H { i H
. Nl T e
e B.3

'“\.A,I VED . .
PROJECT MAC
JUL 8 1565 . 4

Sheet 1 Of 5

50Q
e G T T T ey

DATA LAYOUTS IN ENPL FOR THE GE636

M., D, Mclilroy
May 12, 1965

These data layouts wiil be adhered to for argument passing
to external procedures by both ENPL and all fater versions
of NPL for the GE636 system,

e :) f

SPECIFIERS

Some data in NPL will be referenced directly by the object

-code. Some will be referenced indirectly through gpecifiers

that give iInformation about the layout of the data as well

-as {ts location, Specifiers are used for -

- label data and entry names
string data

arrays

structures

and probably for files

Specifiers always consist of an (TS pair pointing to an
address for the data plus additional ({information which we
shall call dopae. The dope for different sorts of data may
be different,

SCALAR DATA

Single and double precision floating point numbers will be
stored in the natural forms, Double precision floating
point quantities wiil sit at even 1locatlons., Single or
double precislion will be assigned to cover the declared

‘precision.

Binary fixed point numbers will be stored right Jjustified.
Widths less than 36 will occupy a single word, widths 1less
than 72 will occupy an even-odd pair. The 1imiting width of
fixed binary arlithmetic will be 71 bits; fixed overflow will
result from bits outside 71 that appear In {intermediate

~answers in arithmetic. Default flixed point precision is 17

bit binary integers.

Decimal fixed point numbers will be kept as right-justified
binary integers with Implied decimal scallng. Fl xed
overflow will be the same as binary fixed overflow,
Truncatlion that occurs in storing decimal data will be to

W

pg

{;
B
b
|
3
r
3

PAGE 2

the encompassing binary size,
Label data and procedure parameter specifiers will have the
form '

0 (mod 2) ITS = to program point

2 iTS . stack pointer when 1abel
was first assigned.

String Sﬁeclflers willi have the form

Ow(mod 2) ITS to data addressing origin

2 LMD length, max, and offset

The quantity known as LMD 1Is a two-word 1fitem (in the
following layout, No distinction Is made between bit and
character strings.

0 (mod 2) 0-17 L length in bits, less than 2+%18

0 18-35 M max imum length In bits

1 0-35 D offset of first bit of string
from addressing orligin, counted
in bits (mod 36%2+x+18)

Varying strings will be dynamically allocated and will only
occupy the number of words required by thelr current length.

ARRAYS

Array specifiers consist of a pointer to the addressing
origin of the array together with (the dope) a pointer to a
dope vector, which gives the dimensioning information for
the array., Arrays of strings may have further {information
specifying the strings In the dope. The addressing origin
!s the postition that would be occupled by the 0,0,.:.,0
element of the array If It existed. '

Dope vectors have the form.

(mod 2) n number of dimensions

0
1 unused
g ~ bl tower bound of first dim

hbl upper bound of first dim

3
]

S

PAGE 3
2n ié; lower bound of n-th dim
2n+1 hbn upper bound of n-th dim
- 2n+2 ml multiplier fqr first dim
: 3n+1 ' mn multiplier for n-th dim

The multipliiers are used in mappling from subscript values to
addresses relative to the addressing origin, For packed
arrays of nonvarying strings the muitipliers read in bits,
for all other arrays the multipliers read in words. :

‘The address of an array element A(sl,sZ,...,sn) is

calculated by the formula
address origin + sismi ¢ ees *+ sn*mn (mod k)
where k=22+18 if the muftlpllers are in words and
k=36#2%*+*18 {f the multipliers are in bits. In . the baslc
case of arrays that are neither cross-sections nor DEFINED,
mn will be the size of a data Item, and the other
multipliers will be gliven by
mj = (hbl = 1bl ¢+ 1)*mi j=i=1
The specifier for an array of scalars not strings will have
the form
0 (mod 2) i1Ts - addressing origin
2 - iTS to dope vector

The speciflier for an array of nonvarying strings will have
the form

0 (mod 2) TS addressing origin

2 T LMD of addressing origin

b ' ITS to dope vector

The specifier for an array of varying strlngs witl have the
form

0 (mod 2). -~ . ITS. addressing origin for array
S ~of LMD palrs :

T e e D ST

PAGE 4
2 : ITS to dope vector for array of
LMD pairs
(1 ITS addressing origin of strings

" There will probably be an allgned-vs-packed Indicator in the

dope vector for an array of strings. This could go well In
the "unused" word of the dope vector.

STRUCTURES

Specifiers for major structures wiil have the form

0 (mod 2) ITS addressing origin

2 ITS to structure dope vector

[ITs addressing origin of varyling
strings ’

A dope vector for a structure or array of structures will
have the form ‘

0 (mod 25 p0 to array dope vector
1 pl to flrst subétructurei
k pk to k-th substructure
Pointer dO is 0 for structures without dimension. The

substructure pointers p! have several Interpretations
depending on the substructure:

1, Elementary substructure, except non-varying string.
Pointer pl points, in the data segment relative to the
origin glven in word 0 of the major structure
specifier, to the addressing origin for this data 1ftem
(to specifier if the item is a label; to LMD palr If
the item is varying string),

2, Non-varylng string., Polinter pi points, In the dope.

L vector segment relative to the origin given In word 2

‘ of the major structure specifier, to an LMD palr for
the addressing origin of this data {tem.

PAGE 5

3. Non-elementary substructure, Polinter pl points, in the
dope vector segment relative to the origin gilven In
word 2 of ‘the major structure specifier, to the
substructure dope vector. '

If an array of structures contains one or more substructures
of types 2 or 3, .its gross dope vector consists of the
structure dope vector, followed immediately (mod 2) by ‘the
array dope vector then the gross dope vectors or LMD palrs
for these substructures taken In order,

| ARGUMENTS A
Argument 1ists, which wiil be pointed to by ap in the

standard calling sequence, will be a vector of (TS palrs
~polnting to data or specifliers, whichever ﬁsiapprOprlate.

