.

TO: MSPM Dzstrlbution

FROM: D, R, VWidrig
SUBJECT: BF.MM.7?
DATE « 12/01/67

Minor editorial chanﬂes have been made in the interest
of greater clarity, Also, the “"compressed status word"
description has been expanded to more fully describe
individual status bits,

MULTICS SYSTEM~-FROGRAMMERS® MANUAL SECTION BF,20,12 PAGE 1

Published: 12/01
~ /

12/01/67
(Supersedes: BfF,20,12 Q7/10/67)

Identification

GIM - Interrupt Handling and Status Requests
D. R. Widrig and S, D, Dunten

Purpose

This section is part 4 of the complete description of
the GIM:; see BF,20,02. :

Interrupt Handling - gioc_stat$int

Upon receiving an interrupt from a GICC, the Multics Interrupt
Interceptor will mask all lower priority interrupts and

call the GIOC Interface Module®s interrupt handler with

the following cail:

call gioc_stat$int (giocno, statno, timep)
where the argumenrts are declared as follows:

(giocno /* GIOC number causing interrupt */

statno) fixed bin(17) /* status channel causing interrupt */

timep ptr /* pointer to calendar-time of
interrupt */

The GIM performs very few actions on interrupts in accordance
with a policy of swift response to interrupts as outlined .
in BK,0, MSPM, Pointers to the GIOC base and the appropriate
status channel”’s LCT are.obtained via a call to check$statusp,
Errors returned from this routine indicates probable machine
malfunctions, Malfunctions are not dealt with in the

GIM at the current time so a return is made upon detection

of errors., A short discussion of the GIM‘s hardware status
queue discipiine is now in order., Thorough knowledge

of the GIOC handling of Status Control Words (SCWs) is
assumed, '

The hardware queue for a given status queue handled by
the GIM is, in reality, two status sub-queues, Each sub-

queue is used by a single SCW, Thus, a particular hardware
status queue may appear as follows:

.‘k\\\£::::::::§ status control word B
i “\\\4'————“——? status control word A

!,________.,..__._v.

MULTICS 5YSTEM-PROGRAMMERS “ MANUAL SECTION‘BF.20.12 PAGE 2

After exhausting the queue controlled by SCWB, the GIOC
exchanges SCWB and SCWA, Thus, if the prime quﬁue is
exhausted, one might expect to see the following arranqement:

] |

‘ ' status control word B

]

; 1 | status control word A

| ,

|
To put it another way, the current upper bound of the queue
is always obtained by inspecting SCWB, The role of SCWA
is discussed later in Moving of Hardware Status Words.
One can consider the hardware status queues to be one
logical queue as follows:

last J‘ '

: processed queue ~/
status middle . : :
control ‘ =» un-awakened queue
word B \f-. } |

‘ first

The "un-awakened" queue represents status words not yet
" processed by the GIM, As such, the device manager processes
interested in these status words have yet to be notified,

The "processed! queue represents status words that have

been processed by the GIM and have been brought to the
attention of the appropriate device manager process,

- The GIM?s task upon being called by the Interrupt Interceptor
is to awaken all device manager processes associated with
status words in the "unawakened" queue, Clearly, if the
"middle" pointer and the "first" pointer are identical,

all status words have been processed, If "first" is less
than "middle", the queue has wrapped around, To simpTify

" processing, the upper bound is set to the end of the queue
for a wrap-around case, Otherwise, the upper bound is

set to contain the area between "middle" and "first",

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION Br,20,12 PAGE 3

Having established the boundaries of the status words

to be inspected, the following actions are performed for
each status word, First, the time of the interrupt is
stored in a softwvare analog to the harcware stztus storage.
In effect, the software augments the hardware and simulates
the effect of the storing of the time of an interrupt

as well as the status storing, Having stored the time,

the channel number stored in the status word is extracted
and tested, If the channel is a user”s channel, the Channel
Assignment Table (CAT) is referenced to obtain the device
index of the charnel, A call to dstm$set_dev_signal (see
BQ.6.01) is made to wake up the device manager process,
Upon being awakered, the device manager process should

ca}; the GIM for status information via the reauest$status
call,

If the channel is a connect channel, a call to the GIM
entry connect$int is made so as to restart the channel
should there be some more CCWs to process,

In a manner similar to the queueing strategy discussed

in List or Connect Channel Activation, the "middle" pointer
"is moved up to the end of the current "un-awakened" queue
(thus expanding the '"processed" queue) unless the end
pointer is off the end of the queue, If the end pointer
has run off the end, the "middle'" pointer is reset to

the base of the queue, The entire loop described above

is then repeated until there are no new status words to

be processed, The routine then returns to the Multics
Interrupt Interceptor,

Inquiring as to Device Status - request$status

Whenever a DIM wishes to discover the status of its associated
lists and retrieve hardware status relevant to the active
device, the following call is made:

call request$status (device_index, cur_stat, rtn_stat,
[stats]) , ‘

where the arguments are defined as follows:

device_index fixed bin (17) /* user device tag */

cur_stat bit (1) /* ON if current status
desired */
rtn_stat bit (36) /* standard GIM error return

word ¥/

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BF ,20,12 PAGE 4

The optional argument(s), ”stéts”, is a structure declared
as follows: ' L :

dc?! 1 stats, /* status frame */ .
2 filled tit (1), /* ON if frame has data in
Cit o/
2 active bit (1), /* ON if channel is active */
2 status_waiting bit (1), /% ON if more status waiting ' */
2 started bit (1) ' /* ON if channel has started >/
2 int_id bit (2u), /% id list for this frame */
2 int_idx fixed bin (12), /% index of item in list */
2 tally fixed bin (12), /* current DCW tally, if
: applicable */
2 time bit (52), /* time of interrupt or
. , status */
2 stat_length fixed bin (17), /* length of status array */
2

stat (stat_length) fixed bin (24); /* breakdown of
| status ¥/

The remainder of this section discusses the setting of every
item within a status frame and illustrates possible errors
encountered by the GIM, :

The GIM begins processing a request$status call by calling

a general utility, checkldevice_index; to verify the user
device tag, ''device_index", Possible errors from
check$device_index Include an illegal device index, 'baddev',
and no Logical Channel Table (LCT) associated with this
device index, '"lctnf",

Having validated the user device tag and having obtained

a pointer to the caller’s LCT, the GIM calls gloc_stat$move
- to move all hardware status relevant to this user into

the user’s work areas, Specifically, all relevant hardware
status data is moved into the free storage area within

the user’s LCT, (See the later section, Moving of Hardware

Status Words for further details of the status moving
mechanism, .

After moving the status data, a call to getargs will collect
pointers to the caller’s status frames, "stats'", If there
are no status frames to be filled, i,e, the caller supplied
none, request$status immediately returns, Note that the
main effect of a call with no supplied status frames is

to simply collect the status for later use, The status

is not lost, :

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BF,20,12 PAGE 5

Assuming that the caller did supply one or more status
frames, the GIM now proceeds to fill them, A call to
checx$gioc and Ipwfactive will collect a pointer to the
GIOC mailbox associated with the caller and determine
current channel activity, Possible errors from the above
two calls incluce illegal GIOC number, "badcall”, and
GIOC not available, "glocnf',

A check of "cur_stat" is now made in order to det ermine
the order of status being returned, If "cur_stat" Is

ON, the caller expects to receive the current list status
in the first (and possibly, only) status frame supplied

in the calling sequence, The foilowing discussion assumes
that "cur_stat" is ON. v

For active lists, the GIM must construct a list status
which is relevant to the actual GIOC processing of the
caller’s DCW lists, For an active list, the GIM collects
the current LPW and DCW mailboxes via calls to double$load,
a small EPLBSA routine which gets mailbox areas via doub‘e-word
instructions, Double-word instructions are necessary

to insure the consistency of the data gotten from the
mailboxes, The LPW mailbox is examined and the equ1va1ent
list id and item index derived by a call to Tpw$fnd,

The only error possibility is a system or machine error,
"syserr', Lpw$fnd also determines whether the LPW has
moved since the connect$list call by matching the current
LPW with the LPW saved at the time of the connect$list
call, 1If the LPW has moved since the connect$list call,
“stats.started" in the caller’s status frame is set ON,

Having matched the LPW, a test is made to determine whether
the LPW is pointing at a patch list, If the LPW is pointing
at a patch list, the 1ist data for the list which is being
patched is substltuted The substitution insures that

the pagch is transparent to the user, (See Patching Live
Lists ‘

MULTICS SYSTEM-PROGRAMMERS? MANUAL

EXAMPLE

main list

1

patch

24‘

3

2
3
b <
5

—-:l.LPW pointer

- Current list: patch

Current item: 2

Before Substitution -

SECTION RF.20,12

Ui F W N

N

Equivalent
LPW pointer

Current list:
Current item:

After Substitution

Having gotten the list ID and item index,
and "stats,int_id" are inserted into the caller s status
frame, The DCW tally from the DCW mailbox is copied into

"stats.tally",

"sta®s

by the earlier call to lpw$active, the list ID,
tally, etc. are all set to zero,

Jdnt_idx",

Note that for an inactive channel as noted

1tem index,

Having collected the 1ist data, the current time is noted

in "stats.time",

and the WEf] ed entry is set ON,

PAGE 6

main
2

the channel activity is marked in "stats.active"

This completes processing

of the first status frame if current status was requested,
The GIM continued by translating relevant hardware status
words into items required by the caller for all caller-supplied
status frames except the current status frame (if one

was requeste

d).

Reca]]in? that the earlier call to gioc_ stat$move has

“moved al

relevant status into the caller’s Logical Channel

Table (LCT) the GIM examines the start of the status thread,

"lct,.fststat".

status data current]y exists for this caller,

case of a zero thread,

If the start of the thread is zero, no

In the

and "stats,status waiting“ to zero in all ca]ler-suppl1ed
hat is, the GIM announces there is no

status frame
status to re

For a non-zero thread,. the status data pointed at by "lct, fststat"

s. T
turn,

is unthreaded and prepared for use,
the chain is the oldest status data, the last item is
the most recent,

The first item in

request$status simply sets '"stats,filled"

~

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION EF.20.12 PAGE 7

The ceclaration for each status data block is
/* Declarations for chained status frame */

dcl 1 sfrm based(fststat), /* chained status */

2 nextp bit(18), /* offset of nex: frame ¥/
2 tlme bit(54), /* time at interrupt */
2 statwd blt(? /% interrupt status word */
To unthread the First item, one simply resets '"lct, fststat"
to be equal to "sfrm, nextp“, thus re=linking the chaln
around the first status block
EXAMPLE "
fststat_ fststat , !
f—lststat ! ' lststatj !

nextp F:v ’ é | 3 2
SN :

3 !
R

L-{:Ezz;:Lextp _ | ! ;Its>nextp

Before unthreading After unthreading

A check is then made to see if the end of the chain is
reached, If the end has been reached, "lct,lststat" is
zeroed, The user~-supplied status frame is upcated with
the "status: ~waiting" switch by simply setting the switch
ON if the thread has not been reduced to the emoty thread,

By matching the LPW tally stored in the hardware status
word with the LPW which was saved in "lct,stlpw' at the
time of the connect$llst call, the GIM determlnes whether
the LPW has moved since it was set up, The proper entry
in the caller’s status frame, '"stats,started", is set
accordingly,

‘Request$status continues by matching the LPW tally with

the tally base and Ien%th of all currently defined lists

in order to find the 1list and item associated with the

LPW tally stored in the hardware status word, Reference

to the section entitled Generation of DCWs gives the mechanism
which insures a unique match,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BF .,20,12 PAGE 8

"If a match is found, the .1ist ID and item index are posted

in "stats,int_id" and "stats,int_idx", respectively,

If no match with any currently defined list is found,

the ID and index are set to zero, In addition, a no-match
case will cause "stats,started" to be set OFF, by convention,

Having posted the list identity, the DCW tally residue

and time of interrupt are copied from the status block

into '""stats.tally" and "stats,.time", respectively., Request$status
now calls statfil, a routine which takes a hardware status

word and procesces it according to the instructions found

in the appropriate -Class Driving Table, Possible errors

from statfil include CDT not found, "cdtnf", illegal field=-

action code in CDT, "il11f1d", GIOC not available "giocnf",

bad GIOC number, "badcall", and too many lists, "tmlst",

The role and actions of statfil is more completely discussed
in a later section, Status Word Translations. - We note

now, however, that statfil updates the channel activity

flag to reflect whether the channel is still aztive,

This flag is then posted by request$status into "stats.,active"
for the caller’s convenience,

As final actions for the caller-supplied status frame,

the "filled" switch is set ON, the unthreaded status block
is freed and the next caller-supplied status frame is
selected, Upon exhausting the status frames, request$status
returns,

Moving of ngdware‘Stgtus Words - gioc_stat$move

At certain times, it is necessary to move the contents
of a hardware status queue into a larger, pageable area,
Such moves generally occur as a result of a DIM calling
the GIM for status through the request$status entry,

To move status words, the GIM makes the following call:

call gioc_stat$move (1gch, lctp, polsw)
where the arguments are defined as follows:

1gch fixed bin (12), /* logical channel number */

lctp ptr /* pointer to LCT */ -

polsw bit (1) /* always "O"b in current
implementation ¥*/°

In order to move the status words, the GIM first moves all
relevant status words on all GIOCs into a large, pageable,
data base known as the Channel Status Table (CST).

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION 3F,20,12 PAGE @

The move to the CST is accomplished in the following manner,

For each GIOC, a pointer to the GIOC base is extracted
via a check$gloc call, Then, the following actions are
performed for each status channel on the selected GICC,
A pointer to the selected status channel’s LCT is extracted
via a call to check$statusp, The '"last'" and '"'middlie"
pointers for the status queue are extracted and testec,

If "last" and "middle" are identi cal, there are no un-processed
status words so no further action is needed fcr this status
channel, However, if "last" is less than '"middle", then
all the status words from "last" to "middle" must be moved
into the CST, If "last" is greater than "middle", the
queue has wrapped around the end and only the status words
from "last" to the end of the queue should be moved,
Having selected the boundaries, the following action occurs
for each status word,

Until the model 3 GIOC arrives, a call to "fake72" is
made to transforn each 36«bit status word into a format
approximating the 72-bit status word stored by the mode!
B GIOC, The GIM is oriented around a 72-bit status word
so that installation of the model B GIOC requires only
the removal of the fake72 call,

The physical channel number is extracted from the hardware
status word and tested to see if it is a user channel

or a connect channel, Assuming a user channel, the following
actions are performed, ’

For a user channel with a defined Logical Channel Table

: (LCT) the GIM attempts to insert the hardware status
data into the Channel Status Table (CST). The storage

is done by inspecting the free storage chain originating

in slot 0 of the index table of the CST, A chain pointer

of 0 indicates no free storage is avallable, For a 0

chain pointer, a new slot must be extracted by reference

to the hlghest index currently allocated, This index

is incremented and the appropriate CST entry, cst, hix,

is updated, It is hoped that careful re-use of free storage

will tend to keep the CST compacted and alleviate paging

necessity as much as possible, Each status block has ’

the following declaration:

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BF ,20,12 PAGE 10

/* Declarations for chained status frame */

dcl 1 sfrm basec(fststat), /* chained status */
2 nextp bit (18), - - /* offset of next frame */
2 time bit (54), /¥ time at interrupt */
2 statwd bit (72); - /¥ interrupt status word */

Having selected a slot for storing the status data, the

free pointer is threaded to pOint to the area indicated

by the forward pointer of the new area., The forward pointer
of the new free area is then reset to indicate no forward
chain, The chalwing up to this point is illusurated in

the fo]lowing diagram:

Before Threadihg . After Threading
Free Pointer | fstx Free Pointer [“‘“""flj}gng
: : ‘ é '
New Afea ' : 1%;5;— New Area 0 — iakia
Free Area| .Free Areé
= -

Free area discipline

The status word is now inserted in the status block entry,
 "statwd", The time of the interrupt is copled into the

new status block entry, The status block is then threaded
into the other status blocks relevant to the logical channel
under inspection, A simple demonstration of the threading
of a status block is shown in the following diagram:

MULTICS SYSTEM-FROGRAMMERS® MANUAL SECTION EF,20,12 PAGE 11

Before Threading | After Threading
channel #n lstx fstx channel jn fstx
- ‘ L —— St
I
Tstx TJ
status ! nextp [~ nextp
block 0= B ﬁj |

new B
status 0_{ nextp ‘ _Ff“:aj nextp
block : ‘ 0 —+—

To express the threading in words, the CST is a number

of single-threaded chains in which each separate chain

corresponds to a particular logical channel”’s unclaimed
status words, =

After threading in the status data, a check is made to
determine whether a hardware status sub~queue boundary

was passed, If a boundary was passed, SCWA of the appropriate
status channel is reset to re-use the sub-queue just emptied,
If the mid-boundary was passed, SCWA is reset to point

to the lower sub=queue, If the upper boundary was reached,
SCWA is reset to point at the upper sub-queue,

Having moved the status data into the CST, the "last"

pointer is updated to the end of the status words that
were moved, If the upper end of the queue is reached,
"last" is reset to the first item in the queue, After
processing all status queues on all GIOCs, the second

phase of the status block moving commences,

In the second phase, status data relevant to the logical
channel indicated in the call to gioc_stat$move must be
moved from the CST into the user®s work area within the
Logical Channel Table (LCT) for this channel,

Moving status blocks from the CST to the indicated LCT
consists mainly of the allocation and ‘threading of a status
block within the user®s LCT and the filling in of the
status block from data contained within some particular
status block in the CST, The actions are performed in

the following manner,

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTICN 3F.20.12 PAGE 12

-

The first and last pointers for the proper logical channel’s
thread in the C3T are extracted and saved, Ii the first
pointer is zero, there are no entries in the thread,

For a zero thread an immediate return is made,

- A non-zero thread pointer indicates one or more status
blocks exist and must be moved into the proper LCT, The
following actions are performed until all of the chain
elements have been moved into the proper LCT,

The status block structure is allocated in the LCT. It
has the following declaration:

/* Declarations for chained status frame */

dcl 1 sfrm based(fststat), /* chained status */
2 nextp bit (18), /% offset of next frame */
2 time bit (54), /* time at interrupt */
2 statwd bit (72); /* interrupt status word ¥/

After a!locatlng the structure, its forward pointer, "sfrm,nextp",
is zeroed to indicate no further entries are current1y

threaded to this item, The hardware status and time are

then copied from the appropriate entry in the CST. Note

that the oldest entries for a particular channel are copied

fFirst, =~ : -

If no entries are currently chained in the LCT, the forward
thread, "lct, Fststat” is set to point at the allocated
status block, If one or more entries are already threaded
in the LCT, the forward thread of the last allocated block
(exclusive of the block under consideration), '"sfrm,nextp",
is set to point at the new status block, In either event,
the end-chain pointer, '"lct,lIststat", is set to point

at the newly allocated block ‘

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF,.20,12 PAGE 13

- gggmgle

fststat - O ' fststat—]
Iststat - O ‘ !-lststat
| No blocks |
: threaded {
‘New status : ' I e o 3
block 0+nextp —f 04— nextp
Bgfére threading ' , After threading
fststat— ~ _ fststat—
1ststat ~Iststat

e One or more blocks -
O-4-nextp already threaded nextp

i

New status | . |
“block ~ O—+nextp : ~_9F6t3tﬁéxtp

After threading the status block within the LCT, the matching
entry within the CST must be unthreaded, The CST unthreading
is accomplished by simply setting the thread starting
pointer, "cst,xtab(n),fstx'", to point to the same place

as the current first block’s forward pointer, In effect,
this action threads around the first block, If the new
forward pointer is zero, there are no more entries in

the thread, For an empty thread, the end pointer,
"cst,xtab(n).1stx", is zeroed and the entire chain of

(now unused) status blocks is returned to the free storage
chain by splicing the beginning of the free storage chain,
"cst,xtab(Q0),fstx", to point to the first status block

in the thread and setting the last status block in the
‘thread to point to the old beginning of the free storage
chain, After updating the chain, gloc_stat$move returns,

MULTICS SYSTEM-PROGRAMMERS? MANUAL SECTION EBF,2C.12 PAGE 1k .

' -
tgtus word Trars]gtion - statfil

In order to relieve the DIM writer of much of the burden

of deciphering raw hardware status words, the JIM offers
the capability of pre-programmed transiatlon of status
words into meanlﬂgfu1 symbolic units, In orde- to obtain
transliations, he request$status module makes the fol?ow1ng
call:

call statfil (lctp, lgch, sfp, swdt, actbit, srtn)
where the arguments are declared as:

lctp ptr /* pointer to Logical Channel
, Table *
1gch fixed bin (12) /* logical channel number */
sfp ptr _ /* pointer to user’s status frame ¥/
swdt bit (72) : /* hardware status word ¥/
actbit bit (1) /* channel activity bit */
srtn bit (36) ' /* standard GIM error return word %/

One can conceive of the translation mechanism as a reverse
implementation of the normal Class Driving Table (CDT)

manipulations used in list editing, That is, one receives

the necessary indices, literals, etc. instead of giving . w
them, S

In crder to remove device-dependent information from the
.GIM, three standards must be adhered to in construct1n? _
a C]ass Driving Table 2CDT) used for status word translations;

1. Fileld 1 of the status translation part of the CDT
must contain a description of a terminate condition
form of hardware status word.

2, Field 2 of the status trané}ation part of the CDT
must contain a description of an adapter error
hardware status word,

3, Field 3 of the status translation part of the CDT
must contain a description of a GIOC-wide error
hardware status word,

If the above three requirements are met, then the DIM
writer can expect to find three straightforward status -
flags contained in the returned status frames. Moreover,
as will be shortly demonstrated, the GIM also expects

to use these flags, Assuming the above requirements are
met, the following will be adhered to by the GIM:

MULTICS SYSTEM-PROGRAMMERS® MANUAL ~ SECTION BF 20,12 PAGE 15

1. Statf,stat(1) =1 if and bn]y if a terminat= condition

was detected in a relevant hardware status word,

2, Statf, stat(z) if and only if an adapter error was
detected in the GIOC adapter containing the relevant
physical channel,

3, Statf.stat(3) = 1 if and only if a GIOC-wide error has
occurred, '

To facilitate translations, the '"compressed' status word

is used throughout the statfil module, The compressed

status word is a condensed raw status word which leaves

only those items of interest to the user, It will be
recalled that such items as DCW residue, LPW tally, etc.

are all handled separately by other GIM programs, The
compressed status word Wthh is constructed has the following
declaration:

dcl 1 cswd based (p), /* declarations for compressed
status word */
2 cause bit (4), /* bits 0-3 of mod B GIOC status
. ~ word */
2 intsig bit (2), /* bits L4=5 of mod B GIOC status
‘ - ' word ¥/
2 status bit (12), /* device status from GIOC
o adapter */
2 dewsw bit (1), /* low-order bit of device channel
. : number *
2 given bit (4), /* not used on mod B GIOC; on mod

A GIOC, the four bits relate
how much status is relevant */

Following initial setup, statfil prepares for translation
by determining the greatest number of fields that can

be safely processed by taking the smaller of the number
of CDT fields and the length of the status array,
"statf,stat1"., This number is then used to control the
Follow1ng 1oop iteration count, The following processing
occurs for each field found in the CDT for type 1 (status
request) entries,

For each field, the CDT is checked to insure that the

field is def1ned Undefined fields will cause the matching
status frame entry to be set to zero; no other processing
action for that frame takes place, For a defined field,

a pointer to the appropriate CDT "field" sub=structure

is generated, The action code for this field is extracted
from the "field" sub-structure,

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BF,20,12 PAGE 16

An action code of 1 indicates a mask-value substitution,
In mask-value substitution, statfil searches the "value'
array of the current field for an item which, when viewed
through the current field mask, matches the compressed
hardware status word, Upon finding a match, the index

of the "value'" array containing the match is placed.in
the status frame entry, "statf,stat(n)", If no match
occurs, a zero is placed in the status frame entry,

Note that mask-value substitution must be carefully considered

when constructing a CDT as it is apparent that the field

mask selected for a particular field has a powerful effect

on the choice of "value" entries, A moments consideration

of the following entries will reveal that the example‘s

field mask has the effect of nullifying three of the "value" -
entries, : : : -

EXAMPLE |
FIELD MASK 100.....
VALUE(1) ©001.....

VALUE(2) 010..... g These values appear

identical when AND “ed
VALUE(3) O11..... 4{””~-through the field

' . 5 . mask
VALUE (4) 100,...., -

VALUE(5) 101.....

An action code of 2 indicates literal substitution, 1In
literal substitution, the compressed hardware status word
is AND“ed through the current field mask, 24 bits are
extracted from the result and placed in the proper status
frame, The selection of which 24 bits to use is given

by the "field_end"' quantity for the current field, The
literal substitution option might well be used to extract
the raw 12-bit device status and return it to the caller
for further processing, : :

Any other action code is in error-and will cause the "il1fig"
error to be set, Since the action codes are derived from
the CDT itself, the "i11f1d" error indicates a defective
Class Driving Table, After translating the hardware status
~word, statfil must now tend to any channel activity and
check for major system errors, ' '

The current channel activity is matched against the detection
of a terminate status in the current hardware status word,

v Ta

AR

MULTICS SYSTEM-2ROGRAMMERS” MANUAL SECTION BF,20.12 PAGE 17

‘Should the channel have ceased activity (as d€m”WStra*Cd

by the current status word) a call to cread will insure
that all data hzs been moved to the user’s arca, (see
Copying Data Into a User”s Area). Possible errors from

cread include: bad GIOC number "badcall", GIOC not available,
"giocnf", stten or machine error "syserr'”, and LCT space
,xhausted "tmist", After copying any ou+f+avﬁ1ng data,

a call to lpwfsafe will insure the channel is completely
stopped, Possible errors include bad GICC num ber# "badcall",
and GIOC not available, 'giocnf’, After shutting down

the channel, a'l DCW and data areas are released via a

call to mkdcwifree,

The GIM now tests statf,stat(2) to see whether an adapter-wide
error occurred, A typlra1 adapter error is a delay-line
sychronization error on the teletype auaptor Shouid

an adapter error occur, the GIM proceeds to note an adapter
error for all channels connected to the adapter containing

the current channel, The adapter error bit, "adper",

(found in the CST) is turned CON for all affected channels,

After testing for an adapter error, the GIM tests the
statf.stat(3) word for a GlIOC~wide error, Such errors
reflect the ultimate in calamity as all Multics devices
except the Fire Hose Drum will be adversely affected,
Upon detecting a GIOC-wide error, all channels on the

affected GICC have their GIOC error bit, "giocer', (found-

in the CST) turned ON,

Having checked for maJor errors, statfil tests the adapter
error bit, "adper'", (within the CST) for the current channel,
Should the bit be LN the adapter error flag is sat in

the proper status Frame, "statf,stat(2)", and the CS7

entry is reset, Similar acticns occur For the GIOC error
"giocer", except that the GIQC error flag is set in

NStatf, stat(?)”

After completion of the ahove error checking, statfil is
finished, :

