
MULTICS SYSTEM-PROGRAMMERS' MANUAL

(Supersedes s

Identification

Process Wait and Notify Module
M. R. Thompson, P. Schicker

Purpose

s~/A_
SECTION BG.15.01 PAGE

Published: 01/19/68
BG.15.01, 06/03/66)

~r
~

/~
';J~6J'

The Hultics Traffic Controller (see Section BJ.) furnishes
the basic tools for allowing processes to cease execution
temporarily (block) and resume execution subsequently
(wakeup). The Basic File System offers a group of primitives
for the purpose of coordinating the employment of these
Traffic Controller functions when they are used by file
System and other ring-0 procedures. These primitives
comprise the Process Wait and Notify Module (PWN). The
PWN keeps a list of the processes that are blocked or
about to be blocked as a result of encountering locks
or other forms of impasse in the Basic file System. When
the PWN is notified that some event has occured, it sends
a "wakeup signal" (see BJ. 7 .OO) to all processes that
are waiting for that event.

Overview

The need for coordination of file System use of the Traffic
Controller is a consequence of the distributed supervisor
approach taken in Multics. That is, shared file System
procedures can be operating in b~half of a given process,
say A, when ~t bec9ffies necessary to suspend ~xecution
of A owing to what amounts to a 11 private11 file System
issue (e.g., waiting for the arrival of a page, or for
the unlocking of a directory), as opposed to the sort
of blocking which is somehow of A's 11 0Nn volition" (e.g.,
A is part of a user-process-group in which parallel processing
is being undertaken and must wait for the completion of
a part leu lar chore by another process, say B). The File
System is of course responsible for assuring the subsequent
resumption of A's execution in such cases. However, the
File System can also encounter a similar issue requiring
blocking when operating in behalf of another process,
say c. Therefore, a mechanism must be provided which
wi l1 enable A's wakeue and. C's kJakeup to be handled correctly
when they occur. This mechanism Is provided the PWN and
its (system-wide) data base, the Process Waiting Table
(PWT). So instead of calling block directly and assuming
direct,responsibllity for arranging a wakeup, File System

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.15.01 PAGE 2

routines call the addevent primitives to have the events
they are about to walt for entered on appropriate lists
of events in the PWT. and then call the wait primitive.
which will call block (unless the event has already happened­
see below). Then those procedures which recognize the
events (e.g •• the iodone routine in Page Control) simply
call the notify primitive. which will direct ~keups to
any processes which are waiting for the event n question.

To avoid the situation in which the call to block is made
for a process after the event i.n question has taken placet"
the following strategy is employeda Each PWT entry conta ns
a "done switch". The notify primitive sets this switch
to 11 on" when it processes the event and state variable
occurence corresponding to the entry. so that~ can
check it when called and will only proceed when· the done
switch is 11off". Further details are given in the individual
description of the primitives. below.

Process Wpiting Table (PWT)

The process waiting table (PWT) is the data base for the
PWN and consists of lists of all the processes that are
currently waiting and the events for which they are waiting.
Since it is convenient that the number of event,s be fixed.
certain events may require a state variable to further
def.ine why the process is waiting. For example. an event
might be the availability of a directory which was previously
locked. and.its state variable would identify which directoryJ
or the event might be the arrival of a page in core. and .
its state variable would identify what page. A complete
list of events and their state variables may be found ·
below.

The PWT consists of threaded event lists each of which
contains a list of all the processes that are waiting
for a particular event. The PWT is divided between two
segments. one which is wired down in core and one which
is a normal (paged) segment. The event lists that might
be used during the handling of a page fault must be kept
in the wired down segment. Examples of such events are
waiting for a page to come into core or waiting for a
data base that is used on page faults to become available.
Those event lists which do not have to be kept in core
are kept in a normal segment. The event numbers are chosen

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.15.01 PAGE 3

so that all numbers less than a given constant belong
to the wired down part of the table. and all numbers greater
than this constant belong to the normal part of the table.
The two parts of the table will be structured and manipulated
in the same manner with the exception of the action to
be taken when an event list lock is encountered as explained
below. Each part of the table also contains a threaded
llst of vacant entries. and the value of the highest location
used in that part of the -table. Each entry in an event
list consists of the process ld, the state variable, and
a pointer to the next entry. The pointer to the top of
each list is found at the beginning of the table.

In the event that either part of the PWT becomes completely
full, the process that is trying to enter the table will
be forced· to loop through a delay routine •. The routine
insures that the processor is unmasked since the process
is no longer trying to lock a data base (a calling routine
or the PWN itself may have masked the processor before
attempting to lock the data base). It then calls each
DIM in order to speed their task of getting pages in and
out of_core (this action causes processes to be removed
from the PWT). The delay routine then restores the original
value of the processor mask and returns. After each return
from delay the process again attempts to place itself
on the PWT. The PWT is sufficiently large so that it
will rarely become fu 11·.

Since the PWT is a common data base it may itself have to
be locked.· In order to avoid conflict when changing pointers,
e_ach event list must be locked when it is being searched,
when a process is being removed from it, or when a process
is being added to it. When a process encounters a locked
event list on the nonmal PWT, it can proceed as it would
for any ordinary data baseJ that is. enter itself on
the appropriate event list on the wired down PWT, and
go blocked. The appropriate list on the wired dawn PWT
is the list of processes waiting for an event list on
the normal PtJT to become available, and the state variable
is the number of the locked llst. However, it is possible
for this wired down list to be locked also, but now there
is no other list on which the process can be entered.
Thus, when a process encounters a locked list on the wired
down PWT, it does not attempt to go blocked, but instead
loops on the lock-testing instruction until the list is
unlocked. Since any process that has a wired down PWT
list locked for it also has the processor masked, the
time that the process keeps the list locked is short.
There is a special locking routine (loop-lock) for the
PWN to use when it attempts to lock an event list on the
wi red down PWT.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BG.15.01 PAGE 4

In general, the list_handling strategy of this module
is as follows. New processes are added to the top of
event lists and event lists are searched from top to
bottom to find processes. The entire event list is searched,
and all the processes to be signaled because of one event
are found before the traffic controller is called to actually
wake them up. The top of the vacant entry list can be
locked so that two processes do not conflict when they
use or replace vacant entries. Vacant entries are used
and replaced from the top of the vacant entry list. If
the vacant entry list is empty, entries are used from
the higher unused part of the segment.· In order to keep
the list consolidated, when an entry is vacated its location
is compared to the highest location currently used and
if it is equal the highest used location is decreased
by one. If its location is lower, it is added to the
vacant entry list.

Contents of the PWT

1. Top Pointers

A. Event 1 list information

1. Pointer to top of list
2. Interlock for 11 st
3. Count

B. Event 2 1 1st information

1. Pointer
2. Interlock
3. Count

•
•
• X Event n list information

1. Pointer
2. Interlock
3. Count

Y Vacant entry list information

1. Pointer to top of list
2. Interlock for top of 1l st
3. Highest relative location used in the table

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BG.15.01 PAGE 5

II. Entry for event list

A. Pointer to next entry
B. Pointer to previous entry (aO if head of list)
c. Process indentiflcation
D. State variable
E. Done switch
F. List number

III. Entry for vacant entry list

A. Pointer to next vacant entry

Primitiyes

There are four prlmi tlves provided by the PWN • They may
be us.ed by any file system module. Each of these primitives
masks the processor before locking any list on the wired
down PWT, and restores the previous mask as soon as the
list is unlocked. The primitives are:

1.

pwn~addevent ·
pwn delevent
pwn notify .
pwn walt

(n,var~ind)

~n,lnd n,var
lnd)

The primitive addevent enters the current process id and
state variable in the waiting list for event n and
returns.

call pwn$addevent (n, var, ind) 1

n: event number for which process is waiting
vara state variable for this event
.l.DSa index Into PWT (if lnd<O then I indl=index

into normal PWT else lindl=index into
wired down PWT.). Returned by sddevent.

The add§vent routine first tests and when possible locks
the vacant entry list, gets a vacant entry from the top
of the list, r~threads the list top pointer and unlocks
the vacant entry list. It can then place the process id
and val In· this entry, test, and when possible lock the
event 1st, add the entry to the top of the specified
eV,ent list, rethread the top pointer to this list,
unlock the·event list, and return to the caller.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BG.15.01 PAGE 6

2. The delevent routine removes the entry indexed by !n9 from
list nand returns control to the calling procedure.

3.

call pwn$delevent (n,ind)J
n a event number
Tnd: index into PWT -

The delevent routine must test the lock on event list n,
and when possible lock the list for itself. It then removes
the entry indicated by ind from the list, rethreads the list,
unlocks the list, adds the vacant entry to the vacant entry
list, and returns.

The primitive notify checks the event llst to find all the
processes waitin9 for this event and state variable value.
After setting a 'done switch" In the corresponding PWT
entry or entries, it calls the traffic controller to wtkeup
each of these processes.

call pwn$notify (n,var)J .
n: event number that has occurred
vara state variable for this event

The notify routine must check the lock on the event llst,
and when possible lock lt for itself. It then searches
the list for a state variable value that matches~ and
when it finds one, notifl remembers this entry; turns the
done switch on, and cont nues to search the list.

When the entire list has been scanned, it is unlocked. The
Traffic Controller is then called to signal all the processes
which were found in the waiting list. When the Traffic
Controller returns to notify, notify returns to its caller.

4. The primitive~ calls the Traffic Controller"'s entry
block unless the specified event has happened.

call pwn$wait (lnd)J
!Dga index returned by addevent

The ..U, routine checks the done swl tch in the entry ·
specified by !n9. If the switch Is off, i.e. the event
has not yet happened, the Traffic Controller"'s entry block
is called. Upon return from block the switch is tested
again and t>lock is called again unless the done switch was
turned on meanwhile. Whenever wpia finds the done switch
turned on, lt deletes the entry an adds the now vacant
entry to the vacant entry list, and then returns to its
caller.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BG.15.01 PAGE 7

List of &vs:n~s
' Number Event Used ~* Status Varisb le.

1 PWT locked PWN

2 AST entry not available PC,SC AST pointer

3 DST entry not available PC DST pointer
Wired:

4 10 count = zero PC AST pointer

5 PTW not in service PC page number

6 SST space una·vailab le, sc 11 01 11 b for SST
or space available,

or
AST hash table locked sc 11 1 O"b for hash

table unlocked

(Constant plus a)

1 CACL locked DC directory
unique 1D

2 directory 1 ocked DC directory
unique ID

Unwired a
3 entry locked DC entry

unique ID

4 active info locked DC entry
unique ID

*PC = Page Control, SC = Segment Control, DC = Directory Control

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.15.01 PAGE 8

PLLI Seecificatlon for PWT

del 1

1

2
2
2
2
2

2
2
2
2
2

3
3
3

pwt based (pwtptr) _
n_llst fixed _
n_entry fixed _
max_entry fixed _
pwtept r pt r _
list (Oapwtptr->pwt.n_llst) _
lock bl t (36) _
(head-tall) fixed_
count fixed _
entry (pwtptr->pwt.n_entry) based (pwteptr) _
pld bl t (36) -
var bl t (36) _
(next_ last) fixed _
dsw bit (1) _
evt fixed J

