
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.12.00 PAGE 1

Published: 03/08/68

Identification

Interim disc control and disc initializer
R. K. Rathbun

Purpose

Herein described is the first implementation of the procedures
needed to drive the DSU10 disc subsystem under Multics.
This vers.ion pretends only to function properly and not
to be efficient, elegant, or whatever. It exists merely
to provide an environment for the development of Multilevel
(see BH.1) and to provide an interface for the expansion
of the device utility package (see BG.17). The disc could
be substituted for the MSU (drum) for Multics-runs, but
the lack of speed will exclude this except under emergency
conditions.

The implementation consists of three procedures described
be low: ;

interimdisc. A very primitive and unimaginative
interface to the disc hardware (more precisely,
to the GIM). It will read or write (at most)
16 contiguous 64-word blocks as directed, and
r~turn when I/0 is completed. This is effected by
generating a sequence of one cdcw, the required number
of ddcw's, and one cdcw with bit 17 set on; the disc
is :then con nee ted. The. dew's resu 1 t i ng from the
ca l.1 are reissued ten times or unt i 1 they are processed
without error, whichever occurs first. If ten
errors are recorded for the dew's, an error code
is returned.

disc ctl. The driver of interimdisc. The entry
disc ctl~new io converts pseudo-commands from dim
command into-their corresponding calls to -
interimdisc, and posts their completion. The error
code is returned as zero, since the disc is assumed
always to be running correctly. The entry
disc_ctl~run simply returns with the error code
set off,. since the 1/0 is totally synchronous.

disc control init. An initializatfon procedure which
introduces the dTsc into the system and creates a
permanent dew-list, all via calls to the GIM.

MULTICS SYSTEM-PROGRAMMERS .. MANUAL SECTION BG.12.00 PAGE 2

Calling sequences and arguments

The following are the legitimate calling sequences for
the procedures described aboves items in declares which
are not commented are not used by this version:

call interimdisc (op, mem, dev, nrecs, rcode);

del op fixed binary (1),

mem fixed binary (24),
dev fixed binary (22)(
nrecs fixed binary (5J
rcode fixed binary (35);

I* operation: 0 read,
1 write *I

I* 24 bit memory address *I
I* 22 bit disc address *I
I* number of blocks *I
I* error code ..,~1

call desc_ctl~n.ew_io (did, io(memadd, devadd, 'pl,
p2, p3, blocksize, rcodeJ;

del did fixed binary (35),
io (16) fixed binary (2), I* op for each record

••• within the hyper-record
0 read

. 1 write
2 id 1 e -----
3 write zeroes *I,J

memadd fixed binary (18), I* startin~ memory address
••• div1ded by 64 *I

devadd fixed binary (35), I* starting disc address
••• divided by
(2 * blocksize) *I

(p1, p2, p3) fixed binary (35), I* posting command
••• and arguments *I

blocksize fixed binary (35), I* number of records per
••• hyper-record *I

rcode fixed binary (35); I* error code,
••• always returned as
zero 'frj

call disc_ct1$run (did, typecall, rcode)'!

del did fixed binary (35),
typecall fixed binary (35),
rcode fixed binary (35); I* error code,

••• always re.turned as
zero *I

call disc_control_init;

There is no error associated with disc_control_init; if
an error occurs during initialization, disc_control_init
calls panic.

