
TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
D. L. Stone
BF .20.01

. 06/2, /68

BF.20.01 describes the interface to the new GIM. It is
considerably more primitive than the previous interface
and will allow a more efficient implementation of the
GIM. The new implementation is now being done by Tom
Skinner (MIT x6017) and David Stone (GE x263).

The attached re-issue of BF.20.01 incorporates the addendum
of 02/09/68 (hence superseding BF .20.01A), and adds a
new call, giminit~safety.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 1

Identification

Published: 06/2f/68
(Supersedes: BF.20.01, 01/09/68;

BF.20.01, 12/01/67;
BF.20.01, 07/11/67;
BF.20.01, 05/10/67;
BF .20.01, 12/15/66)

DCM/GIM Interface Specifications
s. D. Dunten and D. L. Stone.

Purpose

This document describes the user interface to the hardcore
modules which control Input/output through the GIOC in
Multics. It is a functional specification in symbolic
terms; for details of the strategy employed and the data
bases used, see sections BF.20.02 and BF.20.03, respectively.

Introduction to the GIOC

In order to make use of the GIM interface, the DCM writer
must be on intimate terms with the GIOC adapter through
which his device is controlled. The GIM is only minimally
aware of the relationship which is maintained. Although
system security must be assured, the misuse of a particular
channel is of no concern to the GIM. Hence, the DCM is
allowed almost complete freedom to control its device
as it sees fit. In the following discussion, it is assumed
that the reader is familiar with Mu 1 tics document GOOSO -
the Programmers's reference manual for the GIOC.

The GIM restricts its callers to using a single, contiguous
DCW list. Within that list, any of the six DCW types
recognized by the GIOC may be used. By judicious use
of the GIOC transfer DCW, the DCM may utilize the single
list assigned it as if it were several lists; however,
it is anticipated that most DCM's will operate their list
as a single circular queue of DCW's. The DCW .. s themselves
are specified by the DCM except that absolute addresses
in data DCW's are allowed only in the case of privileged
users (e.g. -Disc DIM). No user may specify the tally
or address fields of a transfer DCW. The address field
supplied by the user is interpreted by the GIM as an offset
within the DCW list (the first DCW having an offset of 1).
The DCW's specified are written directly into the DCW
list used by the GIOC.

Once constructed, DCW lists may be activated by means of a
single Connect Instruction Word specified by the user.
The ~ctivity of a list is not monitored by the GIM and
consequently, all list activities are performed in the
same way by the GIM whether the list is active or not.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20.01 PAGE 2

Gaining Access to a Channel

The GIM grants access ri~hts to a channel when one of
the following two calls 1s issued by an appropriate process
(e.g. a process in a Universal Device Manager Process
Group_ from ring 1):

Call giminit~assign(name_devx_event_type_rcode);

Where the arguments are accessed by the GIM through the
EPL declaration: ·

del name char(32) _
devx fixed bin(17),

event bit(70)_

type char(*)-

rcode fixed bin(17);

/*symbolic channel name*/
/*device index returned by the

GIM for this channel*/
/*Passed on to the DSTM for device

signalling*/
/*passed to 1/0 assignment

module*/
/*error return_O=ok*/

The assign call_ if valid_ causes the GIM to initialize
certain information pertaining to the caller and his channel.
The physical channel and related information is discovered
in the Device Configuration Table by locating the symbolic
channel name supplied. A device index is constructed
and returned to the caller for use in all future calls
pertaining to this assignment of this channel. The event
id supplied is passed to the Device Signal Table Mainta1ner
along with the device index; it is the device index which
is used by the GIM interrupt handler to wake up the caller
when interrupts occur on his channel. After this call
has been successfully performed_ the caller may access
and use the assigned channel.

The Channel Copy Table is allocated at this time (see BF .20.03).

An additional use of this call is made by the I0 system
when an iopath is pushed down. If the assign call is
received for a channel which has been previously assigned_
the GIM will simply return the device index.

call giminit~fsassign(name,devx_rcode);

This version of the assign call is allowed only to privileged
users (ring O). It causes the GIM to accept absolute
addresses in data DCW's and to omit the allocation of
a Channel Copy Table for this channel. This call is intended
for use by the file system at system initialization.

MULTICS SYSTEM-PROGRAMMERS' Ml\NUA L SECTION BF .20.01 PAGE 3

Defining a List

Before using a DCW-list, the DCM must inform the GIM of
the size of the list because the GIOC requires that the
list be in contiguous wired down core. For this purpose,
the following call is used:

call giminit11ist_size(devx, listsize,rcode);

del listsize fixed bin(12);

The GIM first looks to see whether a listsize has been
previously assigned. If it has, and if that size is different
from listsize, then the GIM will reallocate the hardware
buffer and reinitialize it. If the sizes are identical,
no action is taken. If listsize is zero, then the wired
down buffers for the DCW list and associated data buffers
are released.

If no list currently exists, the GIM allocates a new one
which is one DCW larger than that specified by the DCM.
Every DCW slot is filled in with a transfer to a system-wide
"safety'' pair of DCW's which are guaranteed to stop any
channel. This apparatus protects the system from faulty
DCW lists which might cause the GIOC to run off of the
list.

It is expected that the low spe.ed conmon periphera 1 adapter
users will make only one listsize,call per assignment,
whereas communication adapter users may make two calls -
one for the DCW list required to wait for dial-ins, and
one for the I0 associated with a dialed-in channel.

Changing a DCW list

Having gained access to a channel and defined a DCW-list
length, the DCM may add DCW's to the list by making the
following call:

call gi~list_change(devx,dcwp,datap, listx,count,rcode);

del (dcwp, /*pointer to "dcw_array"*/
datap) ptr,. /*pointer to "data_array''*/

(listx,. /*index within DCW list,(start-
ing with 1) of first DCW to
be changed*/

count)fixed bin(17)J /*number of elements in
"dcw_array" which are to be
used*/

MULTI CS S YS TEM-PROGRAf'IMERS' MANUAL SECTION BF .20.01 PAGE 4

where the data referred to is accessed as:

del dcw_array(count)bit(72)based(dcwp),
/*a list of real ocw~s*/

1 data array(count)based(datap),
2-p ptr, /*pointer to user workspace if nth

DCW is data DCW*/
2 rw bit(2) 1 /~'1011 b = readDDCW

" 01" b = wr i teDDCW* I

(Note: for privileged users, datap should be null).

In response to this call, the GIM performs the following
actions for each DCW, beginning at the countth one and
workina backwards: (the current DCW index Is referred
to as fr' J") •

1. If the jth DCW transfers data then:

a) if the number of words required is the same as the .old
jth DCW, insert that address in a copy of the new DCW.

b) if the number is not the same, then allocate a new buffer
and fill in the address accordingly.

c) if the new DCW is a write transfer, then copy the data
from the user's area 1nto the buffer.

2. If the new DCW is a transfer DCW, then in a copy of it
adjust the tally field and translate the address field from
an index within the DCW list to an absolute address.

3. In the copy of the new DCW, set all non-zero status pointers
to the status channel being used by the GIM.
Move the copy of the new DCW into the list at the jth place.

4. Sample the address of the DCW in the mailbox to see if ·the
old DCW is now being processed by the GIOC. If so. and if
the old DCW is a data transfer, then shut down the channel
unless the data buffer is being reused by step 1a above.
Give an error return.

5. Free the data area associated with the old ocw. if any,
unless it is to be reused.

The above algorithm allows the clever DCM to minimize
the number of reallocations which must be done for its
data DCW's. By making its data buffers a constant size
when practical, the DCM can cause reuse of the hardware
buffer associated with ·each data DCW. On output, this
strategy would require the use of a false tally field

MULTICS SYSTEM-PROGRAMMERS Ml\NUAL SECTION BF .20.01 PAGE 5

and would therefore be practiced only on devices which
can terminate from a character in the transmitted data
(PRT202); on input. it can ·be applied more easily.

Note that for privileged users (i.e •• those who have made
the fsassi~n call). the absolute address in the DCW is
used and t e datap pointer is not used.

Activating a DCW LIST

In order to perform certain tasks -- notably to activate
a DCW-list. the DCM must provide a Connect Instruction
Word (CIW) to be processed by a GIOC connect channel.
The following call allows the DCM to connect one CIW.

call gim91ist_connect(devx.ciw# listx.rcode);

del ciw fixed bin(18); /*the ~IW is treated as an
18 b1t string which is the
right half of a CIW*/

The GIM actions are:

1 • if listx = 0 then go to 3

2. if a DCW list has not been allocated. there is an error.

3. create the proper CIW and connect it.

Stopping a DCW List

A running (indirect) channel may be stopped in mid flight
or an inactive channel safetied by the following call:

call giminit~safety(devx.rcode)J

del (devx.rcode) fixed bin(17)J

devx is the device index of the channel and rcode is the
standard GIM error return.

Upon receipt of this call the GIM will jam the safety
OCW in the channel mailbox and the address of this DCW
in the LPW mailbox. The safety DCW is a command DCW (type 4)
with bit seventeen on. All four status channel pointers
will be set so the user will be able to detect all channel
activity from this point on. e.g •• the special interrupt
caused by a tape going into ready status.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 6

Status

The GIM provides two types of status information for the
caller: where is the GIOC in the DCW list and what hardware
status words have been stored for the GIOC processing
of the list. These two types of information are used
at different points in the driving of a device. If the
DCM is attempting to keep its DCW-list active# a typical
strategy would be to inquire about the GIOC's current
position in the list# change the list accordingly and
only then request that hardware status be relayed. This
strategy delays time consuming processing of status words
until after the list has been patched# thus increasing
the probability that the list will remain active. If#
upon examination of the status words# the DCM discovers
that the channel has terminated# then it can issue a connect;
otherwise# it need simply update its tables and return
the status to its caller.

call gi~get_cur_status(devx,listx,dcwt#rcode);

de 1 (listx,

dcwt)fixed bin(12)J

/*current index of dew being
processed*/

/*current dew tally*/

Upon receipt of this call, the GIM samples the mailbox
for the channel to determine the index and tally. Note
that for direct channels# the dcwt will in general be
wrong. Next, the GIM copies any read data which has not
been copied into the caller's work space up to and including
the element described by the~ (except for direct channels).
The word in which the last (dcwtth) element is contained
will be transmitted as a word, so the remainder of that
word may not be input data. For direct channels# the
DCW on which the GIOC is currently working will not cause
any copying to be done.

call gi~get_status(devx#status array_ptr#array_size#
outsize,waiting#rcode)J

del status_array_ptr ptr#
(arraysize,

outsize)fixed bin(17)#
waiting fixed bin(17)J

/*Pointer to "status_array11 */
/*maximum number of status

elements to be returned*/
/*actual number returned*/

del 1 status_array(array_size)based(status_array_ptr)#
2 status,

3 type bit(4), /*bits 0-3 of (modB) status
word*/

3 int_sig bit(2), /*bits 4-5*/
3 adapter bit(12)# /*bits 18-29*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL

2 time bi t(52).,

2 listx fixed bin(12),

2 dcwt fixed bin(12);

SECTION BF .20.01 PAGE 7

/*time at which stored
interrupt was process d by
handlep'>/

/*which DCW caused status
store?~~ I

/*dew tally at interrupt. if
app 1 i cab 1 e~'~- I

The GIM returns two types of information from the get_status
entry - both in the array pointed to by "status array pt r" •
The first element of the array has zero status and time;
the '' 1 istx" and "dcwt" entries are set to the current
value as determined from the mailbox of the channel (a
call to ~et_cur_status is made to determine this information).
The rema1ning entries in the array are filled from as
many status words as are currently in the hardware status
queue for the channe 1. "outsize" is set to the number
of status words put into the array from the status queue.
If there are no status words waiting, the outsize is set
to zero. No more than "array_size" -1 status words are
entered into the array. If more status words are waiting.
then "waiting11 is to be set to the number waiting. If
none are waiting then "waiting'' is set to zero.

Releasing Lists and Channels

The DCM can take advantage of lulls in activity on its
device by releasing its wired down buffers durin~ such
periods. After releasing, the DCM must make a l1st size
call in order to have a wired down buffer allocated.

giminit~list_size(devx.,o.rcode);

Finally., when the DCM wishes to relinquish the channel
and have all information associated with the assignment
freed, it issues:

call giminit~unassign(devx,rcode);

Strategy for using the new GIM interface

1. Low Speed Common Peripheral Adapter

Terminates are a single IDCW. Consider the list as
circular with a transfer from the last DCW to the first.
At any given time there should be exactly one terminate
in the list. Upon gaining control (assuming that
previous list_changes and connects have been made) call
gi~get cur status. This call is quite fast for write
DCW's, tcauses copying for read DCW's), and will uncover
how many free dew's there are in the list after the

... ...--··

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20.01 PAGE 8

terminate. Call gintl 1 ist_change to fi 11. in the empty
slots with queued data adding .a new·term1nate and over
writing the old one. Finally call get_status to determine
whether a call to gintllist_cc;mnect is necessary (if. the .
channel has terminated). Th1s call may take some t1me
to execute since status is moved., and it should therefore
be postponed unti 1 after the active patching is
performed., in an attempt to keep the channel active.

2. Communications Adapter

Terminates are sequences of n > 1 dew's. Keep all such
sequences beyond the extent of the circular list described
above and use a transfer to the sequence as the ''logical
terminate" to be overwritten in the strategy above.

3. As indicated in the list_change description., keep data
buffers a constant size.

Restrictions Imposed py the GIM

1. Patches of active DCW lists will cause the channel to be
terminated by the GIM if data dew's are patched while the
GIOC .is processing them (i.e., they are in the mailbox)
and the length of the wired down buffer is changed.

2. A corollary to (1) suggests that active (or possibly active)
patching should be restricted to a single dew of type

11 instruction" or 11 transfer" - hence terminates should be
caused by a single IDCW with the terminate bit on or by a
transfer to a longer sequence (for communication channels).

3. Data read in by the GIOC is not copied into
until he has made a status call to the GIM.
guaranteed that more data than is specified
tallies is available in his workspace •

the user's area , .. /
The user is not

by the LPW-DCW

4. Data areas speci·fied by the user as the recipients of read
data should begin and end on a word boundary. Since the GIM
copies data by word., bits to the left of the first bit
specified by the DDCW and bits to the right of the last bit
will be overwritten by the GIM. This restriction will be
particularly useful when the GIM is receded in EPLBSA.

5. Adapter-wide and GIOC-wide errors are nQ1 recognized by the
GIM.

6. Status not called for will eventually be discarded.

7. Status channel pointers supplied by user are interpreted
as zero or non-zero -- particular channel is chosen by GIM.

/_.-·

