
/

TO a
FROM a
SUBJECTs
DATE 1

MSPM Distribution
R. M. Graham
80.7.01
02/12./68

The attached issue of 80.7.01 supersedes the issue of
05/12/67 and the Appendix of 05/29/67, and contains the
following revisionsa

1. The location of the static block has been changed.

2. The linkage block threads now terminate with null
poln.ters.

3. The calling sequence to trap routines has been
changed.

4. Entries in the linkage section now contain a
usage counter for performance monitoring.

s. Gates and doors (used by the protection mechanism)
have been added.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.01 PAGE 1

Published: 02/12/68

Identification

Linkage Section
R. M. Graham

Purpose

(Supersedes: BD.7.01~ 05/18/67;
BD.7.01, 03/07/67;
BD.7.01, 06/30/66;
BD.7.01~ 04/08/66)

To permit symbolic inter-segment references and dynamic
linking during execution, it is necessary that the symbolic
information needed to assemble a final machine address
be available at execution time. The linkage section contains
the needed information. This section describes the structure
of the linkage section.

A segment <d> is actually a collection of up to three
segments; <d>, <d. link>, and <d.symbol>. <d. link> contains
part or all of the linkage section and <d.symbol> contains
a symbol table and parameter type information (BD.1.00),
binding information (BD.2.01), unlinking information,
and other supporting information.

The principle users of the linkage section are the linker
and its supporting linkage maintenance routines. In
particular, the linker has the option of combining a number
of linkage sections into a single segment. This combining
takes place without any relocation of any items ln the
linkage section. This means all "addresses" in the 1 inkage
section must be self relative (relative to the IC) or
relative to the header (relative to the lp base).

The Linkage Section

Language processors and binders produce a linkage section
consisting of one or more linkpge blocks threaded together
with two pointer threads. Each linkage \"block begins with
an eight word header. This is followed by a (possibly
empty) block of static storage. The block terminates
with the links. The format of the header is,

0 ~--~rT~~~~~~~~~~~~~~
2 ~~~;T~~~~~~~~~~~~~~
4 ~~~~~~~~~~~~~~~~~~
6 ~~~~~~~~~+=~~~~~~~~
7 ~~--~----~~~~~~~~~~~~

Segment_length is zero in all blocks but the first.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION 80.7.01 PAGE 2

link_begin

block_ length

segmen t_numbe r

segment_ length

The location, relative to the
first word of the header, of the links.
If llnk_begin equals 8 there is no static
storage. The block of words between the
header and the links is for use by <d>
(if it is a procedure) as internal storage
of the type called "internal static" in PL/I
and "own" in ALGOL.

is the length of this linkage block
(including the header and the static block).

is the number of the segment <d>,
i.e., dfl. This will be set by the linker
for its own use.

is the assembled length of the.segment
<d. 1 ink>.

The next and preceding block pointers form the two threads
connecting the linkage blocks. The nxt_blk ptrs form one
thread (the nxt_blk_ptr a null in the last block) and the
pre_blk_ptrs form the other thread (the pre_blk_ptr =null
in the first block). The static block is followed by
the links (including the entries). The def ptr points
to the beginning of the external symbol definitions and
the link definitions. If def_ptr s zero, there are no
deflnrtTons. The definitions need not be in the same
segment as the links and entries. Further, it is possible
for any block to be in a different segment. figure 1
shows an example of a linkage section with several linkage
blocks. figure 2 shows the layout for one linkage block.
In general, initially a segment has only one or possibly
two linkage blocks, any others getting added during execution.
The initial block is the one normally pointed to by the
base pair (lb~lp).

Link~ and~ Definitions

For every distinct external reference from within a segment
at least one link occurs in the linkage section. A link
initially contains an ft2 modifier (see figure 2) which
will cause a fault to the linker when the link is first
referenced. External references are made indirectly through
the link. For example, suppose that the pair of words
at <d.link>l dk2 in figure 2 is a link for the external
reference <s> r [x] and that the value of (lb .-lp) is
<d.link>fd. lp, then the instruction,

lda lpfdk2-d. lp,*

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD. 7. 01 PAGE 3

will load the A-register with the contents of <s>l[x].
The linker replaces the original contents of the link
by an its pair which points directly to the referenced
location-(this replacement is called linking). Figure
3 shows the different types of external and self references
and the contents of the link after linking. In all types
either exp or m or both may be omitted in which case
they are zero Tn the link. Before linking~ the link contains
two pointers; the head ptr and the exp_ptr. The head ptr
points back to the beginning of the header for this bTock.
The exp ptr is relative to the def ptr; i.e., def_ptr + exp ptr
is the Tocation of the beginning ot the link definition. -

The link definition always contains an expression word and
a~ pair. In addition~ there may be a segment name
and/or external a,vmbol and/or a .tr..22 word.· The right
half of the expression word contains ~18-bit value
of ~xZ to be used in calculating the address part of the
lin the left half of the second word of the its pair).
The left half of the expression word is a pointer to the
type pair. All pointers in the definitions are relative
to the def_ptr.

The left half of the first word of the type pair is the
~ ~ of the reference, as defined in Figure 3. The
left half of the second word is either the base (in the
left most 3 bits when type# = 2), the seg_ptr which points
to a segment name (when type# = 3 or 4)~ or the self-reference
type (when typffil = 1 or 5). The right half of the second
word is either zero (when type#= 3 or 1) or the ext ptr
which points to an external symbol. Segment names and
external symbols are stored as variable length character
strings with the character count stored in the first 9-bit
field and the l~st word filled out with the null character,
(000)8; e.g., "matrix" is stored:

(006)8 m a t

r i X (000)8

The use of a type 1 or type 5 link in <d.link> permits
self-reference without explicitly mentioning the segment
name. A type 1 link is similar to the type 3 except that
the seg_ptr indicates which of the segments <d>, <d.link>,
or <d.symbol> is being referenced. The following code
is used:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD. 7.01

seg ptr value segment being referenced

0

1

2

<d>

<d. link>

<d.symbol>

PAGE 4

A type 5 link is similar to the type 4, however seg_ptr is
ignored since the definition for the external symbol indicates
the appropriate segment.

The right half of the first word of the type pair is either
zero or contains the trap ptr, which points to the trap
word. This word contains-two pointersJ the call_ptr and
the arg_ptr. Both of these pointers are relative to the
origin of the header and point to links. The trap_ptr
is non-zero when the user wishes to gain control from
the linker before the linker attempts to generate the
link. The call_ptr points (indirectly through a link)
to the procedure entry that is to be called before the
link is generated. The arg__ptr points (indirectly through
a link) to an argument list which the user wishes to make
available to the called procedure. Suppose the user wishes
that before the reference <s> 12 is 1 inked, the 1 inker
should call <A>I[x] with argument list <D>I[y]. Before
generating the link to <s>l2 the linker will execute the
call,

call A$x (Dp, me, fp, trap_flag)

where,

dcl(Dp,fp)ptr, me (0:22)bit(36), trap_flag fixed bin (1)

Dp a pointer to the beginning of the users argument list.

me an array into which the linker has stored a copy of the
machine conditions as they were at the time of the fault
which invoked the linker.

fp a pointer to the faulting pair

trap_flag (not used for trap before link)

Since the call to <A>I[x] goes through a standard link,
the call may cause an £12 fault to the linker. This causes
no problem since the linker is a normal multics pure procedure
(i.e., recursive and re-entrant). The trap feature is
used by various subsystems (e.g., PL/I, FORTRAN) for their
own peculiar storage management. Their storage management
sub-routines ar~ able to gain control before links are
generated, and thus may actually create the segment about
to be referenced, combine existing segn~nts, or add new ~
external symbol definitions.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.01 PAGE 5

External Symbol Definitions

The def_ptr points to the first external symbol definition.
A definition consists of two words preceding the symbol.
The left half of the first word contains the next ext ptr
which points to the next external symbol definition. -
This pointer is re1ative to the def_ptr. All of the external
symbol definitions are threaded together by the next_ext_ptrs.
The thread for this block terminates with a zero word
(there may be additional definitions in succeedin~ linkage
blocks). If there are no external symbol definitions~
def_ptr points to a zero word. The second word preceding
the symbol contains the value of the symbol and its class.
A symbolic reference <d>J[x] may refer to any of the three
segments <d>~ <d.link>~ or <d.symbol> depending on the
class of the external symbol [x]. If the class is zero
or not defined. the value of the symbol is taken to be
relative to the origin of <d>. For example~ if [x] is
defined with 1la~s = 0 and value= 25. then <d>f[x] will
generate the n :

d/1

25

Four class codes have been defined.

1. When clss; = 1~ [x] Is a procedure entry point. In
this case. Vs ue Is relative to the origin of the header
of the linkage block in which the definition occurs.
In Figure 2j if [x] h~s ~lass = 1 and value = inpoint-d. lE.
then <d>f[x will generate the link:

d.link/1 Its

inpoint

Thus. a link is made to the group of instructions at
<d.link>finpoint. The eaplp instruction sets the base
pair (lb~lp). to their correct values for the procedure
in segment <d>. The tra instruction then transfers (indirectly
through a link at <d. link> r in) to the procedure in <d>.
The aos instruction increments a counter which is used
by the system for performance monitoring.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.01 PAGE 6

2. When c~ • 2. the value of [x] is taken to be relative
to the origin of <d.symbol>. For example. if [x] has
~s- 2 and yalue =a. then <d>l[x] will generate the
link:

d.symbolll its

8

3. When ~s= 777777(8). this definition is ignored
by the linker.

4. When~= 4.[x] is an external label. i.e. a
label to which an abnormal return may be made. A class = 4
symbol is identical to a c~asj = 1 symbol in every
other respect (including t e nclusion of an instruction
to load lp. which is its purpose).

When the right half of the first word is non-zero it is
a trap_ptr which points to a traR 'lr~ just as in a link
definition. This allows the speci e procedure to be
executed before the definition is used by the linker.
The interpretation of this trap word is identical to that
of the trap word for link definitions. Before using the
definition the linker will set trap_ptr to zero and execute
the call.

call A$x (Dp. me. fp. trap_flag)

where.

del (fp.Dp)ptr. mc(0:22)bit(36). trap_flag fixed bin(1)

Upon return from <A>I[x] if trap_flag • 1 trap_ptr is
left set to zero. thus preventing the trap from occurring
again. or if flag = 0 trap_ptr is reset to its original
value. Any definition in which the trap_ptr may be modified
during execution. due to the use of the trap feature.
must be in the linkage segment. This may require that
such a linkage section originally contain at least two
linkage blocks. Qe. m£. and £e are the same as for a
trap before link. Trap flag Is set by the called trap
procedure to indicate i7 further traps on this definition
are to be suppressed. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.01 PAGE 7

G~tes and Doors

Gates and doors are special kinds of entries required
by the protection mechanism. They are, in fact, entries
which may be called from outside the ring in which they
appear. When called from within their own ring they are
indistinguishable from other entries. When called from
outside their ring the gatekeeper, in response to a wall
crossing fault, requires the information specified in ·
this section. See BD.9 and BD.9.01 for further information
about the protection mechanism and an explanation of the
information attached to a gate or door. Only the format
is specified in this section.

An entry which is a gate or a door is distinguished from
a normal entry by the presence of an additional instruction
(a nof) in the entry sequence in the linkage section
(see igure 7). The address field of this instruction
contains a relative pointer (relative to the header) which
locates the descriptive information for the gate or door.
This information begins with a single word containing
the following information,

bits information

0 .. 5

6 .. 7

8

9 - 17

18 - 35

The highest ring number permitted to call
this entry, i.e., the £Sl! bracket.

code indicating if this entry is a gate or
a door:

1 - this entry is a gate

2 - this entry is a door

code indicating if the gatekeeper is to
validate the arguments when this entry is
called:

0- gatekeeper should not validate
arguments

1 - gatekeeper ls to val!date arguments

not used: should be zero

N, the number of arguments for this entry

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION 80.7.01 PAGE 8

If the N arguments are to be validated by the gatekeeper
(bit 8 = 1) then the descriptive information continues
with N/2 words which describe the type of each argument.
Each half-word (18 bits) describes one argument,

bits information

0 flag indicating if the gatekeeper is to consider
this argument a return value

1 - 17

0 - not a return value

1 - argument is a return value, gatekeeper
will copy the final value of this
argument back into its orig ina 1 location
in the callers ring.

code indicating the data type of this argument.
The legal codes are described in BB.2.02.

Linkage Section Before Loading

The links and entries of the initial linkage block for
segment <d> are part of the file (segment) "d. 1 ink".
Segment <d> itself is the file "d". If <d> is pure, as
is the case when <d> is a procedure segment, the definitions
are normally part of <d>. If <d> is an impure data segment
all of the initial linkage block will nqrmally be in <d. link>.
If there is more than one linkage block, as there may
be if the trap before definition feature is used, the
additional blocks will always be in <d.link>. The headers
of the initial linkage blocks are included in the file
"d. link". If the definitions are in <d>, the first two
words have the form:

0 0 0

df

where <d>fdf is the beginning of the definitions. When
the segment <d> becomes active, the linker will fill in
the first word with

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.01 PAGE 9

If the definitions are in <d. link>, the first two words
have the form:

0 *
k 0 0

and the definitions begin at <d.link>lk + d.lp. If there
is only one linkage block nxt_blk ptr and pre_blkptr
contain null pointers. If there Is more than one linkage
block nxt_blk_ptr contains,

0 *
nx 0 0

and the second block starts at <d.link>lnx +d. lp.

Example Linkage Section

As an example of the linkage section, consider the EPLBSA
program shown in Figure 4. Suppose this is a procedure
segment <d>. Figure 5 shows the contents of <d> during
execution. Figure 6 shows the contents of the linkage
section for <d> immediately after loading and before any
links have been established.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.01 PAGE ,10

<d>

definitions

for

block 1

lb .-lpz
~

contents of <d.link> (however,
not necessarily in <d. link>)

..

..
--
null ptr

11
d/1 11 + 12

a static block

for <d>

-
links (and entries)

for block 1 ..
...

null ptr

-
- r-e 8 12

0 0
links (and entries)

for block 2

l-+

definitions for

block 2

Linkage Section for <d>
Figure 1

header
block 1

_)

headJ
block 2

11

2

dfl

df2

df3

df4

dfS

df6

df7

df8

MULTICS SYSTEM-PROGRAMMERS' MANUAL

~

I
I
• I

~

' I
I

L+

I

--1
I
I
I
I

. .-..

......-

I
I
I _.
I
I

I

r
' -r

(external svmbol definition) d.lp

trap_ptr/0
~ _.

next_ext_ptr

value class

external symbol

I

(external symbol definition) I
I

next ext _ptr trap ytr/0

value class
I
I

'
dk2 -I

I

'
I

0 0 I
I
I .

(expression word) 1 inpoint
i I t-

type_ptr exp -
l
I

(type pair) I -
I

-
type 41= trap_ptr/0
se¥#-tr~base/ I
~~jie-re erenc exp_ptr/0 - I

I
I

I
in~ I

I

(segment name)
j I
I I
I I

I

(external symbol} ~ dk~
I
I

(trap word} I
I -- I

call_ptr arg_ptr I

dk4 L.l
segment <d>

Linkage Block for <d>

Figure 2

SECTION 80.7.01 PAGE 11

(header)
dl

d# 0 its }J
dfl 0 0

f_ptr

(link) I
I

head ptr 0 ft2

exp ptr 0 m

(entry) ' I

d 1 • p - * 1 eap p ~c

2 aos ic

in - * tra ic*

usage counter

(link) I
I

I
I

I

(link) I
I
I

I
(link) I

I

<d. link>

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.01 PAGE 12

~ 11. reference~ generated J..!.Dls.

1 * J exp,m *II its

exp m

2 basef[ext]+exp,m base*2**15 itb

ext+exp m

3 <seg>fexp,m seg II its

exp m

4 <seg>l[ext]+exp,m seg II its

ext+exp m

5 ,'r I [ext]+exp, m -.'r:ff its

ext+exp m

External Reference Types for 1 inks in <d. 1 ink>.

*refers to one of the segments <d> <d.link>, or <d.symbol> and
seg_ptr identifies which one

segdef
entry
segref

c lc: save
lda
sta
eapbp
lda
sta
lda
sta
return

mass: arg
end

Figure 3

mass
clc
dta,x(<all>l[str](<dpe>IO))

<rat> I [gas]+5, *
X+ 40
<rat> ro
bpf[heat]
<rat> r [gas]+5
<rat> J [gas]
<rat> 0

30

EPLBSA Program for Procedure Segment <d>

Figure 4

'

-..I

/

,...,
MULTICS SYSTEM• PROGRAMMERS" MANUAL SECTION 80.7.01 PAGE

F lgure 5c Contents of Segment <ct> During Execution

<d> 0

2

4

6

0

10

12

14

17

20

24

25

26

28

29

31

(3)8

(4)8

s

0

1

0

(3)8

eapbp
stpsp
eapbp
st~p
ea sp
stpap
lda
sta
eapbp
lda
sta
lda
sta
ldb
lreg
rtcd
arg

20-17

8

c

24-17

16

m

26-17

29-17

3

31-17

I d

sp 18., ... ~
bp 16
bp 32
bp -14
bp -32
sp 26
lp 18., *
lp 20., *
lp 22.,*
1p,24.,*
1pl26.,*
lp 28.,*
lp 22 * " sp 16.,*
spf8
sp 2.0
30

--

0
--·----··--··~~···-

1

1 c

0

0

a s

0

0 <d> IO
0

0

0 <dpe> IO
0

0

p e

13

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.7.01 PAGE 14

32

33

35

36

37

38

40

41

42

43

45

46

47

48

50

51

53

55

56

33-17

4

35-17

(3)8 a

(3)8 5

38-17

4

40-17

(3)8 r

(3)8 g

'+3-17

4

45-17

(3)8 d

1Z

48-17

3

40-17

51-17

2

bp

(4)8 h

t

38-17

(1)8 X

0 <all>f[str]

0

36-17

1 1

t r

5 <rat> I [gas]+S~ *
0

41-17

a t

a s

40 <dta> r [x]+40

46-17

56-17

t a

14

0 <rat> ro
0

0

0 bpf[heat]

0

53,.17

e a

0 <rat> r [gas]

·/
......

___. .

,_...,
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.01 PAGE 15

k + 0 d#
17

2 -1
1

4 -1
1

6 8
df!

8 -8
2

10 12-10

12 -12
25-17

14 -14
32-17

16 -16
28-17

18 -18
37-17

20 -20
42_-17

22 -22
47-17

24 -24
50-17

26 -26
37-17

28 -28
55-17

0

0
0
0
0

eaPlP
aos
tra

its
0

its
0

its
0

30
30
ic
ic
ic*
0

ft2
0

ft2
0

ft2
0

ft2
";'(

ft2
0

ft2
0

ft2
0

ft2
0

ft2
0

<d> IO

<all>l[str]

<dpe> IO

<rat> f [gas]+5, -,'(

<dta> I [x]+40

<rat> ro
bp f [heat]

<rat> f [gas]+5

<rat> I [gas] ·

Contents of <d.link>, Links and Entries Immediately After Loading

Figure 6

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.01 PAGE 16

- linkage section
lp

gate or door entry

gate_info nop..J,.a. 0

d.lp - * eaplp ic

gate_ info 2 aos ic

in - * tra ic*

0 arg 0

. . .

lo 67 8 9 n I v.v..arru~21 of arguments
~ .. f.:cb 1 g P.:: . ~for this entry

lr I type of argl lr I type of arg2

cb = highest ring number in call
bracket -,

g = 1 if this entry is a gate ~

IO 1 17 2 if this entry is a door

• . .
lrl type of arg n

v = 0 if arguments are not to be
validated

1 if gatekeeper is to validate
arguments . . •

r = 1 if this argument is a return
value

0 if no. value is allowed to be
returned for this argument

Figure 7

