
fviUL TICS SYSTEM PROGRAMMER 1 S MANUAL SECTION BF .1. 00 PAGE 1

.,....., Published: 8/14/67

. ,........

,..._.
-...

ldentjfjcatjon

Overview of 1/0 System User Calls
P. G. Neumann

Purpose

Section BF.1 represents the collection of essentially al
information which an average user of the 1/0 system normally
needs to know, assuming he has already read Section BF.O for
background. The purpose of Section BF.1.00 is to provide for
each I/O-system user call an introductory description of the call
and a reference to the subsectioo(s) of BF.1 in which the call is
discussed.

lntroductjgo

The list of user calls described herein is as follows. Each call
is followed by the section number in which it appears. All 1/0
system outer calls are included, along with a few inner calls
(indicated with an asterisk) which may be required •

attach BF.1.01
detach 1. 01
changemode 1.01
getmode 1.01
noattach 1.01
local attach 1.01
localnoattach 1.01
divert 1.01
revert 1.01
invert 1.01
restart 1.01•
trace 1.03
readsync 1.04
writesync 1.04
reset read 1.04
resetwrlte 1.04
worksync 1.04
iowait 1.04
abort 1.04
format 1. 06
tabs 1.06
order 1.07
getsize 1.08
setsize 1.08
read 1.09
write 1.09
setdel im 1.09
getdel lm 1.09

(continued)

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO

seek
te 11
upstate
getstatus
hold
release
readrec
wr i terec

GlossarY g£ Terms

1.09
1.09
1.21
1.21*
1.21*
1.21*
1.25
1.25

PAGE 2

The 1/0 system (lOS) outer calls sunmarized in this document
provide the interface for all modules normally called by an lOS
user. These outer calls are presented in detail in subsequent
subsections of Section BF.1. Certain terms used in the overview
of lOS outer calls given below are summarized here for the
convenience of the reader. The section in which each term is
first thoroughly defined is Indicated.

joname (Section BF.1.01)

An ioname is a name used by the 1/0 switching complex to route
calls within the lOS. An ioname is either a device identifier
(e.g., tape reel number or typewriter description) or a framename
(see frames, below). An ioname is generally the symbolic name of
data known to the lOS and accessible to the user by that name.

attachment (Section BF.1.01)

An attachment is the association of one ioname with another
ioname; this association is established by an .attach call (see
below). Each attachment is remembered by the 1/0 system until
detached by a detach call. An attachment may be the association
of a framename (see frames, below) with a device or with another
frame. Subsequent to an attachment, data may be read or ·written
by issuing a~ or write call (see below) with the appropriate
ioname.

iopath, attachment graph (Section BF.l.03)

For any Joname, an associated loname is specified by each
attachment. An iopath is a chain of tonames iterativelY Implied
by a given chain of attachments (e.g., 'a' to 1 b 1 , 'h' to 'c',
etc.) and followed by the GIOC Interface module or terminating
with the file system interface module. The graph defined by the
totalIty of all given associations Is the au.achment graph.

element (Section BF.1.08)

An element is a linear array of bits. It is the smallest data
entity normally referred to by an 1/0 outer -:all. The most ~
frequent element sizes are expected to be 1, 9 and 36 bits.

' ' .
MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 3

frame, !lAm (Section BF.l.08)

A data frame (hereinafter called a frame) is an ·entity of data
which is accessible through the 1/0 system outer calls, and which
in particular may be read from or written into as if it were a
device. An ioname referring to a frame is a framename. Each
frame is a linear array of items. A linear frame is a linear
array of items, where each item is an element. A sectional frame
is a linear array of items, where each item consists of two
subframes (e.g., a linear frame and a sectional frame). !'lt
that, since a sectional frame may have a sectional subframe whi~
behaves similarly to the original frame, this definition of ~
sectional frame is recursive, and that any sectional frame may
thus have recursively defined substructure. Data is contained in
each linear subframe, while each sectional subframe implicitly
defines substructure. The linear subframe may thus, for example,
serve as label information for the associated sectional subframe
(perhaps for use by a data management system), or as Independent
data.

For the purpose of descriptive simplicity, a distinction is made
between direct frames (associated directly with devices or
pseudodevices) and indirect frames (associated onlY indirectly).
In general, the effects of attachments and detachments propagate
down the iopath for direct frames, and do not propagate for
indirect frames. This distinction is discussed in BF.l.Ol and
BF.l.03.

reference Pointers (BF.1.08)

Associated with various outer calls (~, write,~ and ~
discussed below) are several reference pointers. These include
the "read", "write", "first", "last" and "bound" pointers. These
pointers indicate speciftc items within the frame in question.
The current item with respect to a LJl.ASl or write call on a given
framename is that pointed to by the "read" or "write" pointer,
respectively. The "read" pointer indicates the next item to be
read. The "write" pointer indicates the next item to be written.
The "first•• pointer always Indicates the first item in the frame.
The "last" pointer indicates the last item in the frame. The
"bound" pointer indicates the item beyond which the given frame
maY not grow. In a sectional frame, the "read" and "write"
pointers are not meaningful. They are functionally replaced by
the "current" pointer, which serves essentially as a combined
"read" and "write" pointer, and which points to the next
sectional subframe to be read or written. There are separate
relevant pointers for each level of sectiona~ subframe. In the
case of physical Input/output, the "currentre·" pointer replaces
the "read" and "write" pointers, and points t the next record to
be read or written.

delimiters (Section BF.l.09)

~ t t

MULTICS SYSTEM PROGRAMMER'S MANUAL SECT10N BF.l.OO PAGE 4

There are two kinds of l/0 del imlters meaningful to an 1/0 user
on input. These are the break characters and the read delimiters ~
which are established by means of the setdel im call (see
BF.l.09). A break character is meaningful only to a
character-oriented device, and serves three functions: it
delimits physical interrupts, canonicalfzation and erase-and-kill
processing. A break character is an interrupt delimiter in that
it is recognized by the GIOC and causes an immediate interrupt.
A break character is an erase-and-kill delimiter in that its
presence permits erase and kill processing (see BC.2.0}) to t ~
place over all characters received since the preceding bre.
character. A break character is a canonfcalization delimiter ir.
that its presence permits canonicalizatfon (see BC.2.02) to take
place over all elements received slnce the preceding
canonical fzation delimiter. For certain devices (e.g.,
typewriters), the new-line character is the default break
character. In addition, whether established as a break character
or not, the new-line character alw~ys delimits canonicalization
and erase-and-kill processing.

A read delimiter is an element whose presence terminates the data
transmission of a~ call. Read delimiters are applicable to
all read calls, irrespective of the corresponding device(s) and
the element size. There is no default read delimiter. That Is,
in the absence of read delimiters given in the setdelim call,
there are none. On output, there are no delimiters meaningful to
the lOS.

status (Section BF.1.21)

The status of a given call consists of 144 bits of information
which are passed to successive calls further along the iopath and
which are then returned back up the iopath. This status
information is modified by each module in a given iopath as
required. The status includes an 18-bit transaction identifier
which is unique among outstanding transactions.

' '

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 5

~ Oyter Calls

A brief description of each call and its arguments follows. The
statys argument is contained in each call, and is discussed
above. All calls are generally applicable to every outer module
representing a device or pseudodevice (see BF.l.03), with
exceptions due to peculiarities of each module. For example, the
~and fprmat calls are applicable only where printing is
involved. Similarly, calls dealing with reading or writing are
not meaningful where devices are write-only or read-only,
respectively. It is-assumed that the reader ls familiar with t~
glossary of terms given above.

call attach(ionamel,type,ioname2,mode,status);

The attach call associates the given ioname (ionamel) with a
previously defined name or otherwise known device specified by
joname2. This association is meaningful within the framework of
the user's process group. The resulting attachment remains in
force until removed by a detach call (see below). A~ and a
~(see the changempdg call below) are associated with the
attachment. See BF.l.Ol.

call detach(ionamel,ioname2,disposal,status);

The s;letach call removes for the given ioname(s) an association
established by an attach call. The disppsal argument indicates
bow dedicated resources (e.g., tapes and tape drives) are to be
treated. See BF.l.Ol.

call changemode(ioname,mode,status);

The mode (specified by~) of an attachment describes certain
characteristics related to the attachment (e.g., readable;
writable; appendable; random or sequential; lf sequential,
forward onlY or backspaceable; physical or logical; if logical,
linear or sectional). The c~angemyd' call permits mode changes
to be invoked for the given oname s which modify the mode of
the attachment. See BF.l.Ol.

call getmode(ioname,bmode,status);

The getmode call returns a terse encoding .(broodc> of the mode of
the attachment specified by the given ioname. This call is
intended primarily for use by lOS modules. See BF.l.Ol.

call noattach(ionamel,type,ioname2,status);.

The noattach cal 1 is used to prevent a subs' uent attach call
with the given ioname(s) and type from taking ,ffect. In general

,....... usage, the noattach call is used to per'l}it the specified
subsequent call to be replaced by a different' matching attaGh
call. See BF.l.Ol.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 6

call localattach(lonamel,type,ioname2,mode,status>;

The localattach is identical to the attach call, except that the
scope of the resulting attachment Is specific to the process
Issuing the attachment, rather than global to the process group.
See BF.l.Ol.

call localnoattach(ionamel,type,ioname2,status);

The localnoattach call is identical to the noattach call, ext ~
that the scope of the subsequent attachment to be prevented i
local, that is, created by a localattach call. See BF.l.Ol.

call divert(ioname,newioname,mode,starus);

The diyert call suspends any current 1/0 on the attached device
specified by lonama and allows immediate initiation of new 1/0 on
the ioname specified by newioname. If ioname and newloname are
identical, joname is renamed. See BF.l.Ol.

call revert(ioname,mode,status);

The revert call reinstates the original attachment suspended by
the previous djyert call. See BF.l.Ol.

call Invert(ioname,status);

The jnvert call destroys for the given ioname the original iopath
and the subsequent diverted lopaths except for the most recent
one. Its use is primarily for internal purposes. See BF.l.Ol.

call restart(ioname,status);

The reitart call is used to restart input-output for the given
ioname subsequent to a quit. This call is primarily for the use
of the overseer. See BF.l.Ol.

call trace(ioname,modname,nextlist,status);

The trace call provides the module name (given by the argument
modname, e.g., "twdsm") to which the switch would switch as a
result of a call for the given ioname. It also provides the
potential ionames (nextlist) which could arise one level deeper
in the flow of control. By using sequences of trace calls, the
entire attachment graph may be obtained.· See BF.l.03.

call readsync(ioname,rsmode,limit,status);

For a given valid ioname (I.e., a name which, 1S previously been
proper 1 Y attached by means of an at tach ca 1 1) , the read sync ca 11
sets the read synchronization mode Crsmode) o~ subsequent ~
calls (see below). This mode is eithe:· synchronous or
asynchronous. Synchrony implies that control is not returned to
the caller until the read request is either physically initiated

"' I ' T

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 7

.~. or physically completed, depending upon whether the workspace
synchronization mode (see the worksync call below) is
asynchronous or synchronous, respectively. Asynchrony implies
that read-ahead is possible to the extent permitted by the limit
argument, which gives the desired maximum number of elements
which may be read ahead. The default mode is asynchronous. See
BF.l.04.

call writesync(ioname,wsmode,limit,status);

For a given (valid) loname, the writesync call sets the writr
synchronization mode (wsmode) of subsequent write calls (see
below). The mode is either synchronous or asynchronous.
SynchronY implies that control Is not returned to the caller
until the write request Is either physically initiated or
physically completed, depending upon whether the workspace
synchronization mode (see worksync) Is asynchronous or
synchronous, respectively. Asynchrony Implies that write-behind
is possible to the extent permitted by the limit argument, which
gives the desired maximum number of elements which may be written
behind. The default mode is asynchronous. See BF.l.04.

call resetread(loname,status);

The resetread call is used to delete unused read-ahead data
~, co 11 ec ted by the 1/0 sys tern as a resu 1 t of read-ahead associ a ted

with the given ioname. See BF.l.04.

call resetwrite(ioname,status);

The resetwrite call is used to delete unused write-behind data
collected by the J/0 system as a result of write-behind
associated with the given loname. See BF.l.04.

call worksync(ioname,wkmode,status);

For a given ioname, the worksync call sets the workspace
synchronization mode. The mode <wkmode) is either synchronous or
asynchronous. Synchrony Implies that control is not returned to
the caller until the 1/0 system no longer requires the user's
workspace (see~ and write calls below>. Asynchrony implies
that some kind of Initiation of the call has taken place,
although the workspace may still be In use. The default mode is
synchronous. See BF.l.04.

c a 11 i ow a i t (I on a me, o 1 d s t a t us , s t at us) ;

For a given loname whose workspace synch ·onization mode is
asynchronous, the iowa It call defers the retu ' of control as if
the workspace synchronization mode were synch1 ,nous for the most

.~ recent~ or write call or for a specified ~~evious call. The
argument oldstatys is the original status argun.!:!nt returned for
the particular previous transaction, and is used to identify that
transaction uniquely. If oldstatys Is missing, the most recent

MULTICS SYSTEM PROGRA~~ER 1 S MANUAL SECTION BF.l.OO PAGE 8

transaction is implied. See BF.l.04.

call abort(ioname,oldstatus,status);

The abort call is used to cancel any physically Incomplete
previous L4ad and write call subsequent to and Including a
specified~ or write call. The argument oldstatus has the
same meaning as In lowait above. See BF.l.04.

call format(ioname,epl,epw,tsl,tsw,down,lndent,status);

The format call is used to specify for a given lonamt:
characteristics of printed output formatting, such as the
effective page length <Aal> and width (~), text space length
(~) and width (~), and text space origin in lines (~) and
characters (Indent). The design of this call is tentative. See
BF.l.06.

call tabs(loname,tmode,hv,ntabs,tabllst,status);

The~ call Is used to inform the 1/0 system of the location of
the tab stops on a device where this Is a meaningful concept.
The argument tmode indicates whether the call is providing tab
locations, requesting that tabs be set, or requesting that the
tab locations be returned to the caller. The. argument .hJl.
indicates whether horizontal or vertical tabs are involved;
ntabs indicates the number of tab stops specified by the list
tablist. The design of this call Is tentative. See RF.l.06.

call order(ioname,request,argptrl,argptr2,status);

The grder call is used to Issue a request ([eqyest> to outer
modules. The third and fourth arguments point to additional
request-dependent data. argotrl points to a data structure
containing forward-going arguments, while argotr2 points to a
structure containing return arguments. The call is used for
communication among 1/0 system modules. It may also be used to
set hardware device modes. See BF.l.07.

call getsize(loname,elsize,status);

The getsize call returns the current element size (elsize)
associated with read and write calls for the given loname. See
BF.l.OB.

call setslze(loname,elslze,status);

The setsize call sets the element size (~·c.> for subsequent
read and write calls with the given loname. !e BF.l.OS.

call read(loname,workspace,nelem,nelemt,stalus);

The J:.AaS1 call attempts to read Into the specified workspace the
requested number <nelem) of elements from the frame specified by

t • •

.., I ...

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 9

~ the given ioname. Reading begins with the current item of the
frame. Thus for a linear frame, reading begins with the element
pointed to by the "read" pointer. Read·ing is normally terminated
by the occurrence of a read delimiter or by the reading of nelem
elements, whichever comes· first. The "read" pointer is moved to
correspond to the element after the one last read. For a
sectional frame Y, reading begins with the first element (pointed
to by the "read" pointer for X} of the current subframe X, where
the current subframe is that pointed to by the "current" pointer
for the frame Y of which X Is a subframe. Reading Is normall.
terminated by the occurrence of the end of the subframe, by th•
occurrence of a read delimiter, or by the reading of nelem
elements, whichever comes first. The "current" pointer for Y and
the "read" pointer for X are moved to correspond to the first
element of the next frame X. See BF.l.09.

call writeCioname,workspace,nelem,nelemt,status};

The wrjte call attempts to write from the specified workspace the
requested number (nelem} of elements onto the frame specified bY
the given ioname. The number of elements actually written is
returned Cnelemt}. The behavior of the·write call with respect
to the "write" pointer is similar to that described above for the
~call with respect to the "read" pointer, except that there
is no write delimiter. Writing begins with the current item of

~~\ the frame. Thus for a linear frame, writing begins with the
element pointed to by the "write" pointer. Writing is normally
terminated by the writing of nelem elements. The "write" pointer
is moved to correspond to the element after the last one written.
For a sectional frame Y, writing begins with the first element
(pointed to by the 11write 11 pointer for X} of the current subframe
X, whe.re the current subframe is that pointed to by the "current"
pointer for the frame Y of which X is a subframe. Writing is
normally terminated by the writing of nelem elements. The
11current 11 pointer for Y and the "write" pointer for X are moved
to correspond to the first element of the next frame X. See
BF.l.09.

call setdelim(ioname,nbreaks,breaklist,nreads,readlist,status);

The §etdellm call establishes elements which delimit data read by
subsequent linear~ calls with the given ioname. The argument
breakJfst points to a list of break characters (containing
obreak§ elements), each serving simultaneously as an interrupt;
canonlcalization and erase-kill delimiters. Break characters are
meaningful only on character-oriented devices. The argument
readlist points to a list of read delimiters' (containing oread§
elements). The new delimiters established b~ this call are in
effect until superseded by a subsequent .iJi 1e1 im call. See
BF.l.09.

call getdel im(ioname,nbreaks,breakl ist,nread~.!readl Jst,status);

....-

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 10

The getdellm call returns to the caller the delimiters ~
established by the most recent setdelim call, with the arguments
having precisely the same meaning for both calls. See BF.l.09.

call seek(ioname,ptrnamel,ptrname2,offset,status);

The~ call sets the reference pointer specified by otrnamel
to the value of the pointer specified by ptrname2 plus the value
of a signed offset (if offset is present). ptrnamel may be
"read", "write", 11 last 11 or "bound", or in the case of a sectionl'l,
frame, "current 11 , 11 1 as t 11 or "bound". pt rname2 may be 11 read''.
"write", "first", "last" or "bound", or in the case of
sectional frame, "current", "first", "last" or "bound". For
physical 1/0 (using the Ceadrec and writerec calls), ptrnamel may
be "currentrec", "last11 or "bound", while otrname2 may be
"currentrec", "first", "last" or "bound11 • The~ call is used
to truncate, e.g., seek(ioname,"last","last",-40), or to set the
bound of the frame, e.g., seek(ioname,"bound","last",27), in
addition to its more traditional usage involving the "read 11 and
11write 11 pointers, e.g., seek (ioname,"re.ad","wrlte",-2). The
"read" and "write" pointers are also set as a result of read and
write calls, respectively (see above). Each r•ference pointer
refers to an item number. Which frame is referred to depends
upon the .tmJ:. argument of the attach call. See BF.l.09.

call tell(loname,ptrnamel,ptrname2,offset,status>;

The .lJ:ll call returns the value of the pointer specified by
atrnamel as an offset (gffset) with respect to the given
otrname2. The arguments otrnameJ, ptrname2 and offset have the
same meaning as in the~ call. As an example, the ~ call
maY be used to obtain the bound of a frame by call
tell(ioname,"bound","flrst",offset). See BF.l.09~

ca 11 gets ta tus (oldstatus, cstatus);

The getstatus call is used to replace the old outer call status
oldsta,ys by a new (possiblY updated) status using the same

argument. cstatys is the status for this call. This call is not
an outer call, but rather an Inner call to the transaction block
maintainer (BF.2.20). It may however be invoked by the user to
obtain the status of the particular transaction uniquely Implied
by oldstatys. See BF.l.21.

call upstate(loname,status);

The yostate
lopath down
return back
its status.

call causes the Invocation of
to the DSM, by means of another
up the Jopath, each module calls

See BF.1.21.

ca 11 ho 1 d (oldstatus, cstatus);

each module in the
'H>s tate ca 11 • On
!tstatus to update

MULTICS SYSTEM PROGR~1MER'S MANUAL SECTION BF.1.00 PAGE 11

The bJU.Q. call is used to set the holdl bit (see BF.2.20) for the
transaction desIgnated by oldstatu.a. cstatus is the stat us returned
by this call.

ca 11 re 1 ease (oldstatus, ;·.c;:.status) ·
,,,...,,., ~-· '

The release call is used to reset the boldl bit set by the hold
call above.

call readrec(ioname,reccount,workspace~nelem,nelemt,status);

The readrec call is intended solely for reading devices concerned
with physical records, such as card readers, printers and
magnetic tapes. It is accepted by the tape DCM and by the unit
record DCMs. It is also accepted by DSMs calling these DCMs when
the device attachment~ contains "P" (physical). The argument
reccount indicates the number of records which the readrec call
represents. The call is similar to the~ call, except that
oelem and oelemt are arrays of element counts, and workspace is
an array of ptrs to the corresponding workspaces. An item in
each array (of size reccoyot) corresponds to a physical record.
See BF.1.25.

call writerec(loname,reccount,workspace,nelem,nelemt,status);

The wr i terec ca 11 is to the wr j te ca 11 as the readrec ca 11 Is
the Lead call. The arguments are as In the writerec call.
BF.1.25":"

to
See

