
. !""

MULT ICS SYSTEM-PROGRAr·1f'v1ERS' f'v1ANUAL SECTION BG.2 PAGE 1

Identification

The System Segment Tables
R.C. Daley~ D.M. Ritchie

Purpose

Published: 03/04/67
Supersedes: BG.2~ 05/27/66

The system segment tables are used by segment control
and page control in maintaining active segments. Entries
are established in the tables by segment control when
segments become active and loaded as a result of a user
reference. The tables are used by page control in
manipulating pages for loaded segments.

Introduction

The system segmznt tables consist of three distinct subtables:
the active segment table (AST)~ the descriptor segment
table (DST)~ and the process segment table (PST). These
tables are per-system tables shared by all processes running
under the same version of.Multics and are manipulated
only by the segment control and page control modules.

The active segment table (AST) contains an entry for each
non·-descriptor segment '\rJhich is currently active. These
entries are created in the AST by segment control whenever
an inactive segment is referenced by a running process;
at most one entry appears for one segment~ no matter how
many processes refer to it. Once the corresponding AST
entry has been created the segment is said to be active.
Each AST entry indicates whether the corresponding segment
is loaded (page table in core) or unloaded (page table
not in core). Normally~ a segment is loaded by segment
control whenever the segment becomes active. The AST
entry for a loaded segment is used by page control in
determining what action to take on a missing-page fault.

Page control may~ due to inactivity~ cause a loaded segment
to become unloaded. When the AST becomes full~ segment
control may decide to remove an AST entry for a currently
active but unloaded segment to make room for a new AST
entry.

The descriptor segment table (OST) contains an entry for
each descriptor segment which is currently loaded. These

MULT ICS SYSTH1-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 2

entries are created by segment control whenever an unloaded
descriptor segment is needed by a running process. Once
a new DST entry is created, the corresponding descriptor
segment is provided with a page table and the segment
is loaded.

When, due to inactivity, the last page of a descriptor
segment is removed, page control deletes the corresponding
DST entry, thus renderin~ the segment unloaded. Note
that the concepts of act1ve and inactive do not apply
to descriptor segments.

The process segment table (PST) contains an entry for
each process which is currently active (see BG.3.03 and
BJ.2.01). When a process becomes active, segment control
creates an entry for that process in the PST. This entry
is deleted by segment control when the corresponding process
becomes inactive. During the time that the process is ·
active, the PST entry for that process contains the unique
identifiers of segments which require special consideration.
For example, the Known Segment Table (KST; see BG.1) of
a process must be active if the process is active. Thus
the PST entry for·a process contains the unique !D of
the KST of that process. The main function of the PST
is to allow quick access to a 11 segments 'tJi thin a particular
process which require special treatment. Each entry in
the PST is reached by a relative pointer in the Process
Data Segment for that process.

Locks

Because the SST is a system-wide data base, accessible
to all processes simultaneously, it must be lockable;
that is, it must be possible to prevent one process from
modifying an entry that another process is reading. The
mechanism for ensuring that this is possible is discussed
in detail in section BG.15. A summary here of the most
important points may be worth while.

A lock consists of a word associated vJith a data set.
This word is zero if the set is unlocked; in this case
any process may read the da·ta set 'tJi th assurance that
a stable copy is being read .. If the lock is nonzero,
then it contains a process number in whose behalf the
data set is locked. This process may use the data as
it wished, but no other process may use the data in any
way until the lock is removed.

,,-..

,,......

MULTICS SYSTEf'.1-PROGRAMI\1ERS' t·1.4NUAL . SECTION BG.2 PAGE 3

There are actually two types of locks 1 block locks and
loop locks. For the form~r type 1 processes \Jilish ing to
use the data set are blocked if the set is unavailable
whether because it is already locked or another process
is reading the data. They are awakened automatically
when the lock is removed or when all readers of the data
have disappeared so that the lock can be set.

Because 1r1aiting on block locks may deprive a process of
a processor for a relatively long time 1 loop locks are
used in cases where this is undesirable 1 for example during
a page fault. Processes attempting to set a loop-type
lock enter a tight loop testing the lock word; as soon
as the lock becomes zero 1 it is set in favor of the new
process. Wh.ile a loop lock is set in behalf of a process~
the processor is masked against interrupts that might
tal<e the processor away from the process for a lon~ time
- for example 1 timer runout. Since a processor wa1ting
on a loop lock is serving no useful purpose 1 it is important
that loop locks be set only for a short time. For each
of the locks mentioned below 1 information is given as
to which type of lock it is.

Contents of the AST

The AST contains a header and AST entries. The header
is at the beginning of the AST and appears only once.

For each non-descriptor segment which is currently active
within the system there is an AST entry. An AST entry
contains the following information. (The description
of the header follows. that of the AST entry description
since it refers to some of the Asr entry items.) All
objects called "pointers" in AST entries~ AST process
trailers and AFT trailers (described belm'l/) are relative
pointers within the segment containing the /.\ST. By convention~
such pointers are null -if they are zero.

1. AST entry interlock (block)
2. Unstable p~ge control values lock (loop)
3. Entry hold count
4. Page table hold count
5. I:Jired-dm-Jn segment count
6. Unique identifier of segment
7. Maximum segment length
8. Global transparent-usage switch
9. Large page switch
10. Nu~rber of inferior .L\S T entries

MULTICS SYSTEM-PROGRAMMERS' ~~NUAL SECTION BG.2 PAGE 4

11. Pointer toAST entry for parent directory segment
12. Branch index in parent directory
13. Date and time branch ·was last modified
14. Hyperpage size
15. Page batching size
16. Pointer to page table (absolute core address)
17. Removal list switch
18. Forward removal list pointer
19. Backward removal list pointer
20. Process trailer pointer
21. Active meter table pointer
22~ AFT pointer for original file
23. AFT pointer for move file
24. Number of outstanding I/0 requests
25. Number of hyperpages in core
26. Current segment length
27. Segment loaded switch
280 Date and time last used
29. Date and time last modified
30. Activity indicator
31. Time· activity indicator was last modified

1. AST entry interlock {block)

This interlock is used to restrict access to items 1 - 21
of an AST entry to only one process. In particular~ this
segment cannot be deactivated or unloaded while this lock
is set. However~ page faults can be serviced.

2. Unstable page control values lock (loop)

This lock is set when page control is modifying one of
items 22 - 31 of an AST entry~ for example during a page
fault. This lock is independent of item 1.

3. Entry hold count

This is a count of processes which need this segment in
an active state in order to remain active; an example
of such a segment is the KST for some process. If this
item is non-zero, the segment will not be deactivated
even if the other criteria are met. (See item 17.)

4. Page table hold count

In a manner similar to the last item this item is a count
of processes which require the page table for this segment
to remain in core in order to remain loaded processes.
The segment will not be unloaded even if the number of
pages in core drops to zero if this item is non-zero.

MUL TICS S YS TEt~-PROGRAH~1ERS' t·1ANUAL SECTION BG.2 PAGE 5

5. ~vired dm\ln segment count

In a manner similar to the last two items this item is a
count of processes which require all pages of this segment
currently in core to remain in core. Examples would be
the Process Oat~ Segment for each process and special
segments that the process has requested. No pages of
this segment will be removed from core until this count
is zero. (An ex~mple of a special segment might be a
module of the hard-core supervisor for which the process
needs a version different from the usual one.)

6. Unique identifier for this segment

This item uniquely identifies the segment among all that
exist or have existed in any MULTICS system. When segment
control wants to determine if a given segment is active,
it looks for an AST entry with a matching unique identifier.
To speed this searching, a hash-coded table-lookup technique
is used. The unique identifier is the item which is hashed.

7. Maximum segment length (units: 1024 words)

The item is used by page control; for example, when a
page table is being constructed, it is used in the selection
of page size.

8. Global transparent-usage switch

This switch is the logical AND of all transparent-usage
switches in the KST entries for the segment described
by this AST entry. If any one of the processes using
the segment have the transparent-usage switch OFF, this
switch will be OFF. The setting of this switch is interrogated
by page control whenever an 1/0 request is made. If the
switch is OFF, the time-last-used or the time-last-modified
will be updated.

9. Large-page switch

If the segment is currently paged in 1024-word pages,
this switch is ON. Note that if the segment is larger
than 16K words, the switch must be ON, since this is the
largest segment of small pages possible.

10. Number of AST entries directly inferior to this (directory)
segment.

When an entry is added to the AST, there already exists

MUL TICS SYS TEM-PROGR.L\fvlf\1ERS' MANUAL SECTION BG.2 PAGE 6

an AST entry for the segment which is immediately superior to
the new segment. This count is incremented by one in
the AST entry for the imm~diately superior directory segment.
Whenever a directly inferior AST entry is removed~ this
count is decremented by one. An AST entry is a candidate
for removal whenever this count is zero~ the entry-hold
count and the page table hold count are zero~ and the
page table for the segment has been removed from core.

11. Pointer toAST entry for directory segment containing
the branch for the segment

At various times--for example when informing Directory
Control of updated information to be placed in the branch
of a segment being deactivated--Segment Control must be
able to locate the branch for the segment even though
the process doing the deactivating may not know the directqry
segment in which it appears. This item locates the AST
entry for the directory containing the branch corresponding
to this segment. Also, this item may be used to update
the inferior segment count for the superior directory
when this entry i? being deactivated.

12. Slot number in directory of branch of the segment

This item and the last form a complete pointer to the
branch defining the segment.

13. Date and time branch was last-modified.

This item is copy of the information contained in the
directory branch of the segment. It is used to make sure
that the access rights and protection list of the segment
are properly recorded in the KSTs of all processes using
the segment. If the time entry for the segment in the
KST of a process is the same as this item, the access
bits in the KS T are cor-reCt; if the times differ, the
access bits and protection list must be recomputed because
the branch information may have been changed.

14. Hyper-page size

A hyperpage is a contiguous collection of pages \vhich·
is treated as a unit by the file system--for example~
a hyperpage is always read and written as a block. (See
section BG.5.) This item is the number of pages in a

MULTICS SYSTEt~-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 7

hyperpage; the size of the hyperpage in words is the product
of this item and the current page size.

15. Page batching size

This item makes provision for a strategy of bringing in
from secondary storage a batch of several consecutive
hyperpages when a fault occurs on a page in one of them.
The process "'Jaiting for the missing page is unblocked
as soon as the page it faulted on arrives 1 and need not
wait for the entire batch. This item will be unity in
the initial implementation.

16. Pointer to page table (upper 18 bits of a 0 mod 64 absolute
core address)

This item points to the page table for the se~ment. It
is provided by page control when the segment 1s loaded
and is used by page control to access the page table during
page faults. This pointer has meaning only when the
segment-loaded switch (item 27) is ON.

17. Removal-list switch

VJhen certain criteria are met 1 an entry in the AST may
be considered for removal. These criteria are: the segmerit
is unloaded (item 27 is OFF), the AST entry-hold count
(item 3) is zero 1 the number of active inferior segments
(for a directory segment) is zero (item 10) 1 and finally 1

the AST entry interlock. (item 1) is not set. Candidates
for removal have this item ON, and are linked in a forward
and backward threaded list; they are not actually excised
until space is needed in the AST.

18. Forward removal-list pointer

19. Backward removal-list pointer

The candidates for removal (marked by having the removal-list
switch 1 item 17 1 ON) are kept in a doubly threaded list.
Their hash-table pointers (see belmv) are hot removed
until they are actually deleted. Thus if it is desired
to reactivate an entry on this list 1 the information therein
need not be regenerated and_ the threads allow the removal
list to be repaired easily after the newly reactivated
entry has been taken off the list.

r
I

MULTICS SYSTEM-PROGRAfv1MERS' MANUAL SECTION BG.2 PAGE 8

20. Pointer to process trailers

This item, if rion-zero; points to the first of a threaded
. list of process trailers for this segment, which may exist
whenever the segment-loaded switch (item 27) is ON. These
trailers exist for the purpose of finding the segment
descriptor words for this segment (SOWs) in each process
in which the segment is active. Thus, when a segment
is unloaded~ page control finds all the SOWs for the segment
and marks them with a segment fault. Similarly, when
the access rights to a segment change all the SOWs are
filled with segment faults. When a fault occurs the new
access rights are computed for the process causing the
fault. The process trailer for a segment is removed when
that process terminates the segment; and when a process
is deactivated, the process trailers for that process
are removed from a 11 AS T entries of segments knmvn to
that'process. On the other hand~ all process trailers
for a segment are deleted when the segment is unloaded.
Each process trailer contains the following information.

20.1 Segment .number

This is the number by which this process kno~.r1s this segment;
knowing this number and the pointer to the PST entry~
the segment descriptor words for this segment in this
process can be found.

20.2 Pointer to PST entry

From this item the process to which this trailer refers
can be recovered, so that the SOWs for the segment may
be accessed.

20.3 Fon"ard AST trailer pointer

20.4 Back\'Ja rd .CI.S T tra i 1 er pointer

All the trailers for each AST entry are threaded in two
directions to allow these trailers to be removed easily
when a process terminates the segment; for-when th5.s occurs,
a single trailer on the affected AST entry must be removed.
The double threads allow the list of trailers for each
AST entry to be repaired easily.

20.5 Forward PST trailer pointer

MULT ICS S YS TEM-PROGRA~1MERS' MANUAL SECTION BG.2 PAGE 9

20.6 Backward PST trailer pointer

The PST (see belovJ) for each process contains the end
of a thread through all process trailers for active segments
known to that process, so that all these trailers can
be removed when the process is deactivated. The list
is threaded in two directions so it can be patched together
when a single segment becomes inactive. Thus each AST
process trailer has two pairs of threads running through
it; one pair links all trailers for a single AST entry,
the other links all trailers for a single process.

20.7 Pointer toAST entry

When the process trailers on
are removed, it is necessary
entry for each such segment.
when the trailer is accessed
than via the AST entry.

all segments for a process
to be able to find the AST
That is, this item is used

via the PST entry rather

21. Active Meter Table Pointer

This item points to an entry for this segment in the Active
Cv1eter Table, a wired-dovm data base maintained by the
accounting modules. The (relative) pointer is supplied
by accounting when the segment is activated and is used
when informing accounting of changes in the status of
a segment: activation, deactivation, changes in length,
and movement to a new device.

22. Pointer to trailer for (original) file

Besides process trailers for each process using~ ·segment,
the AST entry for a segment has at least one activE~ file
traJ ler (AFT) containing information on the location ·
in secondary storage of the file corresponding to the
segment. This information is kept for the benefit of
the DIM responsible for the file. Each such trailer contains

22.1 AFT interlock

This lock is used by the DIM, for example.to prevent interference
between processes attempting to change the file length
(item 22.2). This lock is neither a loop lock or a block
lock; if it is set the DIM finds something else to do
rather than waiting.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 10

22.2 File length (units: 64 words)

This item identifies the actual length of the file as recorded
on the DIM's device.

22.3 Device Interface Module Identifier

This item contains a number identifying the DIM responsible
for the file; requests for I/0 of pages in this segment
are directed to this DIM.

22.4 Secondary storage address of file map

The file map of a file in secondary stcrage is a table,
sto.red on the same device as the file, and similar in
concept to a page table for a segment in core; it contains
the sector address of each 64-word sector of a file.
Thus, the sectors of a file, while logically in contiguous .
locations on the device, may physically be scattered about
in widely separated areas. This item points to the secondary
storage address of this file map.

22.5 'History inform9tion is being saved' count

The DIM may maintain some sectors of the filemap of a
particularly high-activity file in core storage so as
to eliminate multiple references to the device for sectors
of a file. This strategy is comparable to the use of
associative registers in appending. This item is a count
of the number of filemap sectors for this file being maintained
in core in the DIM history table (see BG.10).

22.6 DIM history table pointer

Whenever item 22.5 is non-zero, this item points to a
filemap sector in the DIM history table. This sector
in turn may be linked to other sectors of the filerrap
to a depth recorded in item 22.5. This item and the last
are maintained for and by the DIM.

22.7 File-being-lengthened switch

This switch is set by the DIM while it is changing the
length of the file on the device.

23. Pointer to trailer for move file

One AFT trailer per segment is the normal case. Ho·wever,
the multi-level system may decide to move a file from
one device to another. While this move is going on, there
are two AFT trailers for the segment, one for the original
file, pointed to by item 22~ and one for the move, or
new, file, pointed to by this item. Each pa$e table word
(P~J) for a segment being moved contains a b1t indicating

/,--.
I

,,..-..

MULT ICS S YSTEt-:1-PROGRAtJitJiERS' f.'lANUAL SECTION BG.2 PAGE 11

whether that page has been moved to the new·device. When
a page is to be read in~ the device it comes from is determined
by this bit. If a page is to be removed from core, and
it has not been moved, it is always vJr i tten onto the new
device and its PT':J is marked so the move is remembered.
No segment can be unloaded until all its pages have been
moved so if an attempt is made to unload a segment with
t\IIJO AFT's such that a 11 its PT\:J 's have not been marked
'moved' I the attempt VJi 11 fai 1. and an unmoved page lrJi 11
be read in. This page will ultimately be removed from
core due to inactivity and written on the new device,
then another attempt will be made to unload the segment,
until finally the file has been completely moved.

If item 23 is non-zero, it points to the AFT trailer for
move file, that is, the new file.

24. Number of outstanding I/0 requests

This count is incremented by page control whenever it
ussues an 1/0 request for a page, and decremented after
the request has been completed. No segment can be unloaded
until this item is zero.~

25. Number of hyperpages in core

Until the number of hyperpages in core becomes zero, the
segment cannot be unloaded. In item 27 belo"'' all the
criteria for unloading are given.

26. Current segment length

This item guides page control in creating a page table
for the segment. Page table words for pages beyond the
the current length are marked so that an empty block of
core will be assigned when they are accessed. Those within
the current length are marked so that the proper page
will be read in.

27. Segment-loaded switch

This item is ON if the page table is in cbre. The page
table cannot be released until: the number of outstanding
1/0 requests (item 24) is zero; the number of hyperpages
in core (item 25) is zero; the page table hold count (item.
4) is zero, and any moving of the file has been completed

I,.-.
I

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.2 PAGE 12

(there is only one AFT or all page table words have been
marked "moved"). Finally., the AST entry must be unlocked
(item 1). This item is maintained by page control.

28. Date and time segment last used (updated when a page is
read)

29. Date and time segment last modified (updated when a page
is written and the "page modified11 switch is set in the ·
PTW)

These two items are maintained by page control., and will
stay with the segment when it is deactivated. They are
only set if the global transparent-usage switch (item
8) is OFF.

30. Activity indicator

This item is incremented by a constant each time some
process issues an I/0 request for a page of this segment
and it is decremented periodically in time. It thus provides
a measure of segment activity and is used by multilevel
to help determine· if the-segment should be moved to another
device. (See Section BH.1.)

31. Time activity indicator was modified

This item is used to decay the previous item with time.

Contents of the PST

For each process which is currently ac~ive within the
system there is a PST entry. Each PST entry may bE~ reached
by a pointer in the Process Data Segment (PDS) of the .
corresponding process (see section BJ.1.03). The PST
gathers together conveniently information that would
otherwise have to be searched out from the AST and other
tables. The .. pointers" are relative pointers within the
segments in which the pointer-to information lies.

1. PST entry interlock (loop)
2. Unique ID and segment number of KST
3. Unique ID and segment number of PDS
4. Unique ID and segment number of hardcore stack
5. Unique ID and segment number of Process Definitions Segment
6. Pointer to thread of all AST trailers for process
7. · Pointer to DST entry for the basic descriptor segment

(hard core ring) of this process

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION. BG.2 PAGE 13

8. Pointer to list of special segments for.this process
9. Number of special segments.

The items in the PST are interpreted below.

1. PST entry interlock (loop)

The interlock is used to restrict access to the PST entry
to only one process at a time. Any process attempting
to use a PST entry which is interlocked to some other
process must wait until the interlock is removed.

2. Unique ID and segment number of KST

3. Unique ID and segment number of PDS

4. Unique ID and segment number of hardcore stack

5. Unique ID and segment number of Process Definitions Segment

These items are in effect an extension of the HST (Hardcore
Segment Table- see BG.1). The segments mentioned 1 although
part of the hardcore supervisor 1 are different for each
process and thus their unique ID's cannot be stored in
the HST 1 which is a system-wide table. Instead the HST
entries for these segments contain a pointer to one of
these items.

6. Pointer to thread of all AST process trailers for this
process

When a process is deactivated (see BG~3.03) this item
allows tracking down all the segments associated with
it and removing their trailers from the AST entries for
the segments.

7. Pointer to DST entry for the basic descriptor segment
(hard-core ring) of this process

This item contains the index for the DST entry for the
hard-core ring. Other DST entries associated with this
process can be accessed by following the next-entry pointers
in the DST entries.

1--
1

I~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 14

8. Pointer to list of special segment pointers

This item points to additional information about the process:
a list of pointers to the AST entries of special segments
for this process. If there are no special segments 1 this
item is zeroo An example of a special segment might be
a module of the hard-core supervisor other than the usual
one.

9. Number of special segments

Placing this item in the PST entry 1 rather than in the
special segment structure allows easier allocation of
space for the special segment list.

Coptents of the PST

For each descriptor segment which is currently loaded
there is a PST entry. A PST entry contains the following
in format ion. Unless stated otherwise 1 11 pointers'' are
relative pointers within the SST segment.

1. DST entry interlock·(block)
2. Unstable page-control-values lock (loop)
3. Ring number of descriptor segment
4. Pointer to page table for segment (absolute core address)
5. Pointer to next DST entry for process (if any)
6. Pointer to previous DST entry for process (if any)
7. Pointer to PST entry
8. Page table hold count
9. Maximum segment length
10. Large page switch
11. Hyperpage size
12. Number of hyperpages in core

The items in the DST are interpreted below.

1. DST entry interlock (loop)

The interlock is used to restrict access to items 1 -
11 of a DST entry to only one process at ~ time. VJhi le
this lock is set 1 the segment cannot be unloaded.

2. Unstabie page-control-values lock (loop)

When page control is modifying item 12 1 this lock is set to
prevent interference. This lock is used during a page
fault; it is independent of item 1.

,r--

MULTICS SYSTEM-PROGRAMMERS' MANUAL ·.SECTION BG.2 PAGE 15

3. Ring number corresponding to this entry

Since there is a separate descriptor segment for each
ring within a process this item is used to identify which
ring is associated with the descriptor segment defined
by the DST entry.

4. Pointer to page table for this descriptor segment
(upper 18 bits of 0 mod 64 absolute core address).

This item points to the page table for the descriptor
segment. It is provided by page control when the segment
is loaded and ·is used by pa9e control; for example~ to
locate a page table word be1ng filled with a pointer to
a page.

5. Pointer to next DST entry for the process

This item points to the DST entry of a loaded descriptor
segment for another ring; thus the DST entries for a process
are threaded together. If this entry is the last entry
in the thread~ this point~r is zero.

6. Pointer to previous DST entry for the process

This item points to the previous DST entry in the threaded
list for t~is process. If this entry is the first entry
(i.e.~ is pointed to from the PST entry)~ this pointer
is zero. •

7. Pointer to PST entry for this process

This item points to the PST entry for the process. It
is used quickly to find the PST entry when deleting DST
entries.

8. Page table hold count

This item records the number of processes which require
this descriptor segment to be loaded at all times~ that
is~ that need its page table wired into core. Unless
this number is zero~ the page table cannot be removed
(i.e.~ the segment cannot be unloaded).

9. Maximum segment length

10. Large page switch

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 16

11. Hyperpage size

These three items have the same interpretation as do the
corresponding items for non-descriptor segments. However 1

in the initial 'implementation they wiTT be constant.

12. Number of descriptor segment pages for this ring which
are currently in core. ·

This count is used by page control to determine if the
DST entry can be removed. When page control has removed
the last page of a descriptor segment from core~ it releases
the DST entry and calls core control to unassign the descriptor
segment page table.

The SST Header

The SST includes a fixed-length leader containing information
on the table as a whole. The SST header has the following
information.

1. Page table lock (loop)

This item serves as a lock on all the page tables. It
is used by page control after a page fault until it can
find the proper page to lock individually to prevent Toss
of the page table.

2. Free storage area lock (loop)

This item# used by the SST allocation routine# locks the
unused portion of the SST.

3. AST hash table lock (block)
4. Size of AST hash table
S. Pointer to AST hash table

The AST may be searched by unique identifier. To speed
this process a hash table is used. The same algorithm
is used as described for the KST in BG.1.

6 •. AST removal list lock (loop)

This lock is provided so that while this list is being
rethreaded after a change no other process can access
it in an inconsistent state.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 17

7. Pointer to removal 1 ist

This item points to the first item on the removal list.

PL/ I lmplementat lon of the SST

SST Header

. The PL/ I dec lar~t ion for the SST Header is

del 1 sst ctl (sstpL

2 ptl bit (36),

2 fsl bit (36),

2 ast,

3 htlock bit (36),

3 rllock bit (36),

3 hbc fixed bin (17),

3 htp bit (18),

3 rlp bit (18),

2 sstvar area ((M));

I* page table lock - loop*/

I* free storage area lock - loop*/

I* active segment table hash table
lock - block':':/

I* ast removal list lock- loop*/

I* size of hash table */

I* pointer to hash table *I

I* pointer to removal list*/

I* SST allocation area *I

M is a constant which must be decided upon before compilation.

Ibe AST

The AST uses a hash table so that it can be searched efficiently
by unique identifier. The declaration for the hash table
is

del 1 astht (sstp sst.ast.hbc) ctl (asthtp),

2 vs bit (1) , I* vacant switch -;':I
2 ds bit (1), I* deleteq switch *I
2 entryp bit (18); I* pointer toAST entry *I

,~~""'"'
I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 18

~ is ON if the entry is vacant. ds is ON if the entry
has been deleted. ~tryo points to an entry in the AST.
The hashing and searching algorith~s are the same as those
used with the K,ST (BG.1).

The declaration:for AST entries is

del 1 aste 'ctl (astep),
•
'

2 lock\bit (36),

2 upcvl bit (36),

2 ehc bit (17),

2 pthc bit (17),

2 wdsc bit (17),

2 id bit (70),

2 ms 1 b i t (9) , ·

I* ast entry lock *I
I* unstable page control values

lock *I
I* entry hold count *I
I* page table hold count

I"'' VJired-down segment count *I
I* unique identifier ~·(1

I* maximum seg length in units of
1024 words *I

2 gtus bit (1), I* global transparent usage ·1:1

2 lps bit (1), I* large page switch *I
2 infcnt bit (17)~ I* number of inferior AST entries *I
2 astparent bit (18), I* pointer to ast entry for

parent *I
2 xbranch bit (17)~ I* branch index in parent

directory *I
2 dtbm bit (52),

2 hps bit (8),

2 pbS b i t (8) 1

I* date and time branch last
modified *I

I* hyper-page size (number of
hardware pages) "~(I

I* page batching size *I

,,..-
1'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 19

2 ptp bit (18),

2 fastp bit (18),

2 bastp bit (18),

2 amtp bit '(18),

2 rls bit c1L
2 exfp bit (18),

2 movp b it (1 8) ,

2 iocnt bit (8),

2 hpn bit (9),

2 cs 1 bit (1 3)"

2 sls bit (1),

2 dtu bit (52),

2 dtm bit (52),

2 actind bit (36),

2 actime bit (52);

1-1: pointer to pa.ge table *I
I* pointer to trailers or forward

removal list ptr *I
I* backward removal list pointer *I
I* active meter table pointer *I
I* removal list switch *I
I* pointer to trailer for original

file "~:1

I* pointer to trailer for move file *I
I* number of outstanding IIO *I
I* number of hyperpages in core *I
I* current segment length in units of

64 words -.'(I

I* segment loaded switch *I
I* date last used *I
I* date last modified *I
I* activity indicator *I
I* time actind has been modified *I

Notice that the pointer to process trailers and the forward
removal list pointer have been combined since they are
never meaningful simultaneously.

The declaration for AST process trailers is

del 1 astr ctl (astrp), I"~': segment or process trailer ... I
"

2 segno bit (18), I"~'(segment number ·kl

2 pstep bit (18) 1 I* pointer to pste -'•I "

2 astep bit (18) 1 1"~: pointer to aste *I

I~

MULTICS SYSTEM-PROGRAMMERS' MANUAL · SECTION BG.2 PAGE 20
·· ..

2 fastp bit

2 bastp bit

2 fpstp bit

2 bpstp bit_
,.
1

(18)" I* forward ast trailer pointer*/

(18)" I* backward ast trailer pointer */

(18), I* forward pst trailer pointer */

(18); I* backward pst trailer pointer */

The declaration for active file trailers is

del 1 aft ct 1 (~ftep),

2 11 ock bit (3 6),

2 filength bit (17)

2 dimid bit (4),

2 fi lep bit (116),

I* active file trailer */

I* lock on file length changes *I
I* file-length*/

I* device interface module identifier */

I* secondary storage address of file
map ·kf

2 dimhct fixed bin (J7), I* 'history information is being
saved' count o;': I

2 dimtp bit (18), I* pointer to dim history information */

2 file_length_lock bit (1); I* file being lengthened
switch */

The declaration for PST entries is

de 1 1 ps te c t 1 (ps tep),

2 llock bit (36),

2 hcsegs (4),

3 uid bit (70),

3 segno bit (18),

2 fstep bit (18)"

2 dstep bit (18)"

I* entry lock */

I* list of hardcore per-process
segments -:(1

f-!< unique ID -!</

I* segment number *I
I* pointer toAST trailers */

I* dst entry for hardcore ring */

fo;': pointer to special segment list*/

2 sslength bit (18); /*number of special segments */

2 sslist bit (18),

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.2 PAGE 21

Item sslist if non-zero is a pointer to a list of special
segments for the process •. The format for this list is

del pstss (pstep pste.sslength) bit (18);

DST

The declaration for a DST entry is

de 1 1 ds te c t 1 (ds tep) ..

2 lock bit (36) ..

2 upcvl bit (36) ..

2 ringno bit (18) ..

2 ptp bit (18) ..

2 fqstep bit (18) ..

2 bdstep bit (18) ..

2 pstep bit (18) ..

2 pthc bit (17) ..

2 msl bit (9) ..

2 lps bit (1) ..

2 hps bit (8) ..

2 hpn bit (9);

I* dst entry lock *I
I* unstable page control values lock *l
I* ring nu~ber *I
I* pointer to page table *I
I* pointer to next dst entry for the

process 1:1

I* pointer to previous dst entry for
the process "~(I

I* pointer to pst entry *I
I* page table hold count *I
I* maximum segment length *I
I* large page switch *I
I* hyperpage size *I

I* number of hyper-pages in core *I

