
..

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Standard Error-handling Practice
M.A. Padlipsky, F.J. Corbato'

Introduction

SECTION 80.8.00 PAGE 1

Published: 03/14/69

Consider a file directory searching routine which fails
to find a specified file: to, say, an editor which has.
just created a new file, its ''not found'' result--or "status"
--code would mean that there is no necessity to delete ·
an older version; but to, say, the rename command, the
same status would mean that the user must be informed
of the fact that he~s made an error. (As a matter of
fact, the editor should probably treat the "file found"
result as a possible er~or and reflect it to the user.)
The point is that in general the decision as to what a
part icu la r resu 1 t from a particular routine "means" shou 1 d
be deferred to as high a level as possible; i.e., to the
routine's caller, or that routine's caller ••• or ~o the
user who issued the command which started the whole chain.
To put it another way, results must be interpreted and
only the caller can interpret them. This is not to say
that there are LlQ. conditions encounterable which are clearly
errors--although the examples which come to mind are usu:ally
hardware rather than software conditions: operation not
complete, e.g. It is, however, so often the case that
the result of a subroutine call is an error only in its
caller's context, that a system-wide point-of-view must
be enunciated for dealing with such matters.

Because of the wide variety of conditions which may be
encountered, no abstract, absolute rules can be laid down
for interpreting status codes. Such decisions must be
left to the implementers of the various commands. The
handling of error situations after they have been recognized
is, however, leg is latab le. (The resu 1 t which requires .
user interaction for clarification must also be left to
the in~enuity of the command writer; ipso facto error
situat1ons only become evident in such cases when a qu~stion
must be asked of the user, but the command is currently
operating in behalf of an absentee user process.)

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.8.00 PAGE 2

There are three broad categories of routines to be dealt
with in this discussion: subroutines, commands, and commands
which are likely to be called as subroutines. (Some light
on the distinction between the first two categories wi 11
be cast by BX.O.OO, and inferentially by BY.O; the third
category should be illuminated by the following.) In
addition, a fourth category of routines--subroutine complexes--may
be distinguished, so as to cover the special problems
of mutually-dependent, mutual-calling groups of subroutines
such as the Basic File System "primitives".

Sub royt ines

The fundamental point about the error handling practice
of system subroutines is that results of a subroutine's
execution are always referred to its caller for interpretation.
That is, subroutines "always" (i.e., barring unforseen,
non-software catastrophes) return. Therefore, if there
is any potential variation in a subroutine's behavior
it always has a "status code" argument in its calling
sequence, in order to be able to communicate to the calling
routine either the fact of successful completion (i.e.,
status is "normal'') or the encountering of some not-necessarily
anticipated condition (e.g., our old friend "file not
found"). The status code argument is declared fixed
binary(17), and codes are assigned low,· sequential numbers.
In general, the codes are unique to the called subroutine;
by convention, zero is the code for normal completion.
(See the passage below on "subroutine complexes" for discussion
of conditions under which status codes are not exactly
unique to the called subroutine.) A subroutine's documentation
~ specify its status code values and definitions.

Note that run-time routines for various languages such as
Fortran are frequently a degenerate case of the above, since
they do not admit of any completion status other than
successful.

Commands

Commands, when they have been invoked as commands, are
in general in a position to interpret status codes returned
by any subroutines which they call. After testin~ a non-zero
status code returned by a subroutine and determin1ng that
execution should not continue (i.e., the code is an error
in the context of the command), a command follows the
standard practice of invoking the com_err service routine
(80.8.06) as follows:

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

call com_err (short 1 long);

where short is a short-form (character-string) error message
and l£ng is a fuller version. The com_err routine will
check the brief option 1 and place either short or 1£ng
in user_output 1 with the general result that the appropriate

. messa;1e is printed at the user console; if short is chosen
~ong 1s stored in ~user _e,rror> for subsequent inspect ion 1

1f the user so des1res. The short-form message should
be an appropriate 8 character mnemonic, along the lines
of those documented in section BY.2.02 which are used
by the command system when reflecting file system errors;
the mnemonics must, of course, be interpreted in the command's
documentation. The lon;1-form message should contain three
items: a ~eneral descr1ption of the error condition .
(i.e. the 1nterpretat ion of the short-form mnemonic);
specific identifyin~ information where relev.:tnt (e.g.,
if the error condit1on is "file not found", the file's
name); and the offending subroutine's name (if known)
and status code. The second item may not be relevant~
but if present should be separated from the rest of the
message by a 'semicolon. A contrived example:

call dir_search (name, ptr, code);

if code=O go to onward;

if code ·> 1 go to unknown;

msg="Fi le not found:'' II" ;dir_search 001'';

ca 11 com_err ('' nof i 1 e'', msg);

onward: return;

• 0 •

Note that the possibility of an unknown status code must
be all owed for. (The example assumes that only •• 1'' has
been defined.) Standard practice in such cases is to
set the short-form message to the null characteJ- string
and the long-form to the offending routine's name and
status code (i.e., for those .situations in which the subroutine
is reprehensibly returning status cod~s which arc new
to the command); com_err wi 11 concc::~tenate "Unl<nov,m status
code:" to the long-form when the short-form is null. ~Jht::n
com err returns, the command returns to its caller.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.8.00 PAGE 4

Comroands/Syb(9utiqes

It is sometimes the case that routines which are normally
commands are often called as subroutines; li.nk and un 1 iqk
are prominent examples. In such cases, it1Sclear that
the routine mus'J: determine wh·ich incarnation it is currently
in, so as to be able to choose which of the two courses ·
just described to follow. All such commands, and indeed
eventually all commands whatsoever, deal with their potentially
dual nature in the following fashions A command named,
say, 11 com11 will contain an entry point which has the same
name but with an underscore appended (<com>l[com_), or
com$com_) for being called as a subroutine. Hence when
com is called at <corrt>l[com], it sets a switch indicating
that it has been called as a command; when called at <com>l[com_],
it sets the switch to indicate that it has been called
as a s~broutine. Then, when it becomes necessary to deal
with an "error" condition--or, of course,to reflect its
own status on completion--~t behaves according to the
subroutine practice or the command practice as appropriate.
Note that this approach imples that the subroutine entry
point has an additional argument, for returning a status
code. As with subroutines, co~nds which are intended
to be are callable as subroutines~ specify their status
codes~ values and definitions in their documentation.

Subroutin~ Complexes

The foregoing policies are effective for commands and
for what might be thought of as "standard'• subroutines.
In the Basic File System and the l/0 System, however,
the subroutines involved are far from standard. That
is, the constitutent routines of these two subsystems
of necessity make a large number of calls among themselves,
and to spec ia 11 y interpret the resu 1 t of each ca 11 according
to a set of codes unique to each called routine would ·
be highly inefficient. In a certain sense then, the Basic
File System and the l/0 System are to be viewed as being
each one a single subroutine~ The general status information
which mi~ht need to be reflected by a constituent routine
is codif1ed and coordinated, and results encountered "down
the 1 i ne11 are in. genera 1 passed back 11 up the 1 i ne" without
special interpretation. The responsibility devolves upon
the caller of the subsystem to perform whatever interpretation
is needful. (Another way of viewing the situation is
to raise the quibble that any subroutine in either of
the two subsystems can itself return as its status code
essentially any status encountered in its subsystem--which
is to say that each routine "uniquely" determines its
status codes in what happens to be the same way as a number
of other routines do.)

-..

. '

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.8.00 PAGE 5

In view of the rather,complex nature of status codes from
subroutine complexes, ,the command writer must be relieved
of as much of the burden of interpretation as is feasible.
Naturally, he must te~t for specific status codes as appropriate
to the needs of the command at hand, but each command
should not have to account for all status codes. Standard
bractice in dealing with non-zero status codes from these
subsystems must, then, permit pre-interpretation in the
sense that status codes are associated with "canned" descriptive
information which may then be reflected to the user.
In the case of the Basic File System, the information
is available throu~h fscod~dinfo (BY .2 .02). I/O System
information is ava1lable through check_io_status (BY.4.03) •
.The information gleaned may then be reflected by the command
throug-h the com_e.rr mechanism mentioned above.

Faults

There is one class of 11 error11 encounterable when executing
a command which is closely related to the issues in regard
to commands and subroutines discussed herein. This is
the issue of hardware-generated faults. Faults in general
are amenable to the standard practice of employing the
system condition-handling mechanism, as described in BD.9.D4.
fundamentally, this practice is to employ the signal primitive
to reflect the occurence of a fault. If the user has
established a handler for the condition, that handler
will be invoked. Conditions for which no handler is active
wi 11 be handled by whatever handler is active for the
''unclaimed_signal" condition. (The system-supplied default
handler for this condition is described in BY.11.05)
It should be noted that the condition-handling mechanism
offers a particularly flexible and general way of dealing
with error conditions, and is available to user programs
and subsystems as desired; however, it introduces sufficiently
high overhead that it is not employed as standard practice
by system commands and subroutines other than in the area
of reflecting certain faults (e.g., floating point underflow)
to fault-handling routines when appropriate.

