
. TO: MSPM Distribution

FROM: D. E. Joel

SUBJECT: 645 Simulator Escape (BE.7.10)

DATE: October 25, 1966

The change to the following document is the addition of a
discussion on the escape mechanism used for dynamic loading of
segments at execution time.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE. 7.10 PAGE 1

Identification

Published: 11/2/66
Supersedes: BE.7.10, 5/13/66;

BE.7.10, 7/22/66;
BE.7.10, 7/29/66.

645 Simulator Escape
D. E. Joel

Purpose

The concept of escape coding was introduced so that a 645 process under
simulation may, in effect, call for the execution of a 635 subroutine in
the GECOS environment. The primary purpose of escape coding is to provide
an input/output facility. A second purpose is to provide a termination
point for a 645 process.

Organization on the 645 side

A general escape routine - procedure segment escape - is provided whose
function it is to perform the actual communication between the 645 process
and the 635 GECOS environment. Segment escape has two entries:

1. finish - the user calls this entry in order to terminate his
process.

In EPL the call appears as

call escape$finish

2. escape - This entry is called by any of a set of interface routines
which are provided so that the user does not have to be
aware of the requirements of segment escape. The call
used by an interface routine is (in assembly language)

arglist:

cali <(escape?i[escape] (arglist)

The arglist is as follows:

4
~-------- This is a pointer to the escape
~-------- ____ !!~-- ~number which is in the format arg n.

ITS --------- -::J This is a pointer to the argument
L--------4~------~ list which was passed to the inter

face routine.

~--------

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE. 7.10 PAGE 2

To provide easy communication with the 635 GECOS subroutines (both under
simulation and later on the 645 itself using GECOS) a fixed segment (number
5) has been used. This segment (named memory) describes the entire 635
slave memory as an unpaged segment consisting of 1024 word blocks.

Segment escape passes information to the 635 GECOS subroutines by placing
the ITS pair described above at arglist + 4 into location 240 (decimal)
in segment memory, and then passing control to an escape vector subroutine
in 635 mereory with the escape number in index register 7.

Organization on the 635 side

When the escape vector subroutine gets control, it checks to see that the
escape number is valid. If valid, control is passed to the appropriate
subroutine; otherwise, the escape is treated as Null, and control is re
turned to the 645 process with no action being taken. Index register 1
contains the location to which the 635 subroutine must return after per
forming its functions.

A 635 subroutine named TRNSLT is provided whose function is to transform
a 645 address into a 635 address in segment memory. The call (in GMAP code)
is:

CALL

where:

TRNSLT (EXTERN, INTERN, RESULT, STATUS)

EXTERN is an external base regi~ter stored im memory

INTERN is an internal base register stored in memory

RESULT is tlie location in which the 635 address is to be stored

STATUS is a location at which TRNSLT stores either zero
(successful) or non-zero (unseccessful)

Example: determine the location of the argument list passed from
the 645 process. If successful, pick up the first two words
into the AQ registers. If not successful, go to location
N0G00D.

REM ITS POINTER TO ARGUMENT LIST

REM IS AT LOCATION 240.

CALL TRNSLT (240, 241, RESULT, STATUS)

USE REMOTE

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BE. 7.10 PAGE 3

STATUS DEC. 0 DEFINE STATUS WORD REMOTELY

USE

SZN STATUS CHECK TRNSLT STATUS

TNZ NO GOOD EXlT IF UNSUCCESSFUL

RESULT LDAQ ** PICK UP TWO WORDS OF LIST

Note that the user should be aware of page boundaries in the 645 process
memory,. and plan translation of addresses accordingly.

Escape coding currently implemented

1. Pseudo - file system (See BE.lO)

2. Pseudo - console (See BE.ll)

3. Message writing to the global error file.

The function provided is that of writing a message onto the global
error file. The message is passed as a character string. A new

~~ line character is provided at the end of the message.

The call in EPL is

call messag$messag ('character string')

where messag is the interface routine with entry point messag.

The call in assembly language is

call < messag;>j[messagJ (argument)

argument:

2
--------· --------

ITS
. ~------- --------

Specifier
pointer

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE. 7 .10 PAGE 4

4.

Specifier:

: ITS Pointer to character string - - - - - - -,- - - - - -
1 ITS - - - - - - -:- - - - - .-

Pointer to dope.

1

Dope:

OFFSET (= 0)

----r------------
240s : String length (bits)

Dynamic loading

The function provided is that of loading a segment from the Segment
Library into 645 core at defined locations.

Dynamic loading is invoked by segment search which makes a direct call
to segment escape:

call (escapeji [escape] (arglist)

arglist:
4

i--- _i_---

ITS sl Escape Number --------
.... ____ I_I:s_

Pointer to argument_pointers

,.
i

,--

.. '

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE. 7.10 PAGE 5

, Argument_pointers: ----- __ Lrrs_ --7 Segment name ('ace' format)

----- ___ Lrrs_ --7 Base of text segment

----- ___ Lr~s- ·--t Base of linkage segment

----- --- Lrrs_ --1 Base of symbol segment

Note: if the segment number for the text, link or symbol segment is zero,
then that particular segment will not be loaded.

