
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.12.02 PAGE 1

Published, 11/10/67

J dent i fica t ion

Strace, a subroutine tracing procedure for 6.36
D. B. Wagner

Purpose

A procedure has been written as a by-product of debugging
the debugging aids which greatly aids in debugging 6.36
programs. It provides a very simple-minded version of
the service provided by itsda (BE.12.01) and works.

Usage·

Strace is namec;t after the CTSS conmand STRACE, to which
it bears a certain resemblance. Strace catches calls
tq specified entries, reports certain details of such
calls, and lets them go ahead. To use strace the user
should write an EPL program which includes the following
statements for each entry ~ he wishes watched. Execution
of this program then causes watching to begin.

del x external entry,

ca 11 strace (x, message, limit) J

Here message is an arbitrary character-string to be included
in each report of a call to~ and limit is the maximum
number of reports desired for this entry.

The report in the error file that an entry has been called
wi 11 have the following format:

• • • user's message

• • • n'th call to <segno>l~. From <segno>l~

• • •

where n is a decimal number and the seq's and loc's are
oc ta 1 numbers •

Segments Needed

The following segments are needed in using strace. They
exist on the Multics Segment Library.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.12.02

Segment Name

derai l_catch

make_impure

strace

watch_ca 11 to

watch_instruction

watch

Implementation

Descriptor ·

(MASPRC,SLVACC,WPERMT)

(M4S PRC ,S LVACC)

(S LVPRC ,S LVACC)

(S LVPRC ,S LVACC)

(S LVPRC ,S LVACC)

(S LVPRC,S LVACC)

PAGE 2

Strace is a very simple program which uses some modules
of the interactive debugging aids, principally the "event_
watchers" watch call to and watch instruction. Since users
may wish to make up special debugging aids of their own,
these procedures are described below. An overview wi 11
be found in BY.6.06, but these particular watchers are
not yet described there.

To watch for control passing to a given location in a
procedure, the call is:

call watch_instruction (callback,id,cp)J

where the arguments expected are declared,

del callback entry returns (bit(1)),

(id, i p) pt r J

Here callback is the caller's agent, to be called by watch_
instruction when the event occurs. Lc;! is a pointer used
by the caller to keep his watching straight. lQ points
to the instruction to be watched.

Watch_instruction saves the instruction and plants a drl
(derai 1) instruction in its place. It stores away all
the information it needs in a personal data base and returns.

When control reaches an instruction being watched, a derail
fault occurs. Control passes to an entry in watch_instruction
which does

b =callback (id,mp)J

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.12.02 PAGE 3

with the declarations,

del b bit 1,

(id,mp)ptr;

Here callback and id are as in the call to watch instruction.
~points to machine conditions in standard form7

If callback returns 11 111 b, watching of the instruction
is to be continued. If it returns 11 011 b then all watching
associated with this !g is to be discontinued:--

To watch for a call to a certain entry, the call isz

call watch_callto (callback, id,ep).;

where callback and id are as above and~ is a pointer
to the entry. ·

Watch callto uses watch instruction to watch for control
passing to the given entry. When the call occurs it does
a

b =callback (id,mp,cp,ap);

with declarations,

de 1 b bit (1) ,

(id,mp,cp,ap)ptr;

~. callback, !Q, and mQ were discussed above. £Q points
to the caller of the watched entry and 22 points to the
argument list of the call.

