
r

r,
I

TO:
FROM:
SUBJ:

MULTICS DISTRIBUTION
0 • B. ~~Jagne r
The Segment Symbol Table

The attached rev1s1ons of 80.1.00 and 80.1.02 are the final
iteration in the design for the Segment Symbol Table. Since
programming is in progress on several programs which use the
symbol table, no further revisions can be contemplated other
than simple extensions.

Changes include:

1. The formats of the 11 header" and the 11 nodes" have
changed.

2. Much more information is now standard for all
translators.

3. Explanations have been made much more clear (I hope).

4. Special in-references to the nodes for entries are
included.

/

/,-

MUL TICS SYSTE~"l-PROGR.L\f"ll\1ERS" f''lANU.L\L SECTION 80.1.00 PAGE 1

Published: 2/17/67
(Supersedes: B0.1.00 1 09/07/66;

B0.2.00 1 07/12/66)

Identification

Standard Format for the Segment Symbol Table
D.B. \,~Jagner

Purpose

Every translator used in Multics produces as a by-product of
every translation a Segment Symbol Table which supplies
information about the translation: such information as the
storage assigned to variables~ their attributes~ the version
of the translator~ the date and time of the translation 1 and
so forth.

There are five major uses of the Segment Symbol Table in Multics:

1 • The debugging aids (see BX.10) need the information in the
symbol table in ord~r to be able to answer a user"s
questions about the workings of a program when the questions
are asked in terms of the source language.

2. When the Shell calls a command procedure it needs
information on the attributes of the arguments expected by
the comnand. It gets this information from the Segment
Symbol Table.

3. When a call crosses a protection wall (see 80.9.02) outward~
a Gatekeeper must copy the call"s arguments into a data
segment which is accessible in the called program"s ring.
In order to copy these arguments the Gatekeeper needs
information on their attributes. To provide this
information all calls which might cross outward have
pointers into a Segment Symbol Table attached to the
argument list. See BJ.7.02 for details.

4. The call-passer (described in BD.8.02) provides the ability
to make procedure calls across processes. Since segment
numbers are process-dependent 1 arguments in these calls
must be converted to a standard form (using '' s 1 ot numbers") .
Here the same mechanism of symbol-table pointers tacked onto
the argument list must be used so that the call_passer can
know how to process the arguments.

~IULT!CS SYSTU4-PROGRAHMERS' fviANUAL SECTION 80.1.00 PAGE 2

5. Implementation of ''data-directed input" wi 11 require a
symbol table. See the PL/I manual 1 IBM form C28-6571-3 1

pp. 90- 92 for PL/l's version of data-directed inputo

The design for the Segment Symbol Table presented here makes an
attempt at the difficult task of solidifying those parts ~f the
table which are essential to system performance but at the same
time allowing flexibility in the design of translators.

Oefin it ions

An identifier is as in PL/1: a string of characters used
as an indivisible entity in a source program. A symbol is an
identifier defined by a programmer in a source program (i.e. 1

an identifier whose use is not fixed in the language). In PL/1
for example a symbol may be a scalar variable name 1 structure
name 1 array name 1 statement label (including block name and
entry name) 1 external entry name 1 segment name 1 or condition
name.

A seam~ symbol. table is that by-product of a compilation
or assembly which provides information about the symbols used
in the associated program segment. It contains 1 for each
symbo 1 defined in the source program, tvJo kinds of information:
imolementation information and attribute information.
I~plementation information provides the necessary correlation
bet~een the source program and the associated object program.
It includes the addresses of variables. Attribute information is
information present in the source program such attributes of
variables.

Location of Symbol Table

The Segment Symbol Table for a segment < a > normal"ly resides in
the segment < a.symbol > along with binding information (see
BD.2.01). On the whim of the translator~ however~ it may reside
in < a > or even < a. 1 ink >. It is always accessed through the
reference

< a >I [symbol_table]

and information in a's linkage section tells the linker where the
symbol table actually is.

In order to make information on entries more accessible to
programs like the Shell 1 special in-references should be'added
to a procedure's linkage section pointing to the symbol-table

fv1ULT ICS SYSTEM-PROGRAi•l!v1ERS' MANUAL SECTION 80.1.00 PAGE 3

nodes for all that procedure's entries. For an entry

< a >I [b]

the symbol table node should be at

< a >I [b_smtb_]

The swffix '' smtb 11 must be registered in the Name Registry
(section BB.). -

The Symbol Table

. The symbol table is structured, that is in the form of a tree,
for at least two reasons: First, PL/I blocks may be nested.
Second, the best way to give information concerning a PL/I
data-structure is in a tree. There are also other places
where structuring is useful. For example, the entry in the
symbol table for a PL/1 pointer variable may contain pointers
to the ehtries for any based variables which have this pointer
specified in their declarations. Languages other than PL/1 will
undoubtedly have other uses for structuring in the symbol table.

All structuring of the table is done in a standard way which does
not depend on content. This is done so that a standard sub
routine can be used to interpret the structure, no matter what
translator produced the table or what the structuring ''actually
means 11 • At < a >I [symbol_table] is the header for the table.
This is a collection of information concerning the translation
such as the translator name, the date and time of the
translation, the name of the source file, etc.

The tree-structuring is accomplished using what are called symbol
taple nod~. A symbol table node is a collection of self
relative pointers pointing to other nodes~ plus a self-relative
pointer to an information block giving information about
the symbol (if any) to which the node corresponds.

The information block is an agglomeration of bit-strings giving
attributes, addresses, etc., for the symbol, and also of course
the name of the symbol. Its design is almost entirely up to the
designer of the translator, with some simple restrictions noted
here.

r
I

SECTIIN 80.1.00 PAGE 4

Included in the header of the symbol table is the information
block mae \vhich brings some order out of the chaosof the
Triforrnat1on block. It includes enouah information so that as
long as use is restricted to the commonest data types (e.g. PL/I
scalars) the information block can be accessed without reference
to what translator produced the table. There will always be some
lag in updating debug9ing aids, etc., to work with new -
translators, and the Information block map allows these programs
to give some help to the user until such updating has been
performed. It also allows a gatekeeper to be fairly efficient.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.1.DOA PAGE 1

Published: 06/19/68

Identification

Revision of BD.1.00
R. M. Graham

Revisions

The following figure of the header should be substituted
for the one on page 5.

0 offset

240(8) ~
2 offset

240(8) ~
4 ...

6 . . .
8 root

pointer

map
pointer

10 next
header

text n -
12 offset

240(8) ~
,.l..t

•r'

offset

240(8) §1

length

length

extension
pointer

n

binding
indicator

link n -
r

length
low

•r-

length
l.....J

Dope for translator name

Dope for version name

Calendar clock reading for translator
creation time.

Calendar clock reading for translation
time •

Pointers to root of tree and header
extension.

Pointer to header map, twice the number
of files in source program.

Pointer to next header, indicator if
this is a bound segment.

Length of text, length of linkage section

Dope for all file names involved in
source program (source program file
first, followed by all 0 /o include
files)

,,......._

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.1.00 PAGE 6

The various names shown in the diagram above are indicated using
PL/1 - style string dope. See 8P.2 .02 for detai 1 s. The "offset"
is the offset in bits from word 0 of the header, and the ''length"
is the length in bits of the string. ·

The "translator name" is something like "pl1 11 or "eplbsa"
normally it is the name of the translator command. The debugging
aids~ expression-evaluation routines will use the translator-name
with various suffixes to form names of procedures (for example to
handle the translator~s data-types) so that this name•should
include only letters, digits, and the underscore.

The 11 trans 1 a tor version name" is a short pri ntab 1 e 1 i ne such as
"epl version 6 level 0" or "J.G. ~s special test version with

.optimized structure accessing".

The "root pointer" is a self-relative pointer to the root node of
the tree. See ~erall Structure, below.

The "map pointer" is a self-relative pointer to the information
block map. The information block map is described below.

"n" is twice the number of files involved in the source program.
This may be greater than 2 if, for example, the include feature
of PL/1 is used.

"Next header" and "binding indicator" are non-zero only when
segm8nts are bound together. See 80.14.01 for details. Roughly,
when segments are bound together the headers for the separate
symbol tables are chained together using the self-relative
pointer "next header", and "binding indicator" is non-zero in
each of these headers.

The 1\lode

A ~ymbol table node is as follows:

info
_pointer

back
J?Oi nte r

pointer

•
•
•

pointer

header
pointer

n

type

type

n arbitrary

~~ structuring

pointers

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD. 1. 00 . Pt\GE 7

All the indicated ••pointers" are self-relative. A zero pointer
is considered null.

"Info pointer" points to an information block.

"Header pointer•• points to the header of the symbol table.
Therefore given a pointer to a symbol table node a program can
always locate the information block map.

"Back pointer" points to this node's immediate parent node, or
else is null.

"n" is the number of "structuring pointers" which follo'JIJ. Each
structuring pointer points to another symbol table node somewhere

·else in the same segment.

Each structuring pointer in the node may have associated with it
an 18-bit "type number" particular to the translator involved.
In the PL/I symbol table, for example, type numbers are defined
for the pointer-variable controlling a based variable, pointers
to substructures of a data-structure, and other kinds of
pointers.

The structuring pointers may be considered to be of two kinds:
"branches" and 11 1 inks" (using the terminology made popular by the
file system). Branches are pointers to nodes which logically are
11 de::cendants" of the present node in the tree structure and 1 inks
are pointers to nodes VJhich are best considered to be "cutting
across" the tree structure. Vlithin the symbol table a branch is
defined to be a pointer to a node whose back-pointer po1nts to
the present node, and a link is defined to be a pointer to a node
whose back-pointer pointS'to some other node (or is null, as in
the case of the root of the tree). This distinction is important
for the follovJing reason: a symbol-table searching procedure can
search the tree and be absolutely secure against loops simply by
ignoring links (see, for example, BY.6.02).

The Information Block and its Ma£

The information block contains information about a symbol such as
its name, symbol type, address or addresses, precision, and
whatever information the translator possesses and the translator
designer feels is worth putting into the symbol table.

MUL TICS SYSTEM-PROGRAfVlHERS' MA~JUAL SECTION 80.1.00 PAGE 8

The information block map found in the symbol table header looks
like a PL/I dope vector for a structure of strings (see BP.2.02):

----------------------------~
offset

240
8

1/jl!f 24o
}///l;h 8

---·-·--
offset

240 length
8

offset

240 length
8

substructure pointer

words

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BD .1 • 00 PAGE 9

Each of the "substructure pointer words" points to string dope
for one item (e.g. name, data type, p~ecision, etc.). The
"offset'' in the string dope gives the offset (in bits) of the
item in the information block, and ''length'' gives the length
in bits of the item. The items may be arranged in the
information block according to the whim of the translator
designer: in particular items may overlap when this turns out to
be a reasonable way of doing things. Translator documentation
must tell what items appear in the information block and in what
order they appear in the map.

In the case of variable-length items (such as the symbol name) a
separate item in the information block can be used to give the
length. Then the string dope for the variable-length item will

. contain a meaningless ''length".

Similarly it may be worthwhile to let some item's offset
in the information block be specified by another item.
This variable offset does not seem terribly useful hoi!'Jever.

Standard Items in. the Information Block

The information block for a symbol may contain any information
which seems reasonable, but certain items are standard
and must be in fixed places in the information block map:

1. symbol type

2. address

3. address type

4. length of name in bits

5. name

"Symbol type" is a number telling \vhat the symbol is used for
in the program. The follo':IIJing symbol type numbers are standard:

0 = unknovm

1 = single-word integer

2 = double-word integer

3 = single-word floating-point

MUL TICS SYSTEM-PROGRA~1~~1ERS' MANUAL

4 = double-word floating-point

5 = single-word integer complex

6 = double-word integer complex

SECTION 80.1.00 PAGE 10

7 = single-word floating-point complex

8 = double-word floating-point complex

9 = non-varying bit-string

10 = varying bit-string

11 =non-varying character-string

12 = varying character-string

13 = pointer-variable (its pair)

14 - relative pointer-variable (offset from another pointer)

15 = label viriable -

16 = entry variable

17-32 = array of one of the above

33 = external procedure

34 = external data region

35 = internal procedure

36 = entry

37 = label constant

Most cases above where a symbol-type is named refer to
the PL/I implementation of the same. See BP.2.01 and
BP.2 .02 for details. PL/I does not have a data-type 11 entry
variable11 ; it does hmvever allow 11 entry parameters11 and
it is to the implementation of these that we refer. 11 External
procedure11 and ''external data region 11 are special concepts
described later (see Overall Struct~).

MUL TICS SYSTH1-PROGRAfv1r--1ERS' MANUAL SECTION 80.1.00 PAGE 11

The above list includes all of the symbol-types which may be
passed in an out1r1ard ring-crossing. They are of course also
the ones which will be mo~t common in the various languages
seen in Multics.

Symbol-type numbers belo1tJ 512 are reserved for coordinated
expansion of the above list. Numbers above 512 may be
used for peculiar symbol-types germane to only one translator.

11 Address type11 is a number specifying how 11 address11 is to be
interpreted:

0 = irrelevant (no meaningful address)

1 = location in segment

2 = argument number

3 = stack address (offset from sb<J-sp)

4 = linkage address (offset from lb~lp of indirect word)

5 =address in symbol table (offset from <segname>l[symbol_
table])

6 = address in the segment <segname.symbol>

7 =address in the segment <segname. link>(for entries).

Address-type's up to 512 are reserved for coordinated expansion
of this list. Numbers above 512 may be used for peculiar
address-interpretations germane to only one translator.

For the sake of efficiency in the gatekeeper and the call-passer~
the first three of these items must be placed in standard
positions in the information block itself. The required
format is:

symbol
t e

address

address
t e

~'---------.5

f\1UL TICS SY STEfvl-PROGRA/'vifv1ERS' t·1ANUAL SECTION 80.1.00 PAGE 12

Overall Structure

This much of the overall structure is standard: 11 r.oot pointer"
in the symbol table header points to a node whose associated
information block has symbol-type equal to either external
procedure or external data region. If it is external procedure
then for each external entry into the segment there is a
structuring pointer pointing to a node whose associated
information block Includes the entry name and has symbol-type =
entry. The node for the entry contains structuring pointers for
the arguments expected at the entry point. Each of the
information blocks for arguments to the entry has "address-type"=
argument number. ·

·If symbol-type= external data region (indicating that the
segment is a data segment accessed through in-references in its
linkage section) then for each in-reference in the segment's
linkage section there is a structuring pointer pointing to a node
whose associated information block gives the data-type etc., of
the data to be found through that in-reference.

These nodes will of course contain all manner of other
structuring pointers peculiar to the translator as well as those
legislated above. The required nodes can be distinguished from
the others by the symbol-types in the associated information
blocks.

Example

Presented here as an example is a possible symbol-table format
for a MAD translator used in Multics.

All of MAD's symbol-types and address-types are in the standard
lists above. The block-structuring permitted is quite simple.
Further, no information except that which is listed above as
11 requ i red 11 is kept by th~ trans 1 a tor. For these reasons the
symbol table can be quite simple.

The information block has the following. format:

symbol
t e

address

address
t e

name
len th

name

.,

~1UL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.1.00 PAGE 13

Thus the information block map looks as fol,-ows (compare with the
diagram given earlier).

0

substructure pointer words

offset and length
for symbol type

offset and length
for address

offset and length
for address type

offset and length.
for name length

offset
for name

The following structurin~ is added to the standard structuring
described above. Every 1nternal procedure has a node branching

MULTICS SYSTEM-PROGRAfvliv1ERS' r"iANUAL SECTION 80.1.00 PAGE 14

from the .external procedure node (in MAD, internal procedures may
not be nested), and every variable used in the program has a node
branching from the external procedure.

Thus the program:

EXTERNAL FUNCTION (ALPHA, BETA, GAI'-1MA)
ENTRY TO Q1.
DIMENSION Z (100)
INTEGER ALPHA ...
INTERNAL FUNCTION
ENTRY TO 00 1 • y = z (7). '
END OF FUNCTION
END OF FUNCTION

Would have a symbol table \tvhich might be diagrammed as sho~tm in
Figure 1.

Particular Symbol· Tables.

The symbol table produced by any particular translator must be
documented in an MSPM section numbered BD.1.XX. This
documentation should include a list of all uses of structuring
and the type numbers associated with the pointers in the nodes,
a description of each item in the information block, and a
description of each special address-type and symbol-type used.

In the design of the symbol-table for a particular translator,
some points should be borne in mind. (1) If an existing symbol
table format can be used, it should be (for example the Fortran
IV symbol table can probably have the same format as the PL/I
symbol table). This will make th~ writing of the programs which
use the symbol table much easier. If no existing format can be
used, an extension of an existing one may be possible. (2)Within
reason, the symbol-table should include all the information which
the translator happens to have in its o~t,ir1Tnternal tables
concerning the use and implementation of a symbol, even if no use
can be seen for the information. There is no telling what
peculiar kinds of debugging aids may become useful for dealing
with higher-language programs. (3) If more than one address is to
be included in the information block (for example in PL/I the
addresses of ·the specifier, dope, data, and free-storage ar~a of
a varying string), the one ~tJhich seems logically most basic

MULTICS SYSTEtvl-PROGRA~1MERS" fv1ANUAL SECTION 80.1.00 PAGE 15

should be given the honored first position in the map {in PL/I
this would be the address of the specifier if there is one, and
the address of the data if there is not).

If the symbol-table format for a translator is extended at any
time, the information-block may be reorganized and the map
changed accordingly, with all additions to the information block
added to the end of the map regardless of where they go in the
block. Thus many changes in the translator need not be tightly
coordinated with changes in the programs which use its symbol
table.

,_....

MUL TICS SYSTEM- PROGRAMf~ERS' MANUAL

No name
External

Root Pointer ________ :> function

Q1
Entry

Address

ALPHA
Single-
word
integer

Argument ,

BETA
Single-
word
floating

Argument
2

Q2
Entry

Address
in
Procedure

GAt~~1A
Single-
\JIJord

. ~oating.
Argument

3

Figure,: Diagram of a symbol table.
Each square represents a node and its
associated information block. Each
arrow indicates a structuring pointer
from one node to another.

SECTION 80.1.00

z
Single-
word
floating
array

Address
in stack

PAGE 16

Internal
Procedure

Address
in
Procedure

QQ1

Entry.

y
Single
\l.Jord
floating.

Address i
stack.

