
TO: 
FROM: 
SUBJ: 
DATE: 

MSPM Distribution 
Carole A. Cushing 
BG.7.00 
08/04/67 

Minor corrections have been made to MSPM section BG.7.00 
to make it agree with the current declarations being used 
for directories. 



MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BG.7.00 PAGE 1 

Published: 08/04/67 
{Supersedes: BG.7.00, 02/03/67 

BG.7.00, 05/11/66) 

Identification 

Directory Data Base 
c. A. Cushing 

Purpose 

The directory data bases are special segments maintained 
by the directory control module which contain information 
about every segment on secondary storage. Each directory 
contains a list of entries and each entry consists of 
a description of a·particular segment or of another directory 
entry. Those entries which contain information about 
segments are called Rranches and those entries which contain 
information about ot er directory entries are called li?ks. 
Each segment has only one branch in one directory assoc ated 
with it. Each directory entry may have any number of 
links in any number of directories associated with it. 

Since a directory is a common data base, certain interlocks 
and switches have been placed in the directories. By 
observing common rules about the interlocks the various 
primitives of Directory Control are able to guarantee 
the integrity of the data with which they deal. Section 
BG.15 describes the mechanism for locking data bases and 
for blocking those processes which are unable to lock 
a data base already locked by another process. 

Contents of a Directory 

The following is an outline of the items of information kept 
for each entry in a directory and the common information 
kept for the whole directory. 

Data Base Outline 

I. general directory information 

A. directory lock 

1. interlock flag 



I 
,.-., MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 2 

I • A. 2. no-more-readers switch 

3. read-count 

B. hash table 

1 • number of entries used in table 

2. total length of table 

3. table entries 

c. slot tables 

D. slot number of latest vacated 

1 • branch 

2. link 

I I • common access control list (CACL) 

~""' A. interlock flag 

B. vacant switch 

c. date and times 

1 • last used 

2. last modified 

3. last dumped 

D. number of entries 

E. CACL entries 

1. user name 

2. mode 

3. protection list and gate list 

4. trap procedure and argument list 

I~' 



MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BG.7.00 PAGE 3 

III. branch information 

A. fixed information 

1. vacant-entry switch 

2. main interlock flag 

3. entry-type 

a. directory 

b. non-directory 

4. unique identification 

5. date and times 

a. branch last modified 

b. segment last dumped 

6. option switches 

7. usage status 

a. not-used 

b. being read 

c. being written 

d. being data-shared 

8. no-more-users switch 

9. usage count 

10. length of segment in bits 

11. maximum length of segment 

12. retention date 

13. consistency flag 

B. active information 

1 • interlock flag 

2. segment active 1 switch 

3. activity indicator and date last changed 



MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BG.7.00 

III. B. 4. current length of segment 

s. move identification 

·· 6. date and times 

a. segment last used 

b. segment last modified 

7. high limit 

a. low limit 

9. account number 

10. device identification 

11. file map size 

c. variable length information 

1. list of names for the branch 

PAGE 4 

2. retrieval trap procedure. argument list and switch 

3. system trap procedure. argument list and switch 

4. access control list (ACL) 

a. ACL entries 

(1) access-control name 

(2) mode 

(3) protection list and gate list 

(4) trap procedure name and argument list 

5. file map 

IV. link information 

A. fixed information 

1. vacant entry switch 

2. inter lock flag 



r-' J 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 5 

IV. A. 3. unique identification 

4. date and times 

a. link last used 

b. link last modified 

c. 11 nk last dumped 

B. variable length information 

1. list of names for the link 

2. path name of entry to which this is a link 

Explanation of Outline 

I. general directory information 

directory lock 

Three flags are used to implement process interlocking 
for the directory data base. (See BG.18 for a complete 
description of process locking and blocking). The 
intyrlock is used to flag whether the directory is 
or s not locked for modification. If the directory 
is locked. interlock contains the identification 
number of the process on whose behalf it is locked. 
Otherwise. it is zero. The read-count is used to 
keep the count of the total number of processes currently 
in the directory for reading purposes only. If a 
process wished to modify a directory but cannot because 
there are processes reading it. this process can 
set the ,o-more-readers switch ON and then go blocked 
waitingor the current readers to leave (read-count•O). 
While the no-more-readers switch is ON. no further 
processes are allowed to read the directory. 

Waking processes which are blocked waiting for the inter
lock flag or read-count to become zero is explained 
in BG. 18. 

hash table 

The hash table is used to find an en ry in a directory 
given its symbolic name. There is a location in the 
hash table for each name of every ent.~y in the directory. 



I r-· 

r'· I 

MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 6 

For each name, its associated location in the hash table 
contains a slot number, i.e., an index into a slot table 
(explained below) in the directory, identifying the location 
in the slot table which contains the pointer to the entry 
with that name. A count is kept of the number of locations 
in the hash table that are currently or have been used 
to point to an entry. 

Each hash table location contains a signed number where 
the magnitude of the number denotes a location in a slot 
table. If the sign is +, the slot points to a branch 
through a pointer in the branch slot table. If -, to 
a link through a pointer in the link slot table. 

slot tables 

There are two slot tables in a directory, a link slot 
table and a branch slot table. These tables contain pointers 
to each branch and link in the directory. The first branch 
(link) to be created in a directory will have its pointer 
stored in the first slot in the branch (link) slot table. 
As long as that branch (link) remains in the directory 
its pointer will remain in the first slot. As successive 
branches (links) get created in the directory successive 
slots will be filled with pointers to them. As branches 
(links) get freed, their slots will be zeroed. These 
zeroed slots now become candidates to be used for newly 
created branches (links). A branch or link in the heirarchy 
can now be located by either a path name, a string of · 
symbolic names of each entry from the root to the branch, 
or a slot name (positional notation), a string of slot 
numbers of each entry from the root to the branch. 

slot number of latest vacated entry 

Each number is a pointer to the bottom of a linked list 
of vacant directory entries. One, if non-zero, is the 
slot number of the most recently vacated branch. This 
branch in turn contains the slot number of the next most 
recently vacated branch, etc. If this initial index is 
zero, there are no vacant branches. 

The other, if non-zero, is the slot numbe1· of the most 
recently vacated link. This 1 ink in turn ·ontains the 
slot number of the next most recently vaca· ~d link, etc. 
If this initial index is zero, there are n' vacant links. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 7 

II. cgmmon access control list (CACL) 

The common access control list contains access information 
common to all entries in the directory. 

vacant switch: 

date and times: 

CACL entry 

user namea 

Protection list: 

trap procedyre: 

argyroent Jist a 

III. branch information 

If this switch is ON, there is no 
CACL for this directory 

There are three dates recorded 1 
the CACL in units of microseconcs 
since the year 1900. The date/time 
when the CACL was last used, last 
modified, and last dumped 

This is a symbolic user identif
ication consisting of a personal 
name, project identification and 
login identification 

The mode is a five bit flag indica
ting trap, read! execute, write, 
and append attr butes 

This is a list of numbers used to 
determine the access bracket, call 
bracket and gates of all segments 
in the directory for this user 
(brackets and gates are defined in 
section 80.9, Protection of the 
Supervisor, and the structure of 
this list is defined in section BG. 
9, Access Control) 

This is the path name of a proced
ure to be called if the trap attri
bute is ON 

The arguments are in a character 
string with appropriate separators 
(those recognized by the Shell) be
tween arguments and are passed 
through the Access Control Module 
to the trap orocedure 

Branches are directory entries which po!nt directly to 
segments. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 8 

III. fixed information: 

This information may be read or written only when 
the branch is locked to the process, except for the 
interlock flag itself and the unique identifier which 
may be read whether the branch is locked or not. 

vacant-entry switch:If this switch is ON, the f<lloll\tng 
information is meaningless, exc...:pt 
for the usage count which is inter
preted as the slot number of the 
next vacant branch. If OFF, mean
ingful information is stored in 
this entry. 

main interlock flag:If this is non-zero, then the 
branch is locked by the process 
whose process id. is its value. 

directory switch: If this switch is ON, the branch 
points to a directory segment. 
If OFF, the branch points to a non
directory segment. 

unigue identification: 

date and time: 

options switches: 

usage status: 

This is a unique number within all 
versions of Multics which defines 
the precise copy of the segment 
pointed to by this branch. 

The date/time in number of micro
seconds since the year 1900 when 
the branch was last modified and 
the date/time segment to which the 
branch points was last dumped. 

This is a string of two switches 
indicating the setting of the two 
options, £QQY and relate, for the 
segment to which this branch 
points. Both of these options are 
interpreted by the Segment House
keeping Module. 

This indica ~s the current state 
of the file; not-used, used for 
reading, USEJ for writing, or used 
for data-sha:ing. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.7.00 PAGE 9 

III. no-mpre-users-switch: 

usage count: 

bit count: 

maximum length: 

retention date: 

consistency flag: 

active information 

If this switch is ON, no more pro
cesses will be allowed to use this 
segment. This switch is set ON by 
a process going blocked to wait for 
the usage count to become zero. 
When the usage count becomes zero, 
this switch is turned OFF and 
blocked processes are awakened. 

This is a count of the number of 
processes which are using the seg
ment for the current status. If 
that status is read or data-share, 
or the process id of the process 
which is using the segment for 
writing 

This is a count of the number of 
bits of information in the segment 
(EOF mark). 

This is a preset maximum of the 
segment expressed in units of 1024 
words. 

This is the date after which the 
branch and segment are to be del
eted. 

This flag specifies to the backup 
system that the user does or doesn~t 
want the subtree beneath this branch 
to be dumped consistently (see 
BH.2.00). It tells the user that 
the subtree is currently consistent, 
is waiting to be dumped in a 
consistent state, or is inconsis
tent, i.e., dump aborted while in 
subtree or entire subtree was not 
reloaded. 

This information may be read if the main ~ranch lock and 
the active lock are set for this process c 'd written if 
the active lock is set for the process. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 10 

.1.Q.£Js.: 

segment active switch: 

activity indication. 

III. current length: 

mpve identification. 

high and lgw limitsa 

account nurrper: 

device identification: 

file mao sizea 

variable information 

If this is non-zero, the active in
formation is readable and writeable 
by the process whose process id. is 
its value. If zero, the active in
formation may not be read or 
written. 

If this switch is ON, the se~ment 
is active and the following 101 c :·
mat ion must be updated since it may 
not be accurate. If OFF, the seg
ment is inactive and the following 
information is accurate. 

This is a measure of i/o activity 
due to paging and is set and in
terpreted by multilevel (BH.1.01). 

This is the current length of the 
segment in units of 64 words (users 
will see this in units of 1024 
only). 

This identifies the device to which 
this segment is being moved, e.g., 
drum, disk, etc. 

These are two preset constants by 
which the user specifies to the 
multilevel system the range of de
vices on which he wishes this seg
ment to reside. 

This is the account number to which 
storage for this segment is charged 

This identifies the device on which 
this segment resides, e.g., drum, 
disk, etc. 

This is the size of the file map 
(see below) for the segment. 

The following information involves a vari ble amount of 
space in the directory. In order to read ,the information 
the main branch must be locked by the proct:ss, and in order to 
modify it the directory must be locked also (see the discussion 
below). 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.7 .00 PAGE 11 

list Of nWSt 

system. tr12 IDd swlt;ht 

file !DIRt 

III. link &nfonmatign 

The list contains the names by 
which the branch is known. 

This trap consists of the path 
name and argument list for a pro
cedure to be called when the seg
ment Is referenced by a user if the 
switch Is ON. The switch is set ON 
after the segment has been removed 
to off-line storage by the backup 
or multilevel systems. 

This trap consists of the path name 
and argument list for a procedure 
which Is called (If the switch is 
ON) each time this branch is refer
enced by a user. 

The file map Is used by the DIM 
to detenmlne the physical location 
of the segment on an offline 
device. 

Links are directory entries which point to other direc
tory entries (those Items In a link which are Identical to 
Items In a branch are defined the same). 

fixed infgnmatlgp 

dlte and tIme a 

path n-a 

These are three date/times 
Indicating when this link entry was 
last used. last modified, and last 
dumped. 

This is the symbolic path name of 
the entry to which this link points 

PL/1 Implement1tlon of DlresSgry D•SI llfei 

Directories are data bases common to many ,rocesses. They 
consist of sets of lnfonmatlon where the . ize of some sets Is of 
fixed length and the size of others Is vaa·lable length. These 
sets of va.riab Je size (eg., the set of namE.s for a branch in a 

I 



MULTICS SYSTEM PROGRAMMERS~ ~NUAL SECTION BG.7 .00 PAGE 12 

directory) contain information which when changed may 
increase. decrease. or not affect the size of the sets. 
In order to handle information of this type. there exist 
routines which will allocate and free storage for the 
sets. (NOTEa Because the pool of free storage in the 
directory n~y be changed when this type of information 
is being modified. the directory must be interlocked by 
the modifier.) When a set of certain size has been allocated, 
a pointer (ITS pair) to the base storage location for 
this set is returned. This pointer is used to fill in 
and refer to this set in its allocated area. In order 
to remember where this set of information ls located. 
there is a need to save the pointer to it in the directory. 
Since a pointer contains a segment number and a directory 
is a conmon data base. pointers (ITS pa .. lr) .cannot be stored 
in directories. 

Two routines exist which will handle this problem. One 
routine called !11 will create a relatiye ~inter (offset 
without segment number) from a po nter. T s relative 
pointer may then be stored in a directory. 

The other routine called a1[ will create a pointer (ITS 
pair) from a relative pointer and the base pointer of 
the directory In which the relative pointer was found 
( see BY. 14). 

Figure 1 Is a diagram of the various sets of information 
in a directory giving a "clue' to how they are allocated 
and accessed. 

The variable dD is a pointer variable (ITS pair) in automatic , 
storage and points to the base of a directory segment. 
The layout of the entire segment is defined by t~e following 
statement a 

del 1 dir based(dp). 

2 ilock(3)bi t(36). 

2 uid bit(70). 

I* lock. nomore. readcount *I 

I* unique identifier of directory *I 

2 (tbcount.tlcount)fixed bin(17). 
I* size of branch(link)slot table */ 

2 (tbdate.tldate.tcdate)blt(52). 
I* date and lme above totals were 

last updc ed and CACL was last 
modi fled !rf 



MJLTICS-PROGRAft4ERS" MANUAL SECTION BG. 7.00 PAGE 13 

2 (bcount,lcount)flxed bln(17), 
I* number of used branches 

(links) *I 
2 (vbcount,vlcount)flxed bin(1721 I* numcer of vacant branches 

(links) *I 
2 hrtp blt(18), I* re 1 pol nter to hash tab 1 e ,\ i 

2 htsize fixed bin(17). I* size of hash table *I 
2 htused fixed bln(17), I* number of used entries in the 

hash table *I 
2 (vsbn,vlsn)flxed bln(17), 

l* vacant branch(link)slot 
number *I 

2 (bsrp,lsrp)blt(18), 

2 caclrp bit(18), 

2 var area ((1 )), 

I* rel pointer to branch(link)slot 
table *I 

I* rel pointer to CACL *I 

The following are structure declarations for the various 
sets of Information to be found In a directory. These 
sets will be allocated in dlr.var. 

See section BG.1.00 for the distinction between declaration for 
reference and declaration for allocation. A 11 following struc
tures ~lch are starred refer to this reference. 

The pointer variable caslp points to the CACL of the directory. 

caclp • ptr (dp, dp~lr.caclrp), 

del 1 cacl based(caclp), 

2 .I lock bi t(36), 

2 clrp blt(18), I* rel ptr to first CACL entry *I 
2 vacant blt(1), 

2 (dtu,dtm,dtd) blt(52)1 



t-ULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BG. 7.00 PAGE 14 

The relative pointer. clrp. points to the first CACL entry 
ln a linked list of entries. These entries have the following 
declaration, 

del 1 clentry based (clp). 

2 userid. 

3 project_id char (24). 

3 name char (24). 

3 login_id char (2). 

2 mode bit (S). 

2 plistrp bit (18). 

2 gatesrp bit(18). 

2 traprp bit (18). 

2 c 1 rp bl t ( 18) J 

*del 1 protect based(plistptr). 

2 pad blt(1). 

2 listsize bit(17). 

I* c 1 p•ptr( dp, 
cacl~acl.clrp) *I 

I* rel pointer to 
protection list *I 

I* rel pointer to list 
of names of gates *I 

I* rel pointer to trap 
procedure and argument 
list *I 

I* rel pointer to next 
control list entry *I 

I* pllsptr•ptr(dp 
clp-clentry.plistrp *I 

2 llst(pllstptr_.protect.listslze)bit (18), 

*del 1 trapproc based(tp). 

2 size fixed bin(17). 

I* tp•ptr(dp,clp.clentry 
.traprp *I 

2 string char (tp-.trapproc.slze · 



KJLTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG. 7.00 PAGE 15 

*del 1 gates based (gp). I* gp.ptr(dp,cl~lentry 
.gatesrp) *I 

2 size fixed bin(17). 

2 nnrp bit(18). 

2 name char(g~ates.size) 1 

I* rel ptr to next 
· gate name *I 

The hash table in a directory contains an array of slot 
numbers. The slot numbers refer to relative locations 
within the branch slot table (if type of slot number is 
0) or the link slot table (if the type of the slot number 
is 1). 

The hash table is located by the pointer h1Q where 
htp • ptr (dp. d~ir.htrp)J 

del 1 hashtbl (d~lr.htslze) based (htp). 

2 vacated bit (1). 

2 type bit ( 1 ) • 

2 slotno bit (17)J 

I* •1 if location had 
been used *I 

I* ·1 if link, -o if 
branch *I 

I* •0 if location now 
empty *I 

The branch and link slot tables have the same structure. 

The pointer 12. ~ere sp • ptr (dp. d~1r.bsrp) 1 

or sp • ptr (dp. d~lr.lsrp) 1 

points to the branch or link slot table. 

*del 1 slots based (sp). 

2 pad bit (1 >. 
2 size bit (17). 1· •dp~ir.tbcount or -

d~ir.tlcount *I 
2 rp(s~lots.slze)b1t(18), I* array of relative poin

~ers to branches or 
links *I 



~" 

~' 

MULTICS SYSTEM-PROGRAMMERS' *NUAL SECTION BG.7 .00 PAGE 16 

The following code might be used to get the pointer to the entry 
with a name which hashes Into the third location In the hash 
table a 

htp.ptr(dp,dp~lr.htrp); 

l•ht~ashtb1(3).slotno; 

if htp~ashtb1(3).type 
then 
spaptr(dp,d~lr.bsrp); 

else 
sp-ptr(dp,dp~ir.lsrp); 

epeptr(dp,sp~slots.rp(i}); 

/*l=slot number in third 
location of hash table*/ 

/*type of entry pcint, d 
to by this slot number *I 
I* is a branch */ 

I* is a link */ 

/*ep-ptr to ith branch or 
link ~"/ 

The branches of a directory are pointed to by the pointer ~ 
where a 

ep-ptr(dp,s~lots.rp(i)); 

del 1 branch based(bp). 

2 flock bl t(36), 

2 activlnfo blt(36), 

2 uld bl t(70), 

2 vacant blt(1), 

2 dirsw blt(1), 

2 usage blt(2), 

2 usagect blt(17). 

2 nomore blt(1), 

2 (dtd,dtbm) blt(52), 

/*sp=ptr(dp.d~lr.bsrp) 
*I 

/*branch lock */ 

/*lock on active info in 
branch */ 

/*lf•1,thls branch is 
vacant */ 

/*lf•1.branch points to a 
directory *I 

/*usage status */ 

I 1ate and time seg 
d mped. branch modified *. I 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7.00 PAGE 17 

2 rd bit(S2), 

2 options bit(2), 

2 consistsw bit(2), 

2 ml bit(9), 

2 be bit (2 4), 

2 pad1 bit(3), 

2 activsw bit(1), 

2 actind bit(17), 

2 actime bit(52), 

2 pad2 bit(2), 

2 (dtu,dtm) bit(52), 

2 move blt(4), 

2 acct bit(36), 

2 cl blt(13), 

2 did blt(4), 

2 pad3 bit(2), 

2 111m bit(17), 

2 pad4 b I t ( 1 ) , 

2 hllm blt(17), 

/*retention date */ 

/*two options switches, 
copy and relate */ 

/*consistency flag *I 

/*max length of seg
rnent */ 

/*no. of bits of informa
tion in segment */ 

/*used to prevent items 
from straddling word 
boundary */ 

/*•1, if segment active*/ 

/*i/o activity indicator 
*I 
/*time above indicator 
updated */ 

/*date and time segment 
used and modified *I 

/*identification of dev
ice segment being moved 
to *I 

/*account number *I 

/*current length of seg
ment */ 

/*device id. */ 

/*multi-level limit */ 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.7.00 PAGE 18 

2 padS bit(1). 

2 fmsize bit(18), 

2 systrp bit(18)# 

2 systsw bit(1)# 

2 nnames bit(17)# 

2 bnrp bit(18)# 

2 aclrp bit(18)# 

2 fmrp bit(18)# 

2 retrieve bit(18)# 

2 retrievesw bit(1)J 

/*size of file map 
pointer *I 
/*rel pointer to system 
trap */ 

/*•1#if trap to be 
executed *I 
/*no. of branch names */ 

/*rel pointer to first 
name of branch *I 
/*rel pointer to first 
ac 1 entry (" c lentry11 

type) *I 
/*rel ptr to file map*/ 

/*rel ptr to retrieval 
trap */ 

/*•1#if trap to be 
executed *I 

The first name in the linked list of names for a branch 
is pointed to be DQ ~ere 

np.ptr(dp,bp branch.bnrp) 1 

*del 1 names based(np)# 

2 pnrp bit(18)# /*rel ptr to previous 
name */ 

2 nnrp bit(18), /*rel ptr to next name *I 
2 size bit(17)# 

2 name char(n~names.size) 1 

The links of a directory are pointed to bv the pointer 
~-

ep.ptr(dp,s~lots.rp(i)) 1 /"~ ip.ptr(dp-.dir.lsrp)*/ 



r 

r 

• 

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.7.00 PAGE 19 

del 1 link based(ep). 

2 1 lock bit(36). 

2 vacant bit(1). 

2 pad1 bit(1). 

2 uid bit(70), 

2 pad2 bit(1 >. 
2 nnames b1t(17), 

2 lnrp bit(18). 

2 pad3 bit(1), 

2 pnsize b1t(17). 

2 pnrp bit(18), 

2 pad4 bi t(4). 

2 (dtu,dtm.dtd) bit(52)J 

/*relative pointer to 
link names */ 

/*total char count of 
path name *I 

/*relative pointer to 
path name *I 

To get the path name of the entry to which a link points 
set mm. 

pnp • ptr (dp, e~ink.pnrp)J 

del pathname char (e~ink.pnsize) based (pnp) 1 



MULTICS SYSTEM-PROGRAMMERS# tJANUAL SECTION BG.7.00 PAGE 20 

dir var 

I a~~ 

hash table 
_., v -

-m -- slot m in link slot tabl~ 
htrp -

Ttl ~ 

bsrn 

branch 
slot table 

vbsn • + 
f n 

t- branch n vbsn rel otr . -+ ·-• rel ptr -._......... 1- ·--
_hnrn 

. name 1 .. 
I 

~ nnrn 
vacant branch name 2 

next vac 


