
- 1 

,-. 
MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 

The ranker 
Peter G. Neumann and Mary R. Wagner 

Pyroose 

Section BG.6.05 PAGE 1 

PUB L I SHED : 6 I 7 I 6 7 
Major Revision 
(Supercedes BG.6.05, 

616166) 

This section describes the ranker which Is Invoked periodically 
to obtain the use bits from the page tables and to reorder one or 
more of the eligible lists. Each of these lists is maintained In 
an order within the pool corresponding to frequency and recency 
of use which is precisely the order In which the contents of the 
respective groups may be removed from core. 

lntrodyction 

There are several lists threaded through the group map by using 
the pointer of each group map entry. Of these lists, the 
eligible lists are maintained In the order In which these 
hyperpages may be removed from core. The page table list Is used 
to drive the ranker. 

Each list is by definition In the order in which hyperpages may 
be removed, In that hyperpages which are at the beginning of the 
list are removed first. New hyperpages are added to the end of 
the list. This list may be periodically reordered by the ranker, 
based upon the use bits In the appropr1ate page tables. The 
reordering Is such that every hyperpage which has been used In 
the last Lank cycle (I.e., the period since the last ranking of 
this list) finds Itself nearer to the end of the list than any 
hyperpage which has not been so used. In the ranker algorithm 
described below, relative order Is maintained among those pages 
which have been used, as Is the case among those pages which have 
not been used. Thus pages which are used at least once during 
each rank cycle find themselves near the end of the list, while 
those which are not used at all percolate to the beginning of the 
list, and are eventually removed from core. Pages which are used 
at least once during every other rank cycle find themselves near 
the middle of the list, and so on. 

~algorithm 

The algorithm described here Is the A. Jay Goldstein ranker (see 
Multics document 80013, September 28, 1965). (A J. Arthur ranker 
or J. Other ranker may alternatively be used.) The ranker is 
invoked periodically, as determined by the ranker parametlzer 
(see Section BG.6.06). It is a two-pass algorithm, driven by a 
page table list. The use bits are copied from the page table 
word Into the use switch in the group map on the first pass. 
Effectively the logical OR of the use bits for all pages 



MULTICS SYSTEM-PROGRAMMERS' MANUAL Sec t.i on ~G. 6 • 0 5 PAGE 2 

constituting a hyperpage is used. The eligible lists are then 
reordered as follows on the second pass. 

The chain of pointers in the group map for a given eligible list 
is traced in order, from beginning to end. At the end, of t~is, 
(the second pass in the ranking), the list has been reordered as 
follows. The resulting list may be thought of as two lists, the 
first with use bit 0 groups, the second with us~ bit 1 , groups, 
and with the end of the 0 list pointing to the beginning of the 1 
list. Within each list, the order in the original list is 
preserved. During the course of the ranking, external pointers 
to the list entries keep track of the last group with use bit 0, 
the last one with use bit 1, and th~ group currently heing 
considered. These pointers are maintained even when, groups to 
which they point are removed from their places in the list due to 
other reasons (e.g., unassignment or change of status). The 
implementation is such that the, list ts in a self-consistent 
state whenever the process can lose control. Certain critical 
faults and interrupts are threfore masked during the short 
sequence of instructions for which self-consistency is not 
present. If an interrupt is taken which results in the loss of 
control for the process on whose behalf the ranker is running, no 
harm is done. In fact, in such tases it is not necessary that 
the reordering be completed, since the most likely candidates for 
removal may already have been considered. , 

In order to prevent a single list from being simultaneously 
ranked by more than one process, there is a ~ ~ for each 
list similar to the Interlock word for the core map. A process 
competes for the snag in order to have the right to rank the 
corresponding list. The snag is given a name distlnct from 
"interlock" to differentiate it from an interlock, since entries 
in the list may still be available while the list is snagged. 
However, an individual entry is nevertheless locked when a change 
is made to it or to an entry to which it points. 

I mpl ementa t ion 

The specific implementation of the ranking algorithm is as 
follows. The effective~ hit of a group is the inclusive OR of 
the use bits of a 11 pages contained in that gro'u p. In the case 
of a group which contains a page of a segment, this is simply the 
use bit. Three indices, or external pointers, are defined as 
fo 11 ows. 

NO is equal to the pointer contained in the last entry 
processed with use bit 0 (i.e. in prinr.:iple, the index of 
the first entry processed with use bit 1). 

Nl is equal to the pointer contained in the 
processed with use bit 1 (i.e. the index of 
currently being processed). 

last 
~he 

entry 
entry 

.. , 



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.6.05 PAGE 3 

N is the pointer contained in 
processed (i.e. the Index 

the entry currently being 
of the next entry to be 

processed). 

1 n other words, a 1 1 of these i n d i c e s po i n t to the po s i t i on of the 
next entry with use bit 0, 1, or undetermined, respectively. 

The following notation is introduced. If t is the index of an 
entry, that entry is denoted by (i). Thus the index N points to 
the entry (N) currently being processed. 

For all but a possible few Instructions in the examination of 
each entry, the list remains consistently and correctly linked. 
The entries under consideration may therefore be used by other 
processes, subject to the lock switch in the group map entry. 

The general strategy is as follows. The entry (Nl) is examined. 
If its use bit is 1, it is already in its proper place in the new 
ranking. If its use bit is 0, the entry must be removed from its 
present place in the list, and reinserted by swapping places with 
(NO). An entry re~ains locked from the time of its processing 
until it ceases to be pointed to by either NO or Nl. 

Specifically, if I is the index of the entry (i), then let 1 
denote the index of the entry Cl> pointed to by the pointer 
residing in the entry (i). That is, the entry (t) points to the 
entry Cl>. Then the processing of the entry (N) in the list 
takes the following form. 

· N = Hl /•get next entry in list*/ 
1 o c k the en t-r y C N ) 
if usebtt of CN1) = 1 then 

unlock CN1) 
N1 = N /•move up N1•/ 

if usebit of CN1) = 0 then 
swap (N1) and CN) 
Hl = N /•remove (N) from the list•/ 
swap \NO) and (N) 
H = ml. 
HQ = N /•add (N) after (NO)•/ 
unlock CNO) 
NO = N /•move up NO•/ 

This-sequence is then repeated for the next (N) In the list. Its 
,~ veracitudtnousness is left as an interesting exercise for the 

reader. 

0 n e- pa s s r a n k e r 

Because of the problems in implementing the two-pass ranker, 
which requires from one to three groups to be lockerl at all times 
during the second pass, a simplified version has been written for 
use-until it appears that more sophistication is needed. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.6.05 PAGE 4 

This interim ranker is a one-pass ranker, also driven by the page 
table list. It is essentially the. first pass of the A. Jay 
Goldstein ranker with the exception that instead of just copying 
a use bit of "1", the corresponding hyperpage is removed from its 
current place in the list and reinserted at the end of the list. 

The disadvantage of this algorithm, which is simplicity itself in 
theory and implementation, is the Joss of all history for a given 
hyperpage prior to its last usage. Thus, although all hyperpages 
used within a given rank cycle are farther back on the list than 
any hyperpages unused since before that cycle, there is no 
ordering among hyperpages last used in that cycle. This implies 
a rather arbitrary order (based on the page table list) at the 
end of the hyperpage list, where all hyperpages have been used 
during the last rank cycle. However, at the beginning of the 
list, where pages have not been used for many cycles, the order 
closely approximates that given by the two-pass algorithm. Of 
course, the order is most important at the beginning of the list, 
whence pages are removed. This interim ranker may well be 
satisfactory for a long time. 

A~ Qn locking 

With either technique of locking (individual group map entry 
locks controlled by a global core map lock, or just the global 
lock), and especially during the second pass of the two-pass 
ranker, there Is the problem that the ranker spends far more time 
in core control than any other process, and may effectively lock 
all other processes out of the core map. To avoid this, the 
ranker must be coded to periodically unlock the entire core map 
and allow itself to be Interrupted even although its task Is not 
yet completed. During the one-pass ranker, this can conveniently 
take place "in between page tables", so to speak, with no 
particular problems. However, during the second pass of the A. 
Jay Goldstein ranker, there must be special pointers kept into 
the hyperpage list to "keep the place", specifcally by 
remembering the positions of NO and Nl. These pointers must 
follow the entry they refer to in case its contents are 1 moved 
physically (as in the swapping of group map entries), or mus .. f be 
reset to the following entry in the list in case of removal of 
their entry. This complication is the main reason for the 
existence of the interim ranker. 


