
MULTICS SYSTEr~-PROGRAMMERS' MANUAL SECTION BD.3.01 PAGE 1

Identification

Segment Name Table (SNT)
s. L. Rosenbaum

Puroose

Published: 05/04/67

The Segment Name Table (SNIT) is a per-process table maintained
exclusively by the Segment Management Module (SMM). The
SNT is itself a segment within the process to which it
refers and contains information about each segment and
each call name which is currently known to the process.

Wh~n a process initiates a call name for a segment, the
segment known to the process by that name, it causes the
SMM to enter the appropriate information into the SNT.
When q process terminates a call name for a segment, rendering
the segment unknown to the process by that name, it causes
the SM~1 to remove all information from the SNT pertaining
to that name for that segment.

Segments may be multiply-defined, e.g., two procedures
may each use the same segment for its data base - one
knows the data base as "sin.table11 , the other knows the
data base as 11 cos.table11 • Call names also may be multiply
defined, e.g., two procedures may each use a data base
known as "sin.table" - one uses a segment from directory
''>radian", the other uses a segment from directory ">degrees".
A mechanism for 11 relating" the SNT's information handles
the problem of multiply-defined call names. (See the
discussion of 11 Related SNB's11 later in this section.)

A known ~ is a call name which appears in the SNT;
a known name may or may not be associated with a segment;
An initiated name is a call name which is associated with
at least one segment; a terminated name is a call name
which is known for no segment. ----

An initiated segment is a segment which is known by at
least one call name: a terminated segment is a segment
which is known by no call name. When a user or procedure
terminates a segment (terminates all names for a segment),
the SMM removes all information pertaining to the segment
from the SNT.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 2

Organization of the SNT

The SMM records in the SNT the environment existing at
the time of each initiation. That is, it records the
call name, the segment pointer (ITS pair pointing to the
base of the segment), the se~ment's path name in the file
system hierarchy, an indicat1on if the call name is multiply
defined and an indication if the segment itself needs
specific segments for names it calls. Basically, the
information in the SNT is organized around units called
Segment Name Blocks (SNB's) and Segment Headers. Each
initiated segment has one Segment Header and one or more
SNB's. The Segment Header contains information about
the particular initiated segment; each of its SNB's contains
information about the particular initiation for the segment
such as the name for which the segment was initiated.
(Remember: a segment may be known to the process by more
than one name.) All the SNB's for the same segment are
double-threaded to each other; the Segment Header points
to the SNB most recently created for the segment (see
Figure I). Note that ~he SMM can reach the SNB's from
their Segment Header and, alternately, the SMM can reach
the Segment Header from any of its SNB 's. As its name ·
implies, each SNB represents a specific segment initiated
for a specific call ~. As stated earlier, al 1 the
SNB's for the same segment are double-threaded to each
other. Similarly the SNB's are double-threaded by call
name. The SMM can easily access an SNB via these two
main avenues of approach: by segment and by name. An
SNB can exist in the SNT in two forms: an initiated form
and a terminated form. An initiated SNB is completely
threaded - that is, it points to a segment and a name.
A terminated SNB does not point to a segment; it does
polnt to a name. (See figure II.) An SNB is known if
it appears in the SNT~ an SNB is unknown if it does not
appear in the SNT. In light of these revelations:

Initiation is the act of threading an SNB with respect
to a segment, i.e., associating the SNB with a specific
Segment Header. Termination is the act of unthreading
an SNB with respect to a segment, i.e., disassociating
the SNB from any Segment Header. Besides referencing
an SNB by segment, via a Segment Header, the SMM ,
can reference an SNB by its name. Analagous to Segment
Headers, one Name Header exists for each known call
name and contains the symbolic call name which is
independent of segments.

MUL TICS SY S TEt!t- PROGI~AMMERS' ~~ANUAL SECTION BD.3.01 PAGE 3

(Reminder: the name can be initiated for several segments.)
A Name Header points to the SNB most recently created
for the name. Both the Segment Headers and the Name Headers
simplify the SNT by reducing the amount of duplicate information
stored. For example, the character string which represents
a particular symbolic call name is stored only once-
in its Name Header - and each known SNB for that name
points to that Name Header (see figure III).

In order for the SMM to get an SNB or to a set of SNB's
it goes through one of two tables, the Segment Table or
the Name Table. Each entry in the Segment Table points
to one Segment Header which in turn points to the last
SNB initiated for the segment. Each entry in the Name
Table points to one Name Header which in turn points to
the last SNB created for the name. The immediate goal
of the SMM determines its approach to the SNT. For example,
if the SMM wants to find all the call names for a specific
segment given its segment number (or segment pointer),
it enters via the appropriate entry in the Segment Table.
When the SMM wants to find all the segments for a specific
call name, it enters via the Name Table.

To review:

All the SNT's information is easily accessible by se~ment
or call name. One level higher in the SNT organizat1on
are the Segment Headers and the Name Headers. One Segmentl
Header exists for each initiated segment; it contains ·
information about the segment which is independent of
name information, e.g., its segment number; it also points
to the SNB most recently initiated for the segment. Analogously,
one Name Header exists for each known call name and contaiins
the symbolic call name which is independent of the segment
information. The two doorways of the SNT are the Segment
Table - a table of Segment Headers and the Name Table
- a table of Name Headers.

Hence, given a segment pointer, the SMM goes through the
Se1ment Table to a Segment Header to an SNB. Given a
ca 1 name, the SMM goes through the Name Table to a Name
Heaaert'O an SNB. (See figure IV.) -

MUL TICS SYSTEM-PROGRAMMERS' MANUAL. SECTION BD. 3.01 PAGE 4

Related SNB's

In addition to the two methods of cross-sectioning the
SNT discussed above (by segment and by name), the SNT
contains threads which relate SNB's to each other. The
SMM overview (section BD.3.00) and the relate command
(section BX.B.13) discuss the subject of related SNB's
in detail but a capsule description here seems pertinent
and necessary for understanding the SNT's structure.
The following example highlights the main features of
11 re 1 a ted" SNB 's.

A user writes a procedure called "alpha" which invokes
the procedures called "beta" and "delta". Another user
hears about this great and wondrous procedure "alpha"
and wants to use it in his process. Meanwhile back at
the drawing board, "alpha1' 's author decides to guarantee
that 11 alpha" always wi 11 get the right versions of "beta"
and "delta", i.e., the author's "beta" and "delta", even
if the borrower has other segments by the same names.
In addition, "alpha"'s author ·

, .

2.

does not want to re-program either "alpha", "beta"!
or 11 de 1 ta" • e.g., he could make "beta'' interna 1 ·
to ''alpha" but does not want to.

does not want to leave it up to the borrower to
get the correct versions-· in fact, the author
doesn't want the borrower to even have to know
about them.

By using the relate command, "alpha"'s author relates
11 beta" and 11 de 1 ta11 to 11 a 1 pha" so that whenever "a 1 pha",
and only "alpha", calls for a "beta" or 1'de1ta", it gets
the author's "beta11 or 11de 1 ta".

The relate command establishes a segment in the file system
h 1 era rchy where the user expects to find 11 a 1 pha" • This ·
segment., called "alpha"'s relationship segment contains
the actual path name of "alpha", 11 alpha11 's related names,
i.e., "beta" and 11 de 1 ta", and direct ions for obtaining
the specific segments for the related names. The author
of "alpha" can now take a coffee break -- he need do no
more. When the borrower invokes· "alpha'', directory control
informs the SMM that, instead of a segment for "alpha", i

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 5

it has a relationship segment for "alpha". The SMM uses
the relationship segment to get the actual segment and
create a complete SN8 for "alpha". In addition<. the SMM
sets up a skeletal SN8 (known but not initiated) 6 for
each related name - in th1s example 6 "beta11 SN8 and the
"delta". The SMM looks upon "alpha" as a ''mother" SN8
whose 11 daughters" are the 11 beta" SN8 and the "delta" SN8.
To complete the family tree 6 "beta" and ''delta11 are "sisters".
Various switches and pointers in the SN8's, described .
later in this section, keep the family relationship intact.
(Note: skeletal SN8's are always created for "daughter"
SN8 's before 'their "mother'' actually needs them.)

Now when "alpha'' is running and invokes "beta", the SMM
goes into action again. At this point the SMM knows the
segment number of the caller (the segment number assigned
to "alpha") and the symbolic call name of the desired
segment, (the character string "beta"), the SMM does not
know if the caller wants a particular 11 beta" or not.
The SMM looks for an SN8 whose "mother" is the calling
segment and in this case finds the desired SN8 for "beta".
Hence when "mother" calls 6 "daughter" responds. (Figure
V shows the threading for "alpha" and its daughters 6 "beta"
and "de 1 ta" •)

If the SMM had not found a "daughter*' SN8 for the calling
segment, it assumes no relationship was intended and either
uses the "beta" SN8 most recently created (if one exists)
which has its global usage switch set "on" or attempts
to create an SN8 for "beta11 in the normal way. The global
usage switch set "on" indicates that.the SN8 may be used
by any caller looking for this name even if the SN8 itself
is some other segment's "daughter".

If the user desires more information on the topic of related
SN8's he should consult the following sections:

1. for the motivation for relating SN8's- 80.3.00-
The SMM Overview

2. for usin~ related SN8's in the SMM and the format
of relatlonship segments - BD.3.02 - the SMM
primitives using call names.

3. for relating segments by the user- BX.8.13-
relate command.

~···

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.3.01

4. for referencing relationships from the Search
Module, - BX.13.01 -Search Module Vocabulary
(in particular the keywords 11 caller" and

11 caller _not")

Contents of the SNT

The SNT contains:

1. A header which points to two variable length sub
tables - the Name Table and the Segment Table.

2. A Name Table which points to the Name Headers
containing in format ion for each known ca 11 name.

PAGE 6

3. A Segment Table which points to the Segment Headers·
containing information for each initiated segment,
i.e., segment for which at least one SNB is initiated.

4. A Name Header for each known name.

5. A Segment Header for each initiated segment.

6. One Segment Name Block (SNB) for each unique
combination of segment number, symbolic call name
and ring of availability. (E.g., if a segment can
be referenced from both ring one and ring two,
there are at least two entries (SNB's) for it in
the SNT.)

Contents of the SNT Header

A header of fixed length appears at the beginning of the
SNT. · The. head~r points to two sub-tables, each of which
represents a d1 fferent avenue of approach to ·the SNT's 1

information. The neader consists of the following items::

1. Pointer to the beginning of the Name Table- ntrp
The Name Table is used when the user refers to a ·
segment by a symbolic ca 11 name.

2. Size of the Name Table - ntsize

3. Pointer to the beginning .of the Segment Table • strp ~
The Segment Table is used when the user refers to a ;
segment by a segment pointer. 1

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.3.01

4. Size of the Segment Table - stsize.

Contents of the Name Table

PAGE 7

The Name Table contains one entry for each unique symbolic
call name currently known to the process. The Name Table
is a variable length table of pointers, hash-coded with
respect to symbolic call name. It provides the normal
path for referring to segments by a symbolic call name.
Each entry in the Name Table, nhrb, points to a Name Header
which is a block of information a out a single call name.
When a call name is made known for the first time, i.e.,
no SNB is currently known by the name, the SMM creates
a Name Header and inserts a pointer to it into the Name
Table.

The SMM hash codes the call name to determine the position
of the Name Header pointer in the Name Table. The call
name is known now. When a name becomes unknown, i.e.,
there is no longer any SNB for the name, the SMM deletes
all the information associated with the name from the
SNT, including its Name Header and the Name Header pointer
in the Name Table. Now, as far as the SMM is concerned,
the name is no longer known to the current process i.e.,
the name is terminated.

Contents of the Segment Table

The Segment Table contains one entry for each segment
currently known to the process. The Segment Tab1e is
a variable length table of pointers, indexed by segment
number. It provides the most direct route to a physical
segment. Each entry in the Segment Table, shrp, points
to a block of information for a single segment, called
a Segment Header. That is, shrp ~i) points to the Segment
Header for segment number 1. · · ·
When the SMM initiates a segment for the first time, i.e.,
the segment is not currently known to the process by any :
calling name, the SMM creates a Segment Header and insert$
a pointer to it into the Segment Table. If the segment
number for the new segment exceeds the current size of
the Segment Table, stsize, the SMM expands the length
of the Segment Table and increases the value of stsize
accordingly. At this stage, the segment is initiated.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.3.01 PAGE 8

When the SMM terminates a segment~ it removes all the
information connected with the segment from the SNT, including
its Segment Header and the Segment Header pointer in the
Segment Table.

Contents of a Name Header

Each known symbolic call name is represented by one block
of information called a Name Header. A Name Header points
to the detailed data associated with its symbolic call
name. Each Name Header consists of:

1. name- a character string which is the known symbolic
· CaTT name~

2.

3.

nblockn - the number of known SNB's for this name,

nbrp - a pointer to the beginning of the SNB most
recently created for this symbolic call name.

Contents of a SeQment Header
I

Each initiated segment is represented by one block of .
information called a Segment Header. This block of information
contains the data associated with a specific initiated
segment and in effect defines a segment irrespective of
its call names. The Segment Header points to the SNB's
created for this segment.

Each Segment Header consists of the following items:

1. segment number (from which the segment pointer can
be constructed)

2. directory path name

3. entry name

4. unique identification

5. slotlist- locates the segment in the file system
hierarchy

6. delete switch

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 9

7.

8.

9.

10.

, .

2.

3.

4.

5.

usage lock

number of SNB's for this segment

pointer to last SNB for this segment

pointer to last daughter SNB related to this segment

segment number - seqno - which can be converted into
a pointer to the base of the specific initiated segment.
(The SMM obtains the segment number from the basic
file system by calling the directory supervisor's
entry estblseg- BG.8.02.)

directory path name - dpath - path name of the
directory (relative to the root directory) in
which this segment resides

entry name - ename - the entry name of this
segment in ditectory dpath. (If the segment
is in directory ">a>b" with the entry name

11 C11 ~ its path name is: 1'>a>b> c1' • Its 1 i nkage
sect ion segment must be 11>a>b> c. 1 i nk11 ; its
symbol table segment must be 11 >a>b>c.symbol 1'.)

unique identification - uid - the unique
identification assigned ~this segment by
the file system

slotlist- an ordered list of the segment's
slot numbers. (Note: a slot number defines an
entry's position in a single directory -a slotlist
describes its position in the file system hierarchy.)
The slotlist is useful for interprocess communication
since it is not name dependent. Section BQ.6
discussed communication between processes.

The following example illustrates the relationship
between a segment's slotlist and its slotname.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.3.01 PAGE 10

if:

slotlist (1) = 2
s 1 ot 1 is t (2) = 8
slotlist (3) = 7

'· '· ·, ,,. ·.

then the segment's slotname is represented by the character
string = >>2>>8>> 7

6.

7.

delete switch - delsw- determines whether or not the
segment should be deleted from the file system hierarchy
when the segment is terminated.

delsw = 0 indicates no deletion

= 1 indicates deletion

After the SMM terminates the last initiated name for
the segment, i.e., there are no other initiated SNB's
for the segment, it checks the value of delsw. If
the delete switch is "on" (delsw = 1), the SMM deletes
the segment from the file system hierarchy.

usage lock - lock - where

lock = 0 means segment unlocked

= 1 means segment read-locked

= 2 means segment write-locked

= 3 means segment data-share-locked

To read the segment, the process read-locks the
segment (sets lock= 1) preventing another user's
procedure from writing in or data-sharing the
segment. Any number of processes can read-lock
the same segment at the same time. The user must
have read access to the segment in order to read
lock it. Section BG.8.00 describes access rights.
To write in a segment, the process write-locks the
segment (sets lock= 2) preventing other authors
from making modifications at the same time. Only
one procedure can write-lock a specific segment
at any one time. At the time a user attempts to
write-lock a segment the following two conditions
must be true:

f\1UL TICS SY S TU'l- PROGRAMMERS' fv1J\NUAL SECTION RD.3.01 P.l\GE 1 1

8.

9.

10.

1. the user is all0\1\/ed to write in the segment
by having write-access and/or append-access
to the segment.

2. the segment currently is unlocked (lock= 0).

Read-locking and write-locking are relatively
conventional concepts. To facilitate shared
data bases, interprocess communication and more
sophisticated segment usage, the SMM allows data
share-locking of a segment. A data-share locked
segment means that the user agrees to share the
segment with other users who. also have this segment
data-share-locked. These users establish usage
conventions for the segment among themselves. For
example, they mutually agree to allow each other
to monitor each other's modification, i.e., any
one of them can read a segment into which one of
them is currently writing.

number of SNB's - nblocks - the number of unique
combinations of initiated names and rings of
availability known to the process for this segment.

pointer to the last SNB - sbrp - pointer to the
beginning of the SNB most recently created for
this segment.

pointer to the last daughter SNB - 2!£ - pointer
to the beginning of the last SNB created for the
call names related to this segment. Section 80.3.00
discusses the environment of related call names
however as a refresher: When a user wants to
guarantee that a procedure uses a certain version
of a sub-procedure (e.g., whenever this segment calls
for a procedure name 11 sin'', it gets the 11 sin"
procedure in the system library), the user "relates"
the sub-procedure to this segment via the relate
corrvnand. The procedure is called the "mother11

segment, the sub-procedure in the above example,
11 sin") is called a 11 daughter" segment. Sub
procedures having the same "mother'' are called
11 sister" segments.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 12

Contents of a Segment Name Block

An SNB is a crossroads for segment and name information;
it contains roadsigns (in the form of three pairs of pointers)
Which connect it to the other SNB's with the same segment
number 1 the same call name and the same "mother" segment
respectively, One pointer in each pair of pointers leads
to the previous SNB in the chain. Hence 1 it is possible
to start with any SNB and

1. following the segment thread- find all the SNB's
having the same segment number. ·

2. following the name thread- find all the SNB's
having the same symbolic call name

3. following the "sister•• thread- find all the SNB's
having the same "mother" segment.

Each SNB consists of the following items:

1. global usage switch - indicates if this SNB can only
be used if· the calling segment is its mother or if
it may be used by any calling_ segment which wants
a segment with this SNB's call name

2. related segment switch- indicates if this SNB is
a daughter SNS

3. initiation switch - indicates whether this SNB is
in skeletal or complete form~ i.e., whether a
segment has been found for it or not

4. create switch - indicates whether its segment is
in the file system hierarchy or that its segment
must be created

s. search switch - indicates whether the Search Module
may be invoked to find the segment for this SNB
in the file system hierarchy

6. directory name - the path name of the directory
where the segment was or is to be found

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 13

7. entry name- the entry name of the segment that was
or is to be found in the directory defined by 7.
(Note: the path name of the segment is constructed
by concatenating item 7# the graphic ">" and item
8.)

8. unique name - the entry name of the segment copy
in the Process Directory.

9. mother segment's segment number

10. ring number- calling procedure's validation ring·
number (the SNB can only be used by segments calling
from this ring)

11. name header pointer for this SNB

12. name thread

13. sister thread

14. segment number for this SNB

15. segment thread

If the SNB is a daughter SNB# items 1-13 are set initially
when its mother SNB is initiated - the remaining items
are set if and when the SNB is itself initiated, e.g.,
when mother wants to use it.

1. global usage switch- gsw- a binary switch where

gsw = 0

means this SNB is a "daughter'' block which may be
used only by its "mother" block.

gsw = 1

means this SNB may be used by any procedure looking
for a segment with this SNB's call name.

2. related segment switch-~- a binary switch whe.re

rsw = 0

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 14

means this SNB is a 11 daughter block" and items Lf and
5 are meaningful. ~always equals 1 if gsw = o.
The only legal combinations for gsw and ~ are:

gsw

0
1 ,

rsw -
1
0
1

3. initiation switch - isw - where

isw = 0

4.

5.

means this SNB is known but not initiated

isw = 1

means this SNB is initiated.

a create switch - csw - where -
csw = 0

means do not create a segment - the segment is in
the file system hierarchy.

csw = 1

means do create a segment for this SNB and attach
it to the current process's Process Directory.

a search switch - ssw - where -
ssw = 0

means do not search for the segment

ssw = 1

means do search~ i.e.~ invoke the Search Module to
find the segment if it is not found in directory
dpath.

! . j .

MUL TICS SYSTEM- PROGRAMMERS' MA~~UAL

'' I ',, I
'' f :, I! ·'.• '

$ECtiQN BD.3~01 PAGE 15

6. directory name - dpath - a path name which· symbolically
locates the directoryof this SNB segment·in the file
system hierarchy. The discussion of the relate command
(section BX.8.13) describes the method for specifying
the path name of a daughter relative to.

a. root directory

b. the calling directory of the 11 mother" SNB,
i.e., item 6 in the "mother" ~NB

c. various other directories.

7. entry name- ename- the entry name of the segment
that was or is to be found in directory dpath •

. ll.ssume that the segment with the 'path name
''>a>b>c" is used for the symbolic call name
11 x'' then

"
dpath = 11 >a>b''

and

e name = " c"

8. unique name - uname ·• the unique name created
for the segment copy (uname is null if no copy
was made, i.e., the segment "dpath>ename11

is used).

9. "mother'' segment's segment number - msegno - the
segment number of this SNB 11 mother11 •

10. ring number - ringno- validation ring at the
time this SNB was created.

11. name pointer- nhrp- pointer to the name header
for this SNB~

12. pair of name pointers - QnLE and nnrR -

points to the previous SNB for the same
symbolic call as this SFNB, i.e., has the
same name pointer, nnrp. (.P.!J..!::Q = 0 means
this is the first SNB.)

fv1ULTICS SYSTEM-PROGRAMMERS; MANUAL SECTION 80.3.01

points to the next SNB for)hrp.
means this is the last SNB.

(nnrp == 0

13. pair of ••sister" pointers- .E!!.E. and nrrp

14.

points to the previous "sister" SNB, i.e.,
the previous SNB whose "mother" is a 1 so
segment number msegno (prrp = 0 means
this is the first SNB).

points to the next "sister•• SNB (nrrp = 0
means this is the last SNB).

segment number - segno - the number of
(extracted by the SMM from the segment
assigned by the basic file system) for
SNB was created.

the segment
pointer
which this

15. pair of segment pointers - 2§IE and nsrp -

points to the previous SNB for the same
segment as this SNB i.e., segment number
segno. (psrp ~ 0 means this is the first
SNB for segno.)

points to the next SNB for segment se~no.
(nsrp == 0 means this is the last SNB . or
segno.)

PAGE 1 Ci

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.3.01

Segment
Header

·~

SNB

•

r

SNB

A~

•
SNB

Figure I - Representation of an Initiated
Segment

PAGE 17

MUL TICS SYSTEM- PROGRAMME'RS' MANUAL

SNB

(initiateq)

SNB

(terminated)

SECTIOI\I BD.3.01

Figure II - Representation of a Known SNB -

PAGE 18

A Known SNB can be initiated or terminated

"x"
name
header

,-- "" l y
name
header

seg..,lO
segment
header

figure III - Segment #10 is initiated for (known to the
process by) only the name "y"

Segment #25 is initiated for both the
name "x" and the name "y11

seg#25
segment
header

3:
r-
·~ r
-1
1-f

n
v:

Ul
-<
(/')

-1
rr;
3:
I
\J
;;o
0
G)
;:o
l>
3:
3:
i7l
;.o
(/')

\

3:
)>
z
§;
r

(/)

fTl
n
-1
0 z
co
CJ
•
V-1
•
0

~
G)
fTl

~

1..0

. . .

·~

Figure IV

SNT Header

II J

Representation of Segments
and names in the SNT

3: c:
r
-f -0
(/)

(/)

-<
(/) _,
fTl
3:
•• ""b

:::0

8
~
3:
::s: ,.,
:::0
(/)

'"
~ z
~
r

(/) ,.,
("') _, -0 z
Ol
0
• v.
•
0 -
~
G1
TTl

N
0

"alpha"
name
header

~

"x"
name
header

IE - initiating
e ·segment nalpha"
either the name
~pha" or the name ''x"
kes the names nbetan
l J'delta" known
lling names.)

"

.. beta"
name
header

"delta"
name
header

seg "delta".#
segment
header

seg "beta"*
segment
header

,
/

'b
,~~

. ~,

~
,~

;I'

»<;
11;.::,40/

,?:>.,
~,~/

#<;/

/

Figure V - Representation of Related SNB's and
their Mother S~nt ~,_...

Mother is "afpha"# Segment (name~
n a Tpha" and "x11)

Daughters (sisters) are 11 beta"
~nrl 11 rlPlta11 SNR's

seg "alpha"#
segment
header

3:
c
r
-1
1-f
(')
(/)

(/)

-<
(/)

-J
rn
3:
I

"'U
;u
0
G)

~
i
rn
;;o
(/)

\

~ z
~
r

(/)
rn
(")

-1
1-f

0 z
to
0
•
~

•
0

;g
G) ,..,
I')
-a

MULTJCS SYSTEM .. PROGRAMMERS' MANUAL SECTION 80.3.01

Implementation

. All pointers {except the pointer to the segment for the
SNT) are r~lative to the beginning of the SNT segment.
As such, these relative pointers are implemented as 18
bit numbers. . .

The SMM allocates storage. for the SNT structures In the
same way· as the basic file system. •

. . ' ! .

/'1• declarations for the segment name table *l

dc1 sntp ptr static;

I* declaration for segment name table header .*/

·del 1 snt ctl (sntp), · . . · ·
2 ntrp bit (18). l* pOinter to name table */
2 strp bl t (18), /* P9inter to segment table */.

PAGE 22

2 ntsize fixed bln(17), I* size of name table. *I ·
2 maxsegno bi,t(18),/* largest known segment numt?er */
2 nfilled fixed bin(17), /* nvmber of entries in

name t2Jb le *l . . ··· · ·. . .. ·.·
~.ndelete fixed bin(t7), /* nunt>er of cdeletions from

the name table */ · ·
2 stsize fixed bln(17)., l* size of segment table */
2 htsizemih fixed bin(17), . . · · · · .
2 stsizernin ftxed.b1n(l7), · · .. · · ·
2 sntarea (1~50) fixed bi.n(35)~ /*area for table */

, .. ~. declaration .for Name Table */

del 1 ntable (sntp. ->. snt.ntsize) ctl(ntp),
2 vacant bl t(1) , ./* vacant blt */ . · ..
2 delete. bit(1} ·.·.I* delete bit. *l. . .
2 lichat' fixed b1n.(17), ·•·· .. ··· .. ·· .. l'k length of name */
2 nhrp.bit >(18); l* relat·lve .. pointer to name header */

· ,.,~ declaration for segment table .*/· ·

del 1 stable (sntp -> sn·t.stslze) ctl (stp},
2 vacant q Lt (1), l* vacant bl t *l
2 shrp bit(l8); /* relative pointer to segment header */

' .

~'H II.. TIC~ SY '::J TUI- PI<.OGH/\f"l~lERS' ~'1ANU~\ L SECTION RD.3.01 Pt\GE 2 3

j"k declaration for name heade1~ ~··;

del 1 nhead ctl (nhp)., j·k one for each name "'•/
2 nchar fixed bin(17)., I* number of chars *I
2 nblock fixed bin(17)., I"~• number of sfnb9~s-for name ~··;
2 nbrp bit(18)., ;~·· rel pointer to last sfnb for name"''/
2 name char(nhp-> nhead.nchar); symbolic call name ·kf

1~·· declaration fot· a segment header ~··;

del

! ·'-"

/ ··-"

1 shead ctl (shp), /*one for each segment */
2 segno fixed bin(17), ;·:. segment number ~··1
2 slotsize bit(17), I* number of slots */
2 slotlist (shp -> shead.slotsize) bit(17).,
list of slot numbers ·kl
2 ncdpath fixed bin(17)., 1-,'(chars in directory path ;'•/
2 dpath char (shp -> shead.ncdpath),
directory path name *I
2 ncentry fixed bin(17), /'~• chars in entry name "~•/
2 entry char (shp -> shead.ncentry), I* entry name *I
2 delsw bit(1)., I* segment delete switch *I
2 lock bit(2)., I* segment usage lock *I
2 nblocks fixed bin(17), I* number of sfnbs for segment -
2 sbrp bit(18), I* rel pointer to last sfnb for segment "~•/
2 drp bit(18)., ,..,., rel pointer to last daughter for segment "~•!
2 uid bit(70); I* unique identification of segment *{

I* declaration for an snb */

de 1 1 s nb c t 1 (s nb p)..
2 gsw bit(1), I* global usage switch *I
2 rsw bit(1)., I* related switch*/
2 isw bit(1)., /* initiation switch*/
2 csw bit(1)., I* create switch*/
2 ssw bit(1), /*search switch*/
2 ned fixed bin(17)i I* chars in path *I
2 dpath char (snbp~snb.ncd), I* pathname of directory *I
2 nee fixed bin(17), I* chars in entry name *I
2 entry char (snbp--.snb.nce)., I* entry name *I
2 ncu fixed bin(17), I* chars in unique name *I
2 uname char (snbp~snb.ncu), I* unique name *I
2 msegno bit(18)., I* mother's se~ment number *I
2 ringno bit(18), I* ring of ava1lability *I
2 nhrp bit(18)., ;~·· rel pointer to name header *I
2 segno bit(18), I* segment number *I
2 (prrp.,nrrp) bit(18)., /"~• related pointers "'•/
2 (psrp.,nsrp) bit(18), /* segment pointers *I
2 (pnrp.,nnrp) bit(18); I* name pointers *I

