
2, - Requirements
3. - Composition of a Macrd-Proceduréf)
4, - The Meta-Language

5. = Making of Macro-ProceduresA.
6., = Calling a Macro-?ro?;dure fj tiv~w-*
7. - Expansion Mechanism ‘

8. = Optional Meta-ganguageﬁfﬁ

1, - Principles

1.1 - It is suggested‘to refer to the CC-Memo 238 in order to
get acquainted with the present macro-command machinery built for the
7094 CTSS system. Indeed, most of the basic ideas are carried through
‘this paper as preliminary assumptions,

1.2 - Another paper describing the SHELL (636 System Design Note-
book Section IV) explains how the most general procedure may be executed
simply by specifying its name, and the liet of its arguments. Inputting
‘such a request is conveniently done from a console as a message directed .
to the supervisor, or the requests may be read from an external device,
or from a file kept onto a secondary storage, like disks. Reader' 8 know-
' ledge of the SHELL description is assumed in this paper.

1.3 - Chaining requests is a normal function of the SHELL, but if -
there is no limit as to the number of successive procedures executed in
a row, requirements are that all the actual arguments be specified some-
how at the time 6£ execution. In most cases, some arguments are rarely
modified, whereas some others are usually changed for every execution.
Furthermore, many jobs may be described in terms of smaller tasks, the
sequence of which is almost invariably determined, barring a few options
or error conditions. For these reasons it is very tempting to describe
. some procedures as macro-procedures, with askeletodof fixed parameters,
- and a set of substitutable arguments to be specified at execution time,
The macro-procedure is then given a name, stored permaneiitly, and invoked

as if it were a single normal procedure,

A similar technique is now|a mandatory feature of any serious
assembly language, and its utility is no longer a point of discussion,
but rather of implementation.

1.4 - A macro-procedure!machinery would then consist of the
following: :

- a Meta-language intended to describe how a sequence of procedures}?’
is to be constructed for execution.

- a Macro-processor using the meta-langﬁege syﬁtax'iﬁ order to - n
build up the actual list of procedures to bevexecuted;ewith their actual

arguments, o .

- a procedure initiating and controlling the execution of the
sequence so made up. This is the SHELL, outlined elsewhere,

2, - Requirements

2.1 - By assumption, the description of a macro-procedure (say
the prototype) is fairly simple, and does not carry any sophisticated
logic. If it did, the user had better use some of the powerful pro-
gramming languages, which the ACM journal is crowded with, We mean
-that the kind of logic that we may expect to describe in a macro-processor

language is voluntarily restricted to elementary 0ptions;

2,2 - For the same reason, and as a compensation, the macro-pro-
cedure should not require any debugging. Writing should be as straight-
forward as the making up of a deck for, say, an FMS job.

2.3 - In executing the sequence of procedures, there should not

be any restriction arising from the use of the macro-processor,

2.4 - Let aside some possible naming conventions, a macrosprocedure =
must provide the same facilities as a regular procedure, For example, :
there should not be any restrictions in calling a macro-procedure from

inside another macro-procedure.

3. - Composition of a Macro-Procedure

3.1 - A macro-procedure is a sequence of pfbcedures described in

a prototype. The prototype is stored in a file féigﬁ ci;;;ﬁ;;ﬁéﬁﬁcn;;g

3.2 - The name of the macro-procedure is the primary name of the
BCD file, or is mentioned in the prototype itself,

3.3 = A prototype contains several classes of information.
3.3.1 - Identification of formal (or éuhstitutable) arguments
3.3.2 - Names of (macro) proéedures to be gathered into a.
list for execution, along with their arguments. - '

3.3.3 = Names of (macro) procedures to be executed immediately,

when encountered by the macro-processor‘?jAlé¢fafe Bﬁeclfied‘tﬁeir;

formal or actugl arguments,

3.3.4 - Editing control words

M-3

3.3.5 - Expansion?controi words“iuﬂmbnﬁvj

3.3.6 - Comments
3.3.7 = End markers

4, - The Meta-Language:

4,1 - In order to recognize the formal arguments of a macro-
prototype, they are all mentioned, as spélled when used, in a header, .
which can take two forms:

Eogo
CHAIN ONION POTATO GARLIC etc...
or MACRO RECIPE ONION POTATO GARLIE. etc...

Either word CHAIN or MACRO must be used as spelled., When CHAIN
is used, the name of the procedure is the name of the file containing
the prototype. This allows changing the name of the macro simply by
renaming the file. ’

- When MACRO is used, the name of the macro is the word following
- immediately MACRO, (here RECIPE), This allows searching files for a

specific macro.

All other words, following CHAIN or the macro name, are formal :
arguments. This means that wherever POTATO e.g. is mentioned in the

prototype, (exception will be clearly stated) it will be replaced by

whatever is specified at ;he same rank in the macro-call, E.g. if one
calls RECIPE ONION IDAHO etc... ONION will not change, since the '
actual value is identical to the formal spelling, and POTATO will be . .
replaced by IDAHO. |

There may be any number of formal arguments.

In the macro protdtype; CHAIN or MACRO must appear before any
executable procedure, and before any control word which controls the
expansion of an executable procedure. This statement will become

clearer in the following

Only one CHAIN or MACRO can be used in ; maérd_protptype, but
neither one is necessary if there are no formal arguments, and if the
macro-name is the same as the file name, There 18 no argument substi-
tution in a CHAIN or MACRO heading., -~ = . ;=0 .0

4.2 - The prototype contains any number of procedure requests,
consisting of the procedure name followed by its. arguments. ‘A request"
is contained in a logical BCD record, whatever it is, But it will be
likely a string of BCD tharactets ending with a carriage return, (or
end of record mark). We assume for simplicity that the usual SCANNER
will be used, (see SHELL description) so that each procedure request
will be interpreted as a list of BCD strings, (words) separated by one
or several blank characters, or tabs. Nevertheless, this point is -

already treated in the BHELL description. Suffice it to say that every

procedure request is interpreted according to the delimiters conventions 1‘e;

of the system, possibly modified by private user's settings.

A request may contain any number of arguments, such as:
MAIL GEDRGE MOLLY BOB ARTHUR - etc...

Usually the first word is the name of the procedure to be executed,

.and all other words are arguments to the procedure, But, generally speak= :;‘;.v

ing, any of the arguments may be a meta-argument, or a special type (# con-
vention)’as epecified in the SHELL paper (paragraph 5.10 and 8). In other

words the meaning of the whole request is not taken care of by RUNCOM, but ,f-iﬁ >

later on, by the SHELL at execution time., In particular, when a request
starts or ends with the meta—argument (MORE) , RUNCOM does not attempt to’J4w‘
stick together pieces of requests with their cbntinuationhéﬂyiteéééggé.Aﬁ B
far as RUNCOM is converned, every logical BCD record is processed as a
separate request, Any ﬁrocess based 6n syntax or semantics is left for
the execution phase, to the SHELL and other procedures ealled.

Any word of a request, regardless of whether it is a special,meta,
normal argument, or the name of a procedure, is always substitutable, 1f
it matches one of the formal arguments specified with CHAIN or MACRO. (See :
inhibition of this rule in 4, 4.1). : i ’

4,3 - Inside the prototype, execution 0£¢tequeate may be cOntrolledf
by the single control words (NOW) and (LAIER)' ’

- M=5

E.g. cee
(NOW)
EDIT - ALFA GAP e
PRINT ALFA GAP ;
GAP .[ALFA (NOLIST) '
(LATER)

LA

When RUNCOM reads the prototype, the occurence of the control
word (NOW) calls for a different expansion mode. Successive requests
are still scanned for substitution of arguments, but, instead.of being
saved into a list, the SHELL is called for immediate execution for-every
request, Furthermore, on return from the SHELL, the actual values of the

formal arguments are updated with the values given by the executed proce-f

dure, Thus it is very easy, while expanding a macro, to perform any -
argument modification, simply by calling an_appropriate'procedure. :

E.g. " ees
(NOw)
IFEQUALL. A B PRYC
(LATER)
PR@C

A, B, PRIC are formal arguments, and IFEQUAL is a procedure which gives
to PROC the value (NIL) if A is different from B; otherwise PROC is not
altered. Runcom will substitute for PROC whatever value has been given
in the macro-call, but this value may have been turned into (NIL). by
IFEQUAL. Thus when RUNCOM will transmit to the SHELL the list of actual
procedures, PROC will be either executed for its actual value, or skipped
by the SHELL if it has been (NIL)ed.

It is important to notice that all 1lbgic pertaining to the checking
of arguments, whether actual or formal values, is rejected from RUNCOM

upon external procedures, which may in turn be as sophisticated as desirablesv;'

One does away through that technique with the always unsatisfactory design
of all conditional IF pseudofopérationa foupd‘iﬁ,éssémbly languages, -

M-6

The mode of immediate execution stopsvas soon as the control word "
" (LATER) is encountered, 4

Successive (NOW)'s are redundant, and have no more action; so are
' successive (LATER)'s. In other words, (NOW) sets a switch, and (LATER)
resets it; mnesting has no meaning.

(NOW) and (LATER) are recognized after argument substitution, i.e,
thgy may be substituted as actual values,

4.4 - Some editing options are controlled by the current permanent
options of the.user, and will be mentioned below in paragraph 7.8. In
addition, the following is performed by RUNCOM according to the text of
the prototype.

4.4.1 - No argument substitution will be performed in a request_;_ ',1

when the first character is & (minus sign). Execution is carried
through with the literal values as specified in the prototype.

4.4;2A- A meta-argument ' (apostrophe) permits concatena= f'
tion of the previous and the following arguments, after substitutionm,

E.g. M ' BER 196 ' D ‘
will come out @CTOBER 1965 if M and D are formal arguments set to OCTO
and 5. '

There may be severalssuccessive concatenation yielding a single

argument,

Substitution suppressor and concatentation are allowed in the mode =~

of execution (NOW).

Apostrophe may be substituted as actual value for a formal argu-

ment, and yet means concatenation after substitution wherever there is

such a value as argument. -

4.5 - Several features'control‘the expansion of the macro-prototybé ztgjh

so as to allow a large flexibility in constructing the final list of pro“lffi}l-[o

cedures to be executed.

4,5,1 = (SKIP) and (STOP) are two control words which nllow };;:;;;j

by-passing a part of the prototype. Either»one mnstfbé a single word
request. ’ : ;

M-7

"E.ge oo
(SKIP)
(GAP ALFA
(ST9P)

When processing the prototype, the occurence of (SKIP) inhibits both the -
immediate execution of procedures, and the expansion of the list for later
execution. However, argument substitution and other editing functions

- keep activated. The occurence of (ST@P) resumes the normal mode. Thus,

one can ignore, as far as procedure execution is concerned, an arbitrary

part of the prorotype. Since argument substitution is performed, both

(SKIP) and (STOP) may be substituted as actual values for arbitrary formal
arguments, (SKIP) and (STOP) correspond to a single switch._ Consequently e
nesting has no meaning, and redundant occutences are 1gnored. f‘ge‘ﬁjf;,<’, .f'f;

‘E.g. Teo
~ TEST1
sequencel
TEST2
sequence2
(sTOP)

One may execute sequencel + sequence2 if TEST1 and TEST2 are (NIL) or
(STOP) or (LATER).

‘One may execute sequencel only, if TEST2.is changed to (SKIP) GEEaR
One may execute sequence2 only, if TESTL is (SKIP) and TEST2 is (STOP)
One may execute mothing, if TESTl is (SKIP) and TEST2 is (NIL)

procedures for which an immediate execution has been requested before :ffz;’ *
in the prorotype. 3

4.5.2 - Labéls may be assigned in order to refer symbolically to
various steps in the prototype. This'is.done threﬁghAthejeent:§1 w¢rdibjjvl
E.g. cor 4

- (LABEL)~; HERE -

ThevBCD\string HERE is then associated with the corresponding position
in the prototype of the request (LABEL) HERE,

Neither (LABEL) nor the specified value may be substituted as

actual arguments, and there must be a minus sign heading the request.

Otherwise there would not be ény label assignment, and the whole request 1,2;

would be processed as ancvordinary one, (LABEL) may not appear before
CHAIN or MACRO,

4.5.3 - By using (GOTD) one may force an anconditional tranafer
in the prototype. - P

e

E.g. ' MACRO
(NOW)
- (LABEL) AGAIN
EDIT ALFA
GAP ALFA i £
IFIL ~ ALFA PROCEDURE ~ WHERE ~~ OK AGAIN
(GOTO) WHERE - ' ’ o ‘
- (LABEL) oK g e
sz -
PRINT ALFA GAP e

‘In the previous example IFIL is a procedure which sets the value
of WHERE to be OK if the file ALFA PROCEDURE exists, and to AGAIN if the e
file does not., All these values are arguments to IFIL, A?pafilofvthe k]

prototype is specified as executable immediately, and depending on the
value assigned to WHERE, RUNCOM keeps processing the following of the
Mj:prqggﬁike' or goes back to the EDIT request.

Since both (GOTO). and the specified label may be substituted as .
actual values of formal arguments, one may use this inconditional trans-
fer as an optional transfer to an arbitrary request, (GOTO) with no

label, or with label (NIL) has no action.
" (GOTO0) may not appear'before CHAIN or MACRO.

4,5,4 - Although it would be possible to control iterations with
- (GOTO0)'s it seems desirable to have a more specific mechanism for. the
repetition of the same sequence with different aete of arguments.}

M-9

E.g.
MACRO | ASSEMBLE FIL CLASS
(LOOP) ' FIL CLASS
LISTF FIL CLASS
CLASS FIL
(Loor)

The sequence of requests bracketed by the (LOOP)'B will be .=
repeated several times if the formal arguments FIL and CLASS are ;
substituted with lists of values, instead of single values. i

For example, the macro may be called by:- e
.. PRI AN M,.m,... | R : i
RUNCOM ASSEMBLY L (ONION TOMATO GARLIC) . ((cAP l:mo:.) S {
T, vwwl.aéc“.' TR R
The _expansion of the macro would comé out' '

LISTF ONION cap
"GAP ONION o . _ :
LISTF TOMATO ALGOL AR T o e
ALGOL TOMATO . o
LISTF GARLIC ALGOL . | | i
ALGOL GARLIC ‘
One can understand the simple logic by the previous example,
Each of the formal arguments specified with the first occurence of (LOOP)

is replaced by an actual value taken from the. list associated with each
argument, The number of iterations is equal to the number of values
specified in the longest:list., When a list is exhausted, the cb;:es-

ponding formal argument holds its last current value.

There may not be dynamically nested (LOOP)'s in the same'broto-
type, but there may be as many disjointed (LOOP) 8 as desired., On the
other hand any of the procedures included in the scope of a (LOOP) may .
be a RUNCOM containing iterations, etcess, at any depth._ ‘ '

[::(LOOP) may be substituted as an actual valueﬁﬁot a formal argu-iﬁ{ .f_
ment, It may not appear before MAORO or CHAIN" e ; :

M-10

4,5.5 - Another feature turns out to be very useful when the
successive sets of arguments for a loop are too numerous, It also = : !
permits an arrangement :6f arguments which may be closer to the way s F“*I7;T7'

users have them in mind R e v N quk;;}

E.g. Assuming that a user wants to repeat part of a process ‘
with a series of files, say moving them to anothet file direetoty, he
might write a macro as: i ST b

L]

(LOOP)
UPDATE 3 A B
(LOOP)

-
5

and call the macro with two lists as:
RUNCOM ... (ONION PEAS SALT LEMON) (GAP GAP GAP AILGOL)

Each item, ONION GAP, PEAS GAP, etc..., 18 scattered through each list, -f;-i?; it

and the visual association of which goes with what may be cumbersome,

when there are many arguments and several lists requiring several lines ' '+

Therefore, another form of feeding the loop 13 availab1e° ;;
Successive items are stored into a file, with class nsme BCD.

E.g. . ONION . GAP

PEAS . o | e
SALT | IR -
LEMON = ALGOL 3 |

- Each item goes in a single logical BCD record, (linecor whatever
it is). 1Instead of (LOOP) the prototype contains:

(FILE) NAME A B € ..
where NAME BCD is the name of the file containing the successive 1tams %
for the loop. A, B, C, etc... are the formslvsrguments to be substituted - E
with actual values into the loop.bb' : & 4 § R SR

The next occurence of(FILE) without argument causes RUNCOM to Jump back
to the previous (FILE) in the prototype, and to proceed with a new set

M-11

The following rules apply for the substitution.z ,
= A first loop is driven with the actual values specified |
in the eall to RUNCOM. If all grguments are (NIL) or
missing the next step is directly started.
- If the file NAME BCD exists, and is not void, a logical
-record is read, and each formal argument, as specified
with the (FILE) control word, is replaeed by the corres- BE R
ponding actual value read from the file NAME BCD, Explicitly r ¢3;
(NIL) values are substituted as such, but missing values 7

are not substituted, and the corresponding formal argument

holds its current value. Hence, one may specify them in

a hierarchical mahner so that semi-constant'valuee are

rightmost in the file, and need be mentioned only when they

change. : et
- When the file is exhausted, or if it does not exist, looping'f;if7¥

is terminated o

- of values,
| Nested (FILE)'s are not allowed, \
Both (FILE) and the name of the file may be formal argumentsfiil
and substituted with actual values‘
'N.B, It seems to the author that (FILE) and (LOOP) 100ps could be

but not all implica- 4
Thereforeffthi point is " to be aettled
at a later step of 1mp1ementation. v ‘ ’

nested at one level, dynamically speaking,
tions have been examined.

| wii |
4.5.6 - Any request with the first character * or $is a
comment. Comments headed by * are completely ignored and serve only

as remarks that the user wants to associate with his prototype.

. -Comments starting‘with $ are printed on the user's comsole,
(6r in the MESPﬁT‘file) at the point of execution where they are

encountered.

As a matter of fact, RUNCOM replaces $ byl name of a procedure; =

say C¢MMENT, which prints the concatenation of the BCD atrings given S

as arguments.

Neither * nor $ are substitutable, but words of the te&t gotng
with $ are substitutable.

'One may use the special concatenation $- to mean that no sub- -

‘stitution be performed in this comment.

% Comments may appear anywhere in the protype, but $§ comments
may not appear before CHAIN or MACRS.

'Blank requests are always ignored, and may appeaféanywhere.

- . 4.5.7 - The control word (END), when encountered, forces the
end of the RUNC@M processing. - The 1ist of requests created by the
expansion is closed,.and the SHELL is called for execution. Thus (END)
need not be the last request in the prototype, although it is a natural
place to put it.

‘ (END) may be substituted as actual values of a formal parameter.
It may appear anywhere in the prototype, including before CHAIN or MACRP.

The text of the prototype need be boundedtin order not to. run :
away when reading it. Either an end of file or a singlgrwo:d'reques; el
ENDMACRO may be used, s ‘ e i

1

ENDMACR® will never - be. ignored, evenfin'
may not be substituted.»._ ffjfk';7-ﬁ'

bt(SKIP):phaée,’and‘L;l:L:},ttu"

Sty |

e A A e

5 - Making of macro-procedures

. 3.1 - As we have said, the prototype is contained in a regular

BCD file, Consequently it can be created by any of the common procedﬂrea Sl

designed for handling BCD files. A'prlvate progrem can do the same.
Furthermore, all input media are suitable, either by directiyping from

‘a console, or by card reader, punched tape, or any arbitrary externalﬁﬁd)'f'“rf«'””\‘

device,

6 - Calling a macro-procedure.

6.1 - A prototype is not an executable program in terms
of machine instructions. Therefore one cannot transfer control to

a prototype. Instead, the procedure RUNCSM is systematically lnvokedJ_,_Hf.r“"

as following:
RUNC@M macro-name arguments . . .

Same conventions as for any procedure apply to a call upon

RUNC@M; in perticular with respect to the arguments delimiters.

6.2 - The first argument of RUNCSM 18§ tle name of the macro- -
procedure. It is usually the name of a BCD file containing the proto--t;ll
type. This file, if it exists, will be read by RUNC¢M, and procesaed a
according to the following rules: ‘

6. 2 1 - Some executable request encountered, but no CHAIN and .
no MACR@. Expansion is performed, and must hit an (END) control word.ﬁt
or the end of the file. Occurences of CHAIN or MACRJ creates an error

and stops the process.

6.2.2 - CHAIN is encountered. Expansion is performed under

same conditions as in 6.2.1. .

6.2.3 - MACR® is encountéred, If thename following MACR® does,
not match the one following RUNC¢M, reading the file continues until
another CHAIN or MACRO is encountered, and the: process is recycled

If the names match, expansion té performed under ' the same conditlons as
in 6 2.1. ‘ : i ”

U wese |

6.2.4 - (If the end of file is encountered before any expansion
got started, or if the BCD file does not exist), and if no library is
specified (see below 6.3), an appropriate comment is ortnted, and RUNC@M
returns to its calling procedure, via the error return meaning: need

more arguments.

6.3 - Libraries of macro may be specified to be searched for the
requested prototype., Skould a condition mentioned in 6.2.4 occur,
RUNCPM would then carry out the searching.

6.3.1 - The fPTIONS segment (see SHELL description mey‘contstn" } S
_ an entry MACLIB, which points to a list of pointers to file names. Thus,iéﬁf%‘i
successive files may be searched in the order they appear in the user's "
@PTIONS segment.

6.3.2 - The argument list to RUNC@M may soecify some libraries
to be searched before those specified in the permanent options. The
meta;argument (MACLIB) followed by the name of a BCD file of macros, +
is recognized by RUNC@M, and both are stripped off the list of arguments f7
to be fed to the macro. Such a pair may occur several times in the ‘

argument list.

6.4 = As we have already shown in 4.5.4, s’single"formal argnment e
can be replaced by a list in a (L#¢P) scope. 1If no (L4PP) is specified .
for the particular argument, it is st111 possible to substitute a list :

where a single value is expected
~E.g. MACR§ SPLIT A B C-
SPLIT A B C ' . S

called by RUNCSM SPLIT ALFA GAP ('PNE TW§ 'I'HREE) wtll expand as: , SPLIT
ALFA GAP ¢NE TW¢ THREE

In other words the contents of a pair of parentheses is substituted

as is to the formal'argument. It may contain any BCD string, including

inner sets of nested parentheses. The outer set oﬁJparentheses is removed
' during the substitution. Meta-arguments to: RUNC¢M& like (MACLIB), will
not be interpreted if ‘embedded tn parentheses:’nor will the macro-name
The following example is not legal‘ " i o

| wels |

RUNCGM (MACL (MACLIB) MACR@S ARGl) ARG2

The result would be: MACRg (N@T F@UND.

Parentheses used as delimiters for a group of arguments must - b '”f;e'

be written as separate characters, (by blanks or tabs).

6.5 - It may happen that a macro procedure be called with less-f'
actual arguments than specified in the 1list of formal arguments. In
.thiSJcase, all formal arguments for which no substitution is provided: g

are given explicity the value (NIL).

Needless to say, there may be automatic substitaition of preeet

BCD values for those arguments missing, but this:hesefo be'ﬂoné;thfough:{fiifp

~external procedures.

~E. g. let us assume ‘that a procedure IFEQUAL‘A B. C D; E
works as follows ’ :

.IF. A .EQUAL, B .THEN, C=D .ELSE, C=E,
we may build a macro such as: '

MACR CUMPRES A B C D
(NOW) o o
IFEQUAL B (NIL) B BCD B -
IFEQUAL C (NIL) C A C
IFEQUAL D (NIL). D B D
(LATER) |

SQUEEZE A B C D

one may call this macro as follows:

RUNCPM CPMPRES ALFA B
file ALFA BCD s cempressed into ALFA‘BCDi

RUNC@M CHMPRES ALFA GAP
file ALFA GAP is compressed into ALEA GAP

w16

RUNC@M C@MPRES. ALFA GAP BETA
file ALFA GAP is compressed into BETA GAP

RUNC@M CYMPRES ALFA GAP BETA GAPSQZ :
file ALFA GAP is cdmpressed into BETA GAPSQZ

The above example shows é¢learly enough that all desirable gimmicks
are possible, as long as one prepares appropriate procedures. E.g. '
automatic géneration'of'symbdls; checking for generated symbols, etc...

7 - Expansion mechanism

7.1 - Any reader familiar with macro-assembler may already
have gathered how RUNGdM‘proceeds to expand'a‘prototype. Nevertheless,

some further information may help to understand the internal organlzatloq.i,ifﬂw“"'

7.2 - First RUNC@M gets its argument list from its calling
program, SHELL orother, and sets the names of the file(s) to be read
in order to find out the prototype.. If this step succeeds, ;hg’nexg

step is-entered.

7.3 - The prototype is read entirely until an end of file or
an ENDMACRO is encountered. This allows building a table of labels
associated to pointers into the prototype. The prototype and all
necessary information are stored in the stack (for recursive properties).
‘Some syntax checking is performed during this phase, like CHAIN and MACR$

procedures.

7.4 - Then RUNC@PM starts creating requests out of the prototype, .
the list of formal arguments, and'the list of actual afguments. It ¥t
has to be understood that this phase is basically dynamic. " Switches as :& ;;
(N@W)- (LATER), (SKIP)- (ST@P) are set at the time they are encountered, . -
from then and on. Ehere»is nbhattehpt‘to gs§1gn'a3mpde‘to\a scope 6f_‘:
requests bracketed by 3,9W1t¢h;19ﬂly hf&;fdyﬁqﬁiﬁ

succeseton matters,

E. g. (NgW)
- (LABEL) HERE
' PROCL
(LATER) |
PROCZ

CICN)

(G@T@) HERE

When expansion proceeds from the top down, PROCL is executed in the
(NgW) mode, but a subsequent transfer to HERE may expand PRC 1 in
the (LATER) mode in the following part of the prototype.

Similarly, any (L@JP) occurence sets a switch whereby the
next encountered (L#FP) will jump back to the previous encountered
(1@¢P) for another repetition with successive arguments. Use of (G¢T¢) 8
may result in inserting in the loop some parts of the prototype which
are not bracketted (syntactically speaking) by (L##P)'s.

In brief, the expansion phase is primarily an 1ﬁterpretative

process, not a compilation.

7.5 - ENDMACRP or end of file occurence is replaced by an- (END)
control word, so that eventually the expansion stops by encountering

an (END). The list of requests expanded by RUNCHM is stored in the-stAck,;ﬁf}u'u

and returned to the calling program at the end of the process, by a
. RETURN GAP macro-instruction

RETURN (@Dexpandedklist)

7.6 - It should be noticed here that RUNCPM does not start
explicitly the list of reduests ready for execution. RUNC@M initiates

only those requests for which execution is requested (N@W). For that,
it calls the SHELL for every single request. Since the SHELL is recur-
sive, it does not matter if it were already the RUNCOM's calling program.

When RUNCPM returns with the expanded list, the calling program
is usually the SHELL, which will take care 6f‘the execution. But'any
other program may call upon RUNC@M, - considered as metely a macro-expander,'
in order to get a ready-to—use ltst of requeats, the executton of which
may be postponed arbitrarily. _‘ i 'ff&}‘ e s

‘ M918

7.8 - RUNCPM, as any other procedure, is sensitive to the user's
permanent options. In (LIST) mode, it will print a list of generated
requests, either for (NgW) or (LATER). In (DEBUG) mode it will leave
in the stack both the prototype and complementary informatton, such

as label-table, formal and actual arguments lists, etc... In (LUUD) ; o S
mode, it will print messages bracketing'the execution: K I(.jf f@'

MACR# XXX STARTED AT 1302.6
MACR# XXX TERMINATED AT 1325.0

7.9 - When the user wants an immediate execution of - the macro-
procedure, he may well specify the mode (N@W) for the wole macro, even
if everything could be executed the same way in the mode (LATER).

Results may be identical, but the system overhead will be more important,
since RUNCPM and its associated segments are to be included as parts
of the user process through the end, instead ofhbeing released as soon

f

as the list has been expanded. .

8. - Optlonal Meta-Langgage

8.1 - RUNC@M, as the SHELL, and as will eventually many common

procedures, use certain graphical conventions, as meta-arguments; con-

catenation or grouping characters, control words, etc... It is certainly '”.f” e
‘desirable for documentation, teaching and general understanding purposes,; el

to have a list of conventional graphics accepted by all users as system
conventions. However, conventions may have to be changed, and some

users may have unsolvable problems of compatibrltty with- existing con-

ventions. Therefore, it seems a necessity to provide a general way

of anticipating the problem.

8.2 - All words used as conventional notations could be gathered
into a common segment, evidently users could not modify it. Whenever
a common procedure of the system needs to refer to a particular graphic,
it would pick it up from the common segment through an entry name, which lv' .

can be conveniently the same as its usual contents.

E. g. (END) (MANUAL) (LIST) ' * $ could be entry names to a
segment called SYSGRAPHICS. ‘
Users could provide their own segment to be used by a particular

procedure, or systematicaliy, as a permanent ewn language.: :
- From the point of view of system~maintenance, we would get rid of this \\\
L L - S SN
tedious affair of combing through program listingslfor'chastng wired-in symbolisms. .

