
~~·

MULTICS SYSTEM-PROGRAMMERs• MANUAL SECTION BF.2.l4 PAGE l

Published 2/28/68

Identification

The Type Table and Type-Table Maintainer
D. A. Levinson · ,.

Purpose

The IOSW forwards attach calls to the Not-Founder. The
Not-Founder creates t~e Attach Table entry for the giver. ioname.
Some of the information for the entry is obtained from the
arguments of the attach call. Two key items for the entry at·c
obtained from the Type Table (TT) via the Type-Table Maintainer
(TTM):

1) the n~me of the outer module associated with the
type,
2) the names of the driving tables associated with the
outer module.

When a user {group) issues its first outer call, the Ty~e Table
the
for
and

is initialized with default entries for all tvpes known to
I/O System. Calls, described in detail below, are provided
editing the Type Table, changing existing entries, and adding
deleting entries.

The Local Extension of the Type Table

The attach call establishes an ioname .for any process of a user
group. Thus, this call establishes a global ioname. As
described in Section BF.l.OO, ionames may be attached locally,
that is, such that the ioname is known only to the attaching
process. The default Type Table for localattach calls is the
global Type Table. The local extension of the Type '!'able
provides the capability of editing the Type Table on a
per-process basis. Thus, when an ioname is locally attach6d, and
the Not-Founder references the Type Table, the local Type 'I'able
is searched first, for a match on the ~ specified in the
second argument of the localattach call, and only if this search
fails, .. is the global Type Table searched. This is not true of
the (glo~~l) attach call for which the search is always
restricted 'to the global Type Table. To edit for glot·al
attachments one simply edits the global Type Table.

The Type Table

The global Type Table is allocated
and the local extension in the
Figure 1 is the declaration of the
on the items. Here the items will

in the Attach Table segment,
local Attach Table segment.
Type Table with brief conments
be described more fully:

1) nextrelp - The Type Table
increments corresponding to

grows dynamically in
an array (suLtab in
arrays are threaced Figure 1) of entries. The

MULTICS SYSTEM-PROGR~~MERS' MANUAL SEC'l'ION BF • 2.14 PAGE 2

f.L!m:l. t i ve s.

together by nextrelp which is a relative ,;·ointer to
the "next" piece.

2) type_name ..., This is the name given to the device or
pseudo-device type (see Section BF.l.Ol).

3) module_segment.name- This is the segment name of
the outer module which services the given type.

4) module_flag - This flag indicates if the module is
system-standard for the given type or user
supplied, and determines a suitable search
algorithm for purposes of linking.

5) name - This is the name of a driving table (at most.
3, possibly none) for use by the ou~er module.

6) flag - indicat.es if the specified driving table is
system -standard or user supplied, and determines
search alogorithms according.

7) copy_sw - .indicates if a copy of the driving table
is to be provided or the original.

8) offset More than one driving table
contained in the S8gment specified by S).
is the offset in words relative to the zero
segment.

may Le
Offset

of t.hf:

9) override_flag - When a Type 'table· entry ls ·edited,
the entry prior to t.he'·edlt'• must ' be . p~eserved in
tact for those ion ames' that ··were. attached when it
was ·in effect. This is accomplishect b:y set.~ing the
override flag to "l"b When an edited entry is to be
made. The edited versi·on 'is used, for attach calls
subsequent to the edit.

ttm$change_outer_module(type, t·able, n'ame, chr, cst'atus);

del type char (*)
table char (1),
n arne char (*) ,
dir bit (1),
cstatus bit (18);

This call changes the outer_modul·e a·ssocHited with tYJ?t> iT'I
~e(= "1~ if local, "g" if global) 'to n~me •. I'f d,ir is "O"b, t)1e
I/O System s ~!rectory is searched 'for :name, el'se if d1r fs "l"b
then the user s working directory is searched for narrt~. If an
entry does not already exist for ~ 'this call wi~-create . it.
Finally, cstatus is set to "O"b if an ·ent·ry already existed. "l"b
if not, and "Ol"b if an error is encountered.

ttm$change_dtab(type, table, dtabn, name, dir, copy_s~, offset, csttltus);

del type char (*) ,
table char (1),
dtabn fixed,
name char. (*),

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.14 PAGE 3

dir bit (1),
copy_sw bit (1),
offset fixed,
cstatus bit (18);

This call (not to be confused with atm$change_dtab, see BF.2.13)
is used to change driving table n (: 1, 2 or 3) associated with
~ in table (= "1" if local, "g" if global) to narr;e in dir·
("O"b = ros directory, "l"b =user's working directory). 'l'he.
copy_s¥r if "l"b specifies a copy of the segment ~. if "O"b tht:
original. Offset is the offset of the driving table, in words,
from the zero of segment ~· Finally, cstatu§ is "O":t: if the
call is successfully executed, "l"b if an error is encountered.

ttm$delete_type(type, table, cstatus);

del type char (*)t
table char (lJ,
cstatus bit (18);

This call deletes the entry for ~ in table ("1" if local,
if global) •. If an error is encountered cstatus is set to
else to "O"b.

"g"
"l"b

. MULTICS SYS'l'J<:M-PROCRMlt1ERS' MANUAL SECTION Br'. 2.14 PAGE c;;

del 1 tt bafied (p), /*type
2 nextre1p bit (18),
2 subtab (20),

3 type_name char (32),
3 module_name char (32),
3 rnodule_f1ag bit (1),
3 dtabs (3),

4 name char (32),
4 flag bit (1),
4 copy_sw bit (1},
offset fixed,

table*/
/*relp to next subtable*/
/*subteible array*/
/*type name* I
/*outer module name*/
/*l=user set,O=system default*/

/*driving table name*/
/*l=user set,O=system default*/
/*1 = copy of dtab, O=original*/
/*word offset of dtab*/

...

3 override_flag bit(l); /*1 = not active, 0 = active T'l ~ntry*/

Figure 1 - Type Table Declaration

