
~~UL TICS SYSTH1 PROC.RAMt-lFRS 1 MANUAL SFCTION nF.2.13

Pub 1 i shed : 05/21/68

Identification

The Attach Table and Attach Table Maintainer
fl. A •. Levinson

puroose

PAr,~ 1

The purpose of this document is to describe the contents 0f the
Attach Tabl~ and the c!lls to the ~tt~ch TAble ~aintainer by
which items of Attach TahlP entries are set, altererl -?n~
referenced, and by which entri~s are created ~nd rleleted. Table
1 is the FPL declaration of the Attarh TahlP Pntry. T~e items
are discussed more fully in the followinp.

Structure of tte Attach Table

rrrure 1 displays the Attach Table (AT) as a rer-group serment
with a local (per-process) extension (labeled I.AT for local
~ttach ~able in Fi~ure 1) for each process requirinp one. (T~e
LAT's are discussed helow. In Figure 1 only Proces!t 2 i'lnd
Proces& 4 are &hown with tAT's.) As shown, i'ln ·· fo,T Temp1 ate
resides in file system storage and is known by name to the f.H1.
Tt:e AT Template is an initializ~d but otherwise £'mpty Attach
Table Segment. On first reference to the f,TM in a r:rouP:~ the
Attach Table 1'-laintalner calls the S~1~1 (Segment t-!anagement ~lodule)
to create the per-group AT sep:ment and copies the AT Template
in to It. On each reference to the /1Hl in a new process, the f..Ttwl
call& the SMM to make the existing per-p:roup AT se~ment known to
the new process. In contrast with the AT which is a segment
share.d by a user-group, the I.AT is an unshared ser.ment of the
process in whose behalf it was created. 0nce, they are obtained
from the SMM, pointPrs to the 1\T i'lnd U\T reside in the .1\TM's
per-process (iriternal static) storar.e. Finally, thefT Template
"pointer" 'is simply a literal in the fo,TM procedure.

Fi~ure 2 shows the Attach Tahl~ Structure as a three-level
threaded list. The structure is intended to facilitate searchin~
ard ~void varyinr-length entries.

The ioname level entries cont~in the process-Invariant items of
the 1\T. Thp key for searchln,r, this 1Pve1 Is of c·ourse thP ioname
itself.

The process level entries of th~ AT rontain the pro~~ss-dependent
items of the ioname entries. To explain further, some of the
items .In an AT. entry are pointers. Pointers to the same data in
different processes have different forms. Specifica11y,the
segment number (but not the offset) Is different in rlffferent
processes. This .is handled by maintainin~ the offset of A
pointer as a process Invariant item ~t the ioname level of the
entry, and the sey,ment number as a process-dependent item at the
process level. A process level subentry appears under an ioname

f'.lULTICS SYSTHI PROGRAtviMERS' ~IANUAL. SfCTION RF.2.13 PAClF 2

for ~ach proces~ in the ~roup which process ~as refPrenr~d the
ioname at least once.

The Local [xtensjon of the Attach Table

lonames may bP. attac~ locally, that is, suet· H·~t t~e ioname is
known only to thP. attachlnJ~: procpss. It is import~nt to note
that if an ionamP "alpha" is att~c~erl loc~lly, t~en rlurin,- t~e
term of its attachment the FiVPn process cannot opprate on ~
simu1taneously attac~ed plohal alp~a. ~ refPrence to ~n ioname
"alpha" is takpn as a rP.ferPnce to t~e locr~l ionamP "C~lC'ha" if
onP. Pxists. T~is is built into t~P. t.H1 1 s sParch r~t,orlt,.,.,,.. . It
is also worth notinJ~: that t~ls does not restrict a rrricPss
locally attad .. erl to "alpha" from attachlnp: a plohal ~lpha, t-:ut it
does prevP.nt it from referencinp: plohal alpha •

..
When an ionamP is attached locally by a process, t~e r.T entry for
th~t ioname appears in an AT P.XtPnsion for thP attachinp process
(the LAT of Flp:urP. 1). The L.AT is created in a riven rrocPss
only if a Jocalattacb call is issued in that proc~ss. If an LAT
does exist, wh~n an ionamP is referenced, the ATM always searches
it first, and only if the search of the P.Xtension fail~ does it
continue the search in the p:lobal (ppr-~roup) AT.

Jbe ltems of an Attach !able Entrv

All of the items of an Attach Table entry are briefly discussed
in this paragraph. (Comp.lete discussions of items not directly
connected with the switching complex are ~iven in the papers to
whose matter these items are primarily relevant.) For example,
ioname1, type, ancf lonc:tme12, are discussed in detail in rtSPM
Section BF.1.01, Attachment and n~tachment of Input/Output
Pevisces and Pseudodevic~s.) The itP.ms of an tttach T~hle entry
are as fo 1 .lows:

1) ri,ht_relp - is a relative pointer to the next
the lPvel of the current entry if one Pxlsts,
the parent Pntry at t~e next hipher level
_exists, Plse null;

2) down_relp- is a pointer to the first entry at
lower level if one exists, else null;

entry at
else to

;f one

3) up_relp- is a pointer to the parent entry at the next
hi~her level if one PXists, else null;

' '

4). ioname1- is th~ ioname.specifi~d hy th~ first
of. the us~r's attach-call. It serves as the
the entry and is the key on which the Attach
searched;

arp:ument
name of

Table Is

~) proc_id - is the Identification of the process to which
the process-Independent items of the rntry are
relevant;

MULTICS SYSTFM PRO~RAMMFRS' MANUAL SFrTJOI\! IIF.?.13

6) type - is thp type specifierl hy the seconrl ~r~umPnt of
the user's attacl- call. It is user! hy tt"-e r•ot rf'unrlPr
(see ~'SPM Section P.F.2.12) to SP~rch the Type T~blP
which relates e·ach tyJ')e to a uniaue outer morfule (spe
MSPM S~ction RF.2.14, The TypP T~hlP M~intainPr);

7) ioname2 - is the (third) arr.ument of thp usPr's attac-h
call, It is used by outer modules either to identify n
medium (tape reel, file system file, Pte.) or to
specify another ioname to which the rurrent one is
related in a way specified by the type; ;,,

~) ttentry_relp - is a pointer to the Type Table entry which
was in effect at the time of attachment of the ioname.

9) ttentry_table- records tt"-e table (local = 1, p:lobal = 0)
in which the type table entry was found when ionamel
(above) was attacherf. This is used to develop a
pointer to the correct type table entry whPn ionamil Is
referenced for the first time by processps other than
thP attachinP. process;

10) valid_level - is the current value of the valirlatton
level for the tonamel.

ll) iosepname - Is the name of the ppr-ioname sepment for
tonamel, and is formed as follows:

del ioseP.name char (50),
ionamPl char (32),
uniaue_chars ext entry returns Cct--ar(15));

~-··'"' ~·-.

i o s e p; name = i on amP lU D" i on" D Dun i Clue_ chars (" 0 "f,) ;

12) segp - Is a pointer to the per-ioname se~ment for the
ioname of the current enfry;

13) auxptr- is an auxtlliary pointer for the use of the
outer module which r~cevies control on outer calls for
current ioname. It Is null by default;

14) tbindex - is a relative pointer to the
recently allocated block) of thP chain of
blocks associated with the transactions on
of the current entry;

head (most
transaction
lt\ e ion ame

15) Ppvptr - ts a pointer to the entry-point vector of the
outer modulp to which c~ontrol is forwardp~ hy the 1/n
Switch when it receives outer calls SJ'lPctfy~np the
ioname of this entry;

lli) entry_masl<'- Fach hit J')osition corrPSJ')onrls to
call. If "1"b ti'-E"n the outer morfule of the
i t em h as an en t r y _ po i n t f o r t h e c- a 1 1 ; if " (' "h
not;

r:tn OUtPr
J')rPvtous
it rloPs

t-!ULTICS SYSTEM PROGRA,..IMFRS' ~lANUAl. SfCTION RF.2.13 PAGE ·4

17) dtabN - is a pointer to a segment containin~ ~ drivin,
table for the servicing outer module;

1~) new_dtab - is turned on (set • to "l"b) when a type
table entry is edited to alter a driving table. When
ionamel is referenced , the on-condition st,nals the
switching complex that the new driving t~hle must he
made known (by callin, the SMM) to the process in whic~
it is runnin~;

20) next_vector - is an ~rray of relative pointers to ot~er
entries in the. AT whose ionamPs h~ve followerl the
current ioname ~s switchpoints in some iopath. T~Ts
item and the next are explaine~ in ~etail , In the
paragraph on the AT~ search Alporlthm;

21) next_vector.slze - Is the number of elements
next_vector which have heen used In r.ontrast
number (10) rleclared;

of' t~P
to thP

22) next vector.relp- is an array of relative· rolnters to
"probable" next Tonames.

·-

,<

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION P.F.:L.l3 PAG F. 5

ATM Inner Calls

The fQllowing Is a description of all ATM inner calls, t~at is,
ATM calls whose use is not restricted to the Switchin~ Complex.

1) call atm$get_iosegname(ioname,iosegname,cstatus);

del ioname char(•),
iosegname char(•),
cstatus bit(l8);

This call returns the (file system) entry name of the per-ioname
segment.

2) call atm$get_pibp(ioname,pibp,cstatus);

del ioname char (•),
pibp ptr,
cstatus bit (18);

This call returns a pointer to the per-ioname
segment associated with loname.

3) call atm$get_val id_level (ioname,valid_level ,cstatus);

del ioname char(•),
val id_level fixed,
cstatus bit(l8);

This call returns the validation level number for ioname.

4) call atm$set_ionamel(oldname,newname,cstatus);

del oldname char(•),
newname char (•),
cstatus bit(18);

This call changes the name of the Attach Table
entry oldname to newname.

5) call atm$set_val td_level(ioname,valtd_level,cstatus);

del ioname char <•>,
valid_level fixed,
cstatus bit(l8);

This call s~ts the validation level number for ioname to
va 1 j d 1 eye 1 •

6) call., atm$change_dtab(ioname,dtabn,dtabname,dir,copysw,
, offset,cstatus); ·

r' de 1 ioname char(*),

MULTICS SYSTFM PROGRAMMFRS' MANUAL SECTION RF.2.13 PA~f 6

dtabn fixed bin,
dtabn~me char<•>,
offset fixed bin,
copysw hit(l),
cstatus bit(l8);

...

This call changes the driving table pointer number dtabo us~d by
ioname loname to the file named dtabnarne with offs~t Qffset.

7) call atm$switch_ionames(iona~ea,ioname~,cstatuslj

de 1 i onamea char(*),
ionameb char(•),
cstatus hit(18);

This call exchanr,es the ionames of the two nodes.

8) ca11-atm$attach_return(ioname,type,ioname2,status);

del ioname char(*),
type char<•>,
ioname2 rhar(•),
status bit(144);

This call establishes an AT entry and a per-ion~me se~ment for
joname, but cloes not propar,ate an attacb call.

9) call atm$rename attach return(oldname,newname,
type,ioname2,status);- ·

del oldname char(•),
newname char(•),
type char(•),
ioname2 char<•>,
status bit(l44);

This call renames oldname to oewname and then attaches a new node
with name oJdname.

10) call atm$group_init;

Called by io_ct1$init tn the Overseer.

11) call atm$queue_restart(toname,cstatus);
del ioname char<•>, cstatus htt(l8);

There is a delayed_restart bit i~ the per-I/O SP.~ment he~~er.
~I hen this ca 11 is made, the ATM ca 11 s thP l.ocker to try to lock
the I /0 sep;men t. If the 1 ock at tf!'mpt succepds, the ATM nassPs a
restart outer call. Otherwise, it sets the dPlayed_restart hit
in the header (ip,norinr, the lock). When a return Is made to the
switch, the IOSW checks the hit and, if it is ON, restart.

MULTICS SYSTEM PROGRAMMERS' MANUAL SFCTION 8F,2.13.

12.) ca 11 atm$de 1 ete_ i oname (i oname, de 1 ay_sw, cs tat us);

del toname c~ar(•),
dti!lay_sw bit(l),
cstatus hit(18);

PAGE 7

This can deletes tt'le AT entry for loname as WP11 as the
per-lo~~me se~ment.

!he Attj'ch !able Seatcb Ah;orltbm

As described In Section BF.2.10, tt'le IOSW knows the out~r morlule
to be ta11~d by meansof tt'le toname/outer-modulf! rorrPsponrlencP
embedded in the AT. That Is, each time the IOSW receives an
outer call referencing a ~lven ioname, the IOSW must have access
to c~rtaln Items of the AT entry corresponding to the referenced
ioname. One way to obtain these items Is by a search of the AT
(by the ATM) using the ioname as a key. But this does not avail
itself of vital Information which all but makes a search, as
such, unnecessary. The key observations to make are:

1) generally, the number of switch points (ionames) which
follow a given. loname in the topath is small;

2) the predecessor/small-number-of-successor swltchpotnt
relations may be discovered dynamically and embedded In
the AT;

3) the proper relation may be made available to the ~TM at
,_, the time the ATM has to search the AT, and therefore

the standard search need only be invoke as a kind of
loname-not-in-next-list faultcatcher.

Consider Figure 3, with t,e followiny, ~Pfinitlons:
NXTV(X) (the next vector associated with t,e lonamP X) Is an

array of (relative) pointers In the ATCX) CthP ~ttac,
table entry for X);

~XTVP (next vector pointer) Is an Internal statfc pointer
variable of the IOSW;

SNXTVP (save next vector pointer) Is an automatic pointer
variable of the JOSW;

Assume the JOSW is In control at a point after the ATM ,as found
the AT(A) and returned the values of the required Items. ~ence,
the IOSW may set NXTVP equal to the address of NXTV(A). At some
pofnt after this, the IOSW calls the target outer module OM(A).
let OM(A) now Issue an outer call referencing the ioname B.
Receiving control, the IOSW saves NXTVP In SNXTVP and Issues a
call to the ATM passing NXTVP and the ioname (8) as a~guments.
The ATM attempts to find a m~tch for B by comparing It w1th the
lonames of the AT entries whose addresses are contained In the
NXTV pointed to by NXTVP. Assume this attempt falls, then the
ATM Invokes an exhaustive search of the AT to find the AT entry
for B. A~sumlng there is no error, the exhaustive search must
succede The ATM then updates the ~XTV pointed to by NXTVP with a

MULTirS SYSTEM PROGRAMMFRS' MANUAL SFrTtON ~F.2.13

pointer to the found AT entry for R. (On futUrP. r.a11s
referencing B by OM(A), the NXTV(A) will contain a rointPr to R,
hence the exhaustive search will not be necessary.) At this
point, whether or not the exhaustive search was invoked, the ATM
sets NXTVP equal to the address of NXTV(B) and sets the other
return values required by the IOSW and returns. When the IOSW
receives the return from the ATM It, it saves NXTVP In SNXTVP (as
above) and calls OM(B). When the IOSW receives the retu~n from
OM(B) it sets NXTVP equal to SNXTVP and returns. Because of the
saving and restoring of NXTVP, the value of NXTVP Is correct no
matter how complex the fopath. Finally, note that if NXTVP is
initialized to point to a NXTV not associated with rlnY loname,
then that NXTV will build up to the list of lonames defined by
the user, and not contain any tonames created by the lOS in
setting up fopaths. This will improve the search time evpn In
the case In which a next vector does not at first sPem
appropriate, that Is, at the user/IOSW interface.

NULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.13 PAGF 9

del 1 at_entry based (p),
2 right_relp bit(l8),
2 down_relp bit (18),
2 up_relp bit (18),
2 ioname1 char (32),
2 proc_id bit (36),
2 type char (32),
2 ionamf>2 char (32),
2 ttentry_relp bit(18),

II

2 ttent_table bit(l),
2 valid_level fixed,
2 ioser,nam char (50),
2 segp ptr;
2 auxptr ptr,
2 tbindex bit (18),
2 epvp ptr,
2 entry_mask bit (72),
2 dtabp1 ptr,
2 dtabp2 ptr,
2 dtabp3 ptr,
2 new_dtab bit (1),
2 next_vector,

II

3 size fixed,
" 3 relp (10) bit (18),

2 flags,
3 noattach bit (1),
3 screen bit (1);

/•AT entry•/
/•PIG, relp to next entry at this level•/
/*IG, relp to first lower level entry•/
/•PIG, relp to hir,her level entry•/
/•1, primary ioname*/
/•P, process id•/
/*1, attachment type name*/
/•1, s~condary ioname•/
/•1, relp to type table entry ~ctivf>

at timf> of nttac~*/
/•"l"b if ttentry is local, else "O"h*/
/*valfdatfon level•/
/•I name of rer-ioname segment•/
/•P, rtr to per-ioname se,ment•/
/•P, outer module auxiliary ptr•/
/•P, indf>x of last allorated TB•/
/•P, ptr to entry point vector•/
/•PI, entry point mask•/
/•P, drivin~ table pointers•/

/•P, new driving table flag*/
/•1, data base for predictive search

of next AT entrY*/
/*1, number of AT entries for all

known next ionames•/
/*1, relative pointers to AT entries*/
/*1, noattach/local flags*/

Table 1 - Attach Table Declaration

MULTICS SYSTEM-PROGRAMMERS"' ~NUAL SECTION BF .2 .13 PAGE 10

Process 1

ATM

ATM

Process 3

Grou X

Attach Table Location

Figure 1

ATM

To AT Temp lat''e

ATM

Process 4

..

,

•
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Attach Table Structure

Figure 2

SECTION BF.2.13 PAGE 11

root
level

ioname
level

process
level

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BF.2.1_3 PAGE 12

-·.· ..

OM(X)

A / /

OM(A)

/
/

. OM(B)

/
/

/

/
/

,_rv<P>

Attach Table Search Algorithm

Figure 3

AT)

~---.. ,.B)

NXTV(B)

