
TO:
FROM:
SUBJECT a
DATE:

MSPM Distribution
P. G. Neumann
BF.2.30~ 2.32_ 11.03
01/10/68

The code conversion complex has undergone a redesign.
The new design for typewriters is contained in the
accompanying BF.11.03. The attached copy of BF.2.30 only
partially represents this redesign. The accompanying
BF.2.32 is In spirit still worth publishing~ but has not
been modified to indicate the change.

The code conversion module has vanished as an interal
module~ and has been redistributed. Canonicallzation
is now available as a subroutine for use by the typewriter
DSM and other interested modules. Ascii conversion is
now embedded ln individual DCM#s~ I.e.~ for initial
MULTICS in the typewriter DCM. Both BF.2.30 and 2.32
will eventually vanish~ along with 2.31~ and will reappear
inside of BF.1.05.

·- Multics SYSTEM-PROGRAMMERs• MANUAL Section BF.2.30

Identification

Published: 01/10/68
(Supersedes; BF.10.00, 08/07/67)

An Overview of Input-Output Code Conversion

D. L. Stone
E. L. !vie

Purpose

1

BF.2.30 - 32 provide information about the use and implementation
of Multics !OS code conversion. Output code conversion is
performed by the Device Control Module (DCM). Input code
conversion is performed by the DCM and by an inner module called
the Canonicalizer (CANON) which is called by the Device Strategy
Module (DSM). BF.2.31 describes input code conversion and the
Canonicalizer •Nhile BF. 2. 32 describes output code conversion.

General

Code conversion is a necessary concomitant to the use of
character oriented input-output under Multics. In concept, a
character string is simply a sequence of graphic symbols. Code
conversion concerns the ways in which character strings and their
Multics representations can be converted from one to the other.
For each character string which is input by some device, there
correspond many possible internal represent~tions; in Multics
only one will appear -- the "canonical" form for that character
string. For each canonical representation, there can be assigned
a single method of causing the associated character string to 'be
produced by some output device. It is the job of code conversion
to produce the appropriate Multics representation in the former
case and to produce the proper codes for the output device in the
latter. In essence, code conversion is an interpreter L8tween
the basic language of Multics and the dialects and ioreign
languages spoken by the peripheral devices with which r-: ul tic::;
conv..::rses.

Tl1e following outline shows the role ~layed by code conversion in
inFut-outi._.ut. The flow from top to bottom indicates the
transforrr:ations which occur during input; the flow from bottorr.
to top, during output:

2

1.

2.

3.

4.

Multics SYSTEM-PROGRAMMERS' MANUAL Section BF.2.30

* *
* character string *
* *

transformed by physical
motion to

* *
* device code in some *
* device buffer *
* *

moved electrically to

* *
* device code in the *
* store of the 645 *
* *

moved under program control
of code conversion to

*
*
*
*

canonical ascii in the
store of the 645

*
*
*
*

4.

3.

2.

1.

Although there ar~ actually many more complications to character
string I/O, this diagram includes sufficient details for
understanding the operation of code conversion. The GIM treats
the data between steps (2) and (3). However, ·its ministrations
do not affect the character string in transit; rather, it
facilitates its movement by properly directing the actions of the
hardware. Any insertions or deletions of data performed by it
does not affect the conceptual character string which is being
transmitted.

Invocation

Code conversion is automatically performed in any iopath ~hich
the IOS can determine to be aimed at a character oriented device.
Those devices are:

~
/

-...J

.. .._ : ~·

Multics SYSTEM-PROGRAMMERS' MANUAL Section BF.2.30 3

Typewriters
Card Readers and Punches
Printers
Character CRT displays.

Code conversion once in use is affected by the
specified in the attach or changemode call and by
intended. Using this information, a set of driving
selected for use by the Canonicalizer and the
inforrration on tables see BF.2.3l and BF.2.32.

Functions Performed ~ ~ ~ Bn Output

code mode
the device
tables are
DSM. For

There are three basic actions which may be performed by a DCM on
a character string specified by a write call:

1. Ordering the characters as per device strategy. Reordering
the characters is required only for devices which must
simulate certain control characters as, for instance, the
printer simulating a backspace.

2. Editing the string according to the disposition of the
characters specified in the code conversion table• used by the
DCM. -e,lt..ab-le/t-abl e/ p ,

3. Converting ascii codes to device codes.

All three of these actions are controlled by the type of device
to which the output is directed. The editing function is the
only one influenced by the user's code modes.

Per-Call ~ Reordering

For the purpose of determining the optimal way to order an output
string of characters, we may classify the output devices into two
types -- those which must simulate a backspace and those which
need not do so. The former type comprises line printers, certain
typewriters and other devices which have a carriage return
capability but can not backspace. In order to overstrike on the
backspace-less devices, additional lines must be printed over the
first; hence, these devices must sort their data by depth of
overstrike and then by horizontal position as opposed to
backspaceable devices which normally print data sorted first on
horizontal position and then on overstrike depth. Accordingly,
the DCM orders the data passing through it in whichever way the
code table indicates is the desired method for the class of
device which will receive the data.

4 Multics SYSTEM-PROGRAMMERS' MANUAL section BF.2.30

Editing

The editing functions are controlled by the code modes specified
by the .user. In editing the data written by the user, a DCM
divides the ascii character set into six conceptual categories.
The characters in each category are placed there by the character
disposition table specified in the driving tables. The
categories are:

1. The character is precisely the bit pattern which should be
sent to the device. Clearly, this category is only open to
devices which can cope with the ascii set, or at least some
part thereof. No conversion is necessary.

2. The character is a graphic in the device character set which
is to be printed; or the character is a control character
whose function is available on the device (e.g. backspace
on a 1050 but not half-line feed), and which function is to be
performed.

3. The character is to be deleted from the data.

4. The character is to be printed as an escape sequence
defines it (e.g. left parenthesis overstruck by minus
for a left brace on a 1050 with a 938 ball).

5. The character is to be replaced by a blank in the data.

which
sign

6. The character is a control character which must be simulated.
Such a character is backspace on non-backspaceable devices.

As many characters as possible are placed in categories (1), (2)
and (6) and all others in category (4). This corresponds to the
"normal" code sub-mode. Two other sub-modes are available, if
specified by the user's code mode, the "straight" mode, in which
no code conversion processing is done, and the "edited" mode, in
which all characters normally in category (4) are distributed·
between categories (3) and (5) depending upon whether they are
controls or graphics, respectively. Non-ascii characters remain
in category (4). The default tables for the "edited" mode
implement this distribution for each device.

Conversion SQ Device Codes

The final task of output code conversion is to convert the result
of ordering and editing the characters into device codes suitable
for the specified device. This conversion is accomplished by
code tables accessed by the DCM for each device class.

.. --

-- .• Multics SYSTEM-PROGRAMMERS' MANUAL Section BF.2.30 5

Code Conversion Functions Performed on Input

On input the
"canonical".
code mode on
is done when

code modes spec1tied by the user
The "raw" code mode corresponds to

output. No processing of the input
the mode is "raw".

are "raw" and
the "straight"

character string

The functions performed by the lOS when the input
"canonical" are described below in the order in which
performed. The first step is performed by the DCM.
through 5 are performed by the Canonicalizer which is
the DSM.

mode is
they are
Steps 2

called by

There is a device-code-to-ASCII conversion table for each type of
input device available to Multics. These tables map each device
character into the ASCII character which most closely resembles
it. See Section BC.2.01 for a description of the ASCII character
set, the Multics standard control characters, and methods of
dealing with non-ASCII characters.

Hardware escape sequences are also converted to the appropriate
ASCII characters on this step.

2. Concealed Characters

Occasionally one may wish to type a character on his console
which is to have only a local effect and is not to appear in the
final character string or to initiate any action in the IOS. An
example of where this might be useful is when one has reached the
physical end of a line but has not completed the "logical line".
In this case he could type a "concealed" newline character by the
sequence "(escape-character)C(new-line)". All three of these
characters would be deleted from the the input string on this
step. See Section BC.2.04 for a description of concealed
characters.

One should make special note of the fapt
characters can be concealed since erase and
not done until step 4.

3. Cagonicalization
i

that erase and kill
kill processing is

The objective of the third processing step is to create an
internal "line image" which represents the actual appearance of
the line as printed at the console and which is independent of
the order in which individual characters are typed. For example,
the sequences, "ab(bs)_c", "abc(bs)(bs)_", and "a_(bs)bc", are
all converted to the same internal sequence, "ab(bs)_c", since
they all appear the same on the printed page at the console.
(Here "(bs)" means backspace.}

6 Multics SYSTEM-PROGRAMMERS' MANUAL Section BF.2.30

The internal string is called the "canonical" representation of
the typed input string. Canonicalization is accomplished by
grouping together characters according to the horizontal print
position and vertical character position which they occupy. A
description of what constitutes a canonical string is found in
Section BC.2.02.

Note that the internal line image is not exactly
the line printed at the console if concealed
present.

4. Erase and Kill Processing

equivalent
characters

to
are

An elementary editing facility has been imbedded into the I/O
System in the Canonicalizer. There will, of course, be
additional editing capabilities which the user may provide or
invoke which operate on the input string after it has been
delivered to his calling procedure.

The editing performed by the Canonicalizer makes use of two
reserved characters: the erase character and the kill character.
The erase character provides the ability to remove from the input
string all characters which have been (or are) typed in the
horizontal print position in which the erase is found and also
all characters in the previous print position. The kill
character erases all characters in horizontal print positions to
the left of (and including) the print position occupied by the
kill character.

There can be only one erase character and one kill character but
the selection of which particular characters these are is under
the control of the person generating the input string. For
example, the erase function is reassigned to the character "x"
when the sequence, "(escape-character)Ex", is encountered by the
Canonicalizer.

Since erase anq kill
all characters typed
erased, and not just
or kill character.
however, not erased.
documentation.

processing is done afte~ canonicalization
in the print positions affected will be
those typed prior to the typing of the erase
Vertical motion and ribbon shifts are,
See Section BC.2.03 and BF.2.31 for further

5. Interpretation of Escape Conventions

Most of the input devices which are currently planned for use
with Multics do not generate the full ASCII character set. For
these "deficient" devices escape sequences have been defined (see
Section BC.2.04) which allow one to represent a character which
is not available on the device by a sequence of two or more
characters which are available of the device.

Indeed the escape capability is not limited to
which are not available on a given device.

those characters
An octal escape

_....,..J/ , .,

Multics SYSTEM-PROGRAMMERS' MANUAL Section BF,2,30 7

sequence has been defined which provides one with an alternative
representation of every ASCII character,

Information on what escape sequences are valid for each device is
stored in a special tree structure in the input code conversion
driving table for that device, Section BF,2,31 describes this
structure,

6, Recanonicalization

The processing of escape sequences in Step 5 may destroy the
canonical order of the string that was established in Ste~ 3,
This occurs, for example, if a horizontal tab is generated by an
escape sequence, This final step is necessary to insure that the
string delivered by the Canonicalizer to the calling procedure is
really canonical,

