
MULT1CS SYSTEM-PROGRAMMERS' MANUAL

Identification

SECTION BD.2.00 PAGE 1

Published: 7/11/66

Standard Format for the Segment Symbol Table
D.B. \tJagner

PurQose

This paper specifies the "segment symbol table" which is
expected to be part of the output produced by every trans­
lator used in Multics. If the symbol table is missing, many
features of Multics will not be available to the procedure.

Definitions

An identifi~ is as in PL/I: a string of characters used
as an indivisible entity in a source program. A symbol is
an identifier defined by a programmer in a source program
(ioe., an identifier whose use is not fixed in the language).
In PL/1 for example a symbol may be a scalar variable name,
structure name, array name, statement label (including block
name and entry name), external entry name, file name, or
condition name.

A segment svmbQl table is a by-product of a compilation or
assembly which provides information about the symbols used
in the associated program segment. This contains, for each
symbol defined in the source program, two kinds of informa­
tion: imQlementation information and attribute information.
Implementation i"nformation provides the nece!;sary correla­
tion between the source program and the associated object
program. Attribute information is information present in the
source program which, for example, the user of a debugging
aid should not have to repeat.

Location of lb.~ Symbol j,.9bl~

For a program segment <a>, the base of the Segment Symbo1
Table is at

(a.symbol>l[symbol_table]

The ~ymbol Tablg

The symbol table is structured, that is in the form of a tree,
for at least two reasons: First, PL/1 blocks may be nested.
Second, the best way to give information concerning a PL/1
data-structure is in a tree. There are also other places
where structuring is useful. For example, the entry in the
symbol table for a PL/1 pointer variable may contain pointers

MULTICS SYSTEM-PROGRAMMERS 1 MANU~L SECTION BD.2.00 PAGE 2

to the entries for any based variables which have this pointer
specified in their declarations. Languages other than PL/1
will undoubtedly have other uses for structuring in the symbol
table.

All structuring of the table is done in a standard way which
does not depend on content. This is done so that a standard
subroutine can be used to interpret the structure# no matter
what translator produced the table or what the structuring
11 act u a 1 1 y me an s 11 •

The segment symbol table consists of a header (described
later)# which contains fixed information concerning the
translator# and a collection of entries# one for each symbol
used in the source program# tied together into a tree by 18-
bit pointers (relative to the header).

The Entry

Each entry. in the table consists of an agglomeration of point­
ers# called a node, and an information block giving all infor­
mation about the symbol and its use. The node looks as follows:

info
Word 0 pointer

back
pointer

Word 2 ptr

1",/

Word n+1

,..,

ptr l

n

type

•
•
•

type

!\

r./

.

~

pointer to information block

pointer to immediate
11 parent 11 node

n arbitrary structuring
pointers

Pointers equal to zero are considered null.

The information block contains the symbol name, address
information, attributes, etc. Its format is entirely up
to the creators of a particular translator, except for the
following: a PL/1-style dope vector included in the header
to the segment symbol table should make this block look

MULTICS SYSTEM-PROGR~MMERS 1 MANU~L SECTION BD.2.00 PAGE 3

like a PL/I data-structure# and this data-structure should
contain the name and address associated with a symbol in a
fixed place. This is discussed further below.

Each pointer in the node may have associated with it an
18-bit "type number 11 particular to the translator involved.
In the PL/I symbol table# for example# type numbers are de­
fined for the pointer-variable controlling a based variable#
pointers to substructures of a data-structure# and other
kinds of pointers.

The pointers may be considered to be of two kinds: "branches"
and 11 links 11 (using the terminology made popular by the file
system). Branches are pointers to nodes which logically are
"descendants" of the present node in the tree structure and
links are pointers to nodes which are best considered to be
~'cutting across 11 the tree structure. Operation a 11 y # within
the symbol table a bra~cQ is a pointer to a node whose back­
pointer p.oints to the present node# and a 1 ink is a pointer
to a node whose back-pointer points to some other node (or
is null# as in the case of the root of the tree).

The Header

The header includes information concerning the translator#
the source files# and the format of the "information blocks"
used in the rest of the symbol table.

Word 0 offset

240 length
8

Word 2 beg1n
pointer

Word 3 escape
pointer

Word 4 0

offset

240 length
8

•
•

... ~
•

offset

Word 4+n 240 length
8

(cont.)

--

0

0

n

\

•• ,J

"'"'

I./

Dope for translator name

pointer to head of tree
entries

(see below)

Dope for all file
names involved in
source program

MULTICS SYSTEM-PROGR~MMERS' MANUAL SECTION 80.2.00 PAGE 4

'

•
•
•

1\
Dope vector for
info blocks

The character-strings mentioned above are somewhere in the
same segment as the symbol table, and the "offsets" above
indicate where. All the offsets are from Word 0 of the
header.

The translator name is a character-string something like
11 PL/I 01/01/67 11 • It is used in determining the interpreta­
tion of the entry dope vector contained in the header.

The reason for providing for more than one file name in the
source program is that many translators wi 11 include an insert
feature such that an entire file can be inserted at some point
in a program.

The 11 escape pointer" points beyond all the variable-length
information which follows it to any additional information
added to the symbol table format which is not mentioned in
this document.

Information Blocks

The "dope vector for information blocks 11 makes each informa­
tion block in the table look like a PL/I structure. Natural­
ly it is not necessary that this structure be one that PL/I
would or could possibly compile itself. For example, as
long as use is unambiguous bit-strings may overlap and arrays
(if any) may be indicated as having limits of± infinity.
A complete description of the PL/I table entry is given in
Section 80.2.01 and can serve as an example.

The only requirement for the information block which applies
to all translators is that its PL/1 structure declaration
begins as follows:

del 1 entry ctl(p), 2 name_size bit (9),

2 name char (P+entry.name_size),

2 address bit (18),

2 address_type bit (18)

....

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.2.00 P~GE 5
•

Where address_type is a number specifying how address is to
be interpreted:

0 = irrelevant (no meaningful address)

1 = location in segment

2 = argument number

3 = stack address (offset from sb~sp)

4 = linkage address (offset from lb~lp)

Address_type 1 s up to 2**17 are reserved for coordinated ex­
pansions of this list. Numbers above 2**17 may be used for
11 special 11 address-interpretations germane to only one trans-
1 ator.

· The reason why the address and address interpretation have
been legislated here is that if a 11 nevJ' 1 translator's symbol
table is presented to a debugging program which does not
yet know how to handle the data-descriptions in the table~
the debugger can at least allow a user to refer to the addresses
associated with variables etc. even if it cannot perform all
its functions for him. In the early stages of Multics~ PL/l
will have the status of a new translator.

