
I~

MULTICS SYSTEM-PROGRAMMERS' M~NUAL SECTION 88.2 PAGE 1

PUBLISHED: 6/24/66

Identification

System Module Interfaces (PL/I Subset for System Programming)
R. Montrose Graham

Purpose

.All Multics system modules will. with a few exceptions. be
coded in PL/I. However. it is desirable that the format for
passing arguments when calling system procedures be simple
enough so that non-PL/I-coded procedures will not be diffi-
cult to use. In addition. it is desired that system modules
be. as far as is possible. independent of PL/I implementation.
It is possible to achieve these goals if the coding of system
modules is restricted to a subset of PL/1. There are four
sets of rules; 1) restrictions on argument passing for all
system modules. 2) other restrictions for all system modules,
3) additional restrictions for the "central" supervisor modules,
and 4) restrictions on the use of common data bases (i.e.
data accessable by more than one process). The division
between central supervisor modules and other system modules
is one of function and it is expected that as each module
gets defined it will be clear which type it is.

Summary of the Sybset

~. Restrictions on Argument Passing

Only the following types of arguments may be passed bet­
ween separately translated modules.

a) All scalars (i.e., arithmetic, bit and character
strings, label, and pointer).

b) Any one-dimensional array of the above, (a), scalars.

Note: PL/1 passes a file name as a pointer to the file
control block, an area name as a pointer to the
base of the area, and a procedure name as a label
which points to the entry point.

2. Other restrictions for all system modules.

a) The "unspec" function is implementation dependent and
may be used only with permission.

b) Since the use of non-matching declarations across
calls is implementation dependent this may be done
only with permission.

3. Additional restrictions for central supervisor modules.

a) All restrictions of 2 above

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BB.2 PAGE'2

b) On conditions and signal statements may not be used.

c) None of the 1/0 statements may be used.

4. Restrictions for common data bases.

Common data bases may not be used to pass process depend­
ent information from one process to another.

The following types of data are process dependent.

a) Label

b) Pointer

Argument Types

for the purpose of this discussion we will divide the le~al
argument types into six classes; i) scalars (except str1ngs),
ii) non-varying strings, iii) varying strings, iv) 1-dimen­
sional arrays of scalars (except strings), v) 1-dimensional
arrays of non-varying strings, vi) 1-dimensional arrays of
varying strings. When a procedure is called using the standard
call the arguments are specified by a list of pointers (see
80.7.02). To understand fully the system interface specifi·
cations the reader needs to know, when he writes one of the
legal argument types, to what the corresponding argument pointer
is actually pointing. In case i) it points to the actual data.

ointer

its 1---,

...._~data

In all other cases it points to a specifier. A specifier is
address-dependent material, i.e., it contains its pairs. In
cases ii), iv) and v), the specifier is two its pairs, the
first points to the data origin (which is usually the actual
data) and the second points to the dope.

arqumen t i t po n er ·-

specifier
its I data origin

its

dope

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2 PAGE 3

In cases iii) and vi)# in addition to these two pointers there
is a third pointer which points to a free storage area.

argument pointer

I its
specifier

data origin

dope

free storage

Dope is address-independent descriptive material for the data
which is pointed to by the corresponding specifier. The first
word of the dope is an offset and succeeding words are the
breakdown.

Scalars (except strings)

In this case the argument pointer points directly to the data.
There are three types; arithmetic, label, and pointer. Arith­
metic scalars are either one or two words depending on their
precision. Label scalars are always four words, i.e., two
its pairs. The first its is the program point corresponding
to the labelo The second its is the value of the stack pointer
(the base pair sb~sp) at the time the label was assigned. Pointer
scalars are always two words, i.e., one its pairo

Non-Varying Strings

The specifier for a non-varying string contains an its pointer
to the data origin and an its pointer to the dope. The specifier
and dope have the format,

. f i soec1 .er

b data origin
~ 1st word of data

I its
2nd word of data

.
• 0 • .

dope L offset (bits)

id=240(8) length (bits)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2 PAGE 4

The first word of the dope contains the offset, in bits, of
the beginning of the string from the data origin. The second
word of the dope contains an identity code (which is always
240(8) for non-varying strings) in the first nine bits. The
remaining 27 bits contain the len9th of the string in bits.
Character strings are treated as 1f they were bit strings, i.e.,
a string of 5 characters has length = 45. The strin9 is packed
into consecutive words, beginning with the data orig1n.

Varying Strings

The specifier for a varyin$ string contains an its pointer to
the data origin, an its po1nter to the dope, and an its pointer
to the base of a free storage area. The format is,

. f. spec1 1er

its

its

its

dope
I .. 0 ,

id= maximum
200 lenrth
(8) (b ts)

rz... free storage area

T
off

~ -

1
_ __,. 1st wd of data

2nd wd of data

• • •

d t i i a a or lg n

offset in
free (words)

current length
(bits)

In this case the data origin pointer does not point to the
actual string, but to further descriptive information. The
string is always in a free storage area. The offset (off)
locates the first word of the string within the free storage
area. The identity code is always 200(8) for varying strings.
The string is packed in consecutive words. The maximum length
is an upper bound on the number of bits the string will ever

· MUL TICS SYSTEM-PROGRAMMERS 1 MANUA.L SECTION 88.2 PAGE 5

contain. The current length indicates the number of bits of
storage currently occupied by the string.

1 - Dimensional Arrays of Scalars (non-string)

An argument pointer for any array always points to a specifier.
The specifier and dope for an array of non-string scalars has
the format, -

specifier

l1 ts
data origin

7 • tst data element

jits
/dope

'4 offset
(words)

• • •

2nd data element } •••

3rd data element
ld=lOO 1

(8) •••

size

m

lb

hb

m

m

The right half of the first word of the dope contains the offset
(in words) of the addressing origin from the data origin. The
addressing origin is the location of the first word of the
(perhaps hypothetical) element with zero subscript. The data
origin is the loca~ion of the first data element, i.e., the
element whose subscript is lb. The ri~ht half of the second
dope word contains the number of dimens1ons, which is one.
The identity code for arrays of non-string scalars is always
100(8). The third word contains the total size (in words) of
the array. The fifth and sixth words contain the lower bound
(lb) and higher bound (hb) for the subscript. The fourth word
contains the multiplier which is the number of words from the
beginnin~ of one element to the beginning of the next element.
The mult1plier must be at least as large as the length of a
data element, however, it may be larger, i.e., data elements
need not be consecutive in memory, but they must be evenly
spaced. The bounds lb and hb define the subscript range and
lb or both lb ·and hb may be negative, however, lb must be
less than or equal to hb. Storage may or may not be reserved
for elements with subscripts which lie outside the range lb - hb.
The offset is zero if lb = 0, negative if lb>O, and positive
if lb<O.

MULTICS SYSTEM-PROGR~MMERS 1 M~NU~L SECTION 88.2 P~GE 6

1 - Demensional ~rrays of Non-Varying Strings

The specifier and dope for an array of non-varying strings has
the format.

specifier

I its / data origin ..

I its
~ dope

1st string } • • •

offset (bits) 2nd string \
id== length

. 240(8) (bits)

ida r ,

size

•••

3rd string

m • • •

lb

hb
·-

The format for the dope is the same as that for an array of
non-string scalars with the following exceptionso The off­
set is expressed in bits, mod 36*2**18, and occupies a full
word. ~n additional word has been inserted after the offset.
It contains the length of each string (in bits) in the array
and the identity code 240(8). The identity code ida in the
first 9 bits of the third word is 340(8) if the array is
packed and 300(8) if it is alignedo All strings in the array
must be the same length. Finally, the multiplier and size
are expressed in words if the array is aligned and in bits if
the array is packed and need not be a multiple of 36o A one
dimensional array of strings may be packed. ioeo, the strings
need not begin at the beginning of a word. For example,

d oJ>e data
- 18 mod 36*2,'<'"~'<'1 8 1st string 2nd string

340(8)1 18 ••• • ••
340(8)1 I 1 ••• 6th string
f-·

108
18
1
6 --

.)

m

m

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2 PAGE 7

is the dope and data for an array of 6 strings, each 2 char­
acters in length, with subscripts running from 1 to 6.

1-Demensional Arrays of Varying Strings

The dope and specifier for an array of varying strings has the
format,

specifier

~ its data origin L - 1st offset
dope I its / offset

(words)
I its V free storage 240 maximum
- area (8) (bits)

(words)

1st length
(bits)

• • •

base •• 0 ida 1 2nd offset

T 3rd string size (words) 2nd length
1st offset --

l • • • m (words)

.. 1st string lb

. . .
3rd offset

• • • hb 3rd length
2nd offset

~----------~2nd string . . .
• • •

The specifier contains three its pointers. The third points
to the base of a free storage area where all of the strings

[\

~

)

\

in the array are stored. The dope is the same as for an array
of non-varying strings except that the second word contains
the maximum length for strin~s in the array rather than the
current length. The data or1gin for an array of varying strings
is the location of the first word of the first pair of an array
of pairs which define each of the varying strings. The dope
(except for the maximum) applies to this array (treated as an
array of double word scalars). Each pair specifies the offset
and length for the corresponding varying string. This offset,
which is in words, is relative to the base of the free storage
area anq locates the first wcrd of the string. The strings
always begin at the first bit of the word. The second word of
the pair contains the current length of the string, in bits.
The actual strings may occur in any order in the free storage
area. Whenever the length of a varying string is changed,

m

m

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2 PAGE 8

storage for the string may have to be reallocated. The manage­
ment and format of free storage is discussed in another section
of this manual.

The Unspec Function

The unspec function in PL/1 is implementation dependent. Im­
plementation dependent features of PL/I may be used only by
permission and only when necessary. Whenever the unspec func­
tion is used 1 comments should be included which explain why
it is being used. Any use of the unspec function should be
recorded and approved by the Programming Coordinator.

Non-Matching Declarations

The remarks made in regard to the use of the unspec function
also apply to the use of non-matching declarations across calls.
This situation is extremely treacherous since there is no
warning flag as there is in the case of the unspec function.
Any instance of mis-matched declarations must be thoroughly
commented.

Additional Restrictions for the Central Supervisor

Somewhat imprecisely 1 the central supervisor modules are those
which are concerned with fault and interrupt management 1 input 1

output 1 etc. Most of these modules may still be written in
PL/I 1 however 1 they certainly cannot use the signal 1 on, or any
of the input/output statements. In general, extreme care must
be exercised in the coding of these modules in PL/I and complete
rules for coding them cannot be given here.

Data Bases Common to Several Processes

Any segment which is common to more than one process must not
contain any process dependent information. In the Multics
system an its pair (which is a comolete machine address) contains
process dependent information, namely a segment number. Both
label and pointer data in PL/I contain its pairs, hence, neither
type of data may be stored in a common data base. Certain con­
ventions regarding accessing and interlocking are necessary.
They are discussed elsewhere in this manual.

PL/1 Storage Allocation

Some knowledge of the PL/1 conventions for storage allocation
enhances the understanding and intelligent use of the system
mo~ule interface specification. The PL/I translator assigns
storage within several segments: the procedure being translated
<proc>, the stack <stack> (pointed to by sb~sp), static storage
<stat_>, free storage <free_>, and any segments explicitly refer­
enced by use of the notation seg$ext. The user may replace

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BB.2 PAGE 9

either <stat_> or (free_) or both by including 1 in his program1

one of the statements 1

% segment statid;

% segment statid1 freeid;

where statid is the name of the segment to be used in place of
<stat_) and freeid is the name of the segment to be used in
place of <free_). In this writeup <stat_> wi 11 refer to the
segment whose name is stat_ or to its replacement if the user
has replaced it. A similar convention holds for <free_>.

Data is either adjustable or non-adjustable. Data is non­
adjustable if all of its extents (subscript bounds 1 lengths,
maxima) are declared by integer constants. Data is adjustable
if at least one of its extents is not declared by an integer
constant 1 e.g. 1 the declaration

de 1 a(n);

causes a to be adjustable data. Even though the translator
assigns all data to some segment during translation~ the actual
storage for the data is frequently not allocated until during
execution. The time at which allocation occurs determines to
which segment the dope and specifier (if any) for the data is
assigned.

The following table shows to which segment data 1 dope and
specifiers are assigned for each storage cla3s.

PL/1 Storage class

Static

Automatic, non-adjustable

Automatic 1 adjustable

Based1 non-adjustable

Based (area), non-adjustable

Based, adjustable

Based (area), adjustable

or

location
of data

<stat_)
<:seg>

<stack>

<stack>

(free_>

<area>

<free_)

<area>

location
of speci-

fier

(stat_)
or <·seg>

<stack)

(stack>

<stack>

<:stack)

(stack>

<stack>

location
of dope

<proc>

<proc>

<stack>

<proc>

<Proc>

<stack>

(stack>

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2 PAGE 10

' Static Storage

Information which is constant throughout the life of a procedure
is compiled into the procedure. The dope for static (which is
always non-adjustable) is constant. It is computed by the
compiler and compiled into the procedure. All data with static
storage class is assigned to <stat_>, unless the notation
seg$ext is used, in which case it is assigned to <seg>. The
storage for a variable with static storage class is allocated
when the variable is first referenced. The specifier is also
computed at that time and stored in <stat_) (or <seg>).

Automatic Storage

Storage for a variable with automatic storage class is allocated
in <stack) upon entry to the block in which it is declared and
is unallocated upon leaving the block. The dope for non-adjust­
able automatic is constant and is computed by the compiler and
compiled into the procedure. The dope for adjustable automatic
cannot be computed until the storage is allocated. At that
time the dope is computed and stored in <stack>. The specifier
for both non-adjustable and adjustable is also computed and
stored in <stack> at allocation time. Each time the block in
which the declaration appears is entered the variable information
has to be recomputed and storage has to be allocated. Since
storage is allocated at block entry time changing any of the
variable extents for adjustable automatic within the block is
considered to be a programming error even though it has no
effect.

Based Storage

Storage for a variable with based storage class is allocated
when an allocate statement refering to the variable is executed.
Stora~e is allocated in <free_> unless an "in (area) 11 clause is
used 1n the allocate statement, in which case storage is alloca­
ted in "area". The dope for non-adjustable controlled is constant
and is computed by-the compiler and compiled into the procedure.
The dope for adjustable controlled and the specifier for both
adjustable and non-adjustable are computed on each reference to
the data and stored in <stack>. The time at which allocation
takes place is completely under control of the user. The values
of any variable extents at allocation time determine the amount
and layout of storage actually allocated. Changing the values
of variable extents after allocation is not a programming error
in all cases (otherwise there would be no possibility of varia­
tion in the different allocations). However, since the dope
is recomputed at every reference (without a corresponding change
in allocation), changing the variable extents for adjustable
controlled must be done with extreme caution. ~djustable -
controlled storage is extremely pov.Jerful. It is also extremely
dangerous. Finally, refering to the same data using different
based declarations is the most dangerous type of mismatched
declarations.

