
....... --~-

TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
C.A. Cushing
BG.7
02/03/67

The following is revised MSPM section BG.7.00,
Directory Data Base.

Many minor revisions have been made to this section, partic
ularly in the data base declarations, in order to make
it agree with the actual implementation.

A major revision was made to this section regarding slot
numbers; their existence is now admitted and their use
fulness explained.

MULTICS SYSTEMS-PROGRAMMERS~ MANUAL SECTION BG.7 PAGE 1

Identification

Directory Data Base

C.A. Cushing

Purpose

Published 02/03/67
(Supersedes: BG.7.00 1 5/11/66)

The directory data bases are special segments maintained
by the dire~tory control module which contain information
about every segment on secondary storage. Each directory
contains a list of entries and each entry consists of
a description-of a particular segment or of another directory
entry. Those entries which contain information about
segments are called branches and those entries which contain
information about other d1rectory entries are called links.
Each segment has only one branch in one directory assoc1ated
with it. Each directory entry may have any number of
links in any number of directories associated with it.

Since a directory is a common data base~ certain interlocks
and switches have been placed in the directories. By
observing common rules about the interlocks the various
primitives of Directory Control are able to guarantee
the integrity of the data with which they deal. Section
BG.18 describes the mechanism for locking cata bases and
for blocking those processes which are unable to lock
a data base already locked by another process.

Contents of a Directory

The following is an outline of the items of information kept
for each entry in a directory and the common information
kept for the whole directory.

Data Base Outline

I.· general directory information

A. directory lock

1. interlock flag

MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 2

I. A. 2 .

3.

no-more-readers switch

read-count

B. hash table

1. number of entries used in table

2. total length of table

3. table entries

c. slot tables

D. slot number of latest vacated

1. branch

2. 1 ink

II. common access control list (CACL)

A. interlock flag

B. vacant switch

c. date and times

1. last used

2. last modified

3. last dumped

D. number of entries

E. CACL entries

1. user name

2. mode

3. protection list and gate list

4. trap procedure and argument list

. -

MlJLTICS SYSTU,1-PROGRAMMERS' MANUAL

III. branch information

A. fixed information

1. vacant-entry switch

2. main interlock flag

3 • en t ry- type

a. directory

b. non-directory

4. unique identification

5. date and times

SECTION BG.7 PAGE 3

a. branch last modified

b. segment last dumped

6. option swJtches

7. usage status

a. not-used

b. being read

c. being vvritten

d. being data-shared

8. no-more-users switch

9. usage count

10. length of segment in bits

11. maximum length of segment

12. retention date

B. active information

. 1 •

2 •

3.

interlock flag

segment active switch

activity indicator and date last changed

MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 4

III. B. 4. current length of segment

5. move identification

6. date and times

a. segment last used

b. segment last modified

7. high limit

8. 1 ow 1 im it

9. account number

10. device identification

11. file pointer

C. variable length information
-1. list of names for the branch

2. retrieval trap procedure, argument list and switch

3. system trap procedure, argument list and switch

4. access control list (ACL)

a. ACL entries

(1) access-control name

(2) mode

(3) protection list and gate list

(4) trap procedure name and argument list

IV. link information

A. fixed information

1. vacant entry switch

2. interlock flag

M~LTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 5

IV. A. 3. unique identification

4. date and times

a. 1 ink last used

b. 1 ink last modified

c. link last dumped

B. variable length information

1. list of names for the link

2. path name of entry to which this is a link

Explanation of Outline

I. general directory information

directory lock

Three flags are used to implement process interlocking
for the directory data base. (See BG. 18 for a complete
description of process locking and blocking). The
interlock is used to flag whether the directory is
or is not locked for modification. If the directory
is locked~ interlock contains the identification
number of the process on whose behalf it is locked.
Otherwise, it is zero. The read-count is used to
keep the count cf the total number of processes currently
in the directory for reading purposes only. If a
process wished to modify a directory but cannot because
there are processes reading it, this process can
set the no-more-readers switch ON and then go blocked
\rJaiting for the current readers to leave (read-count=O).
While the no-more-readers switch is ON, no further
processes are allowed to read the directory.

lrJak i ng processes vvh ich are b 1 ocked waiting for the inter
lock flag or read-count to become zero is explained

-in BG. 18.

hash table

The hash table is used to find an entry in a directory
given its symbolic name. There is a location in the
hash table for each name of every entry in the directory.

,,-.....

MLJL TICS SYSTE~1S-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 6

For each name~ its associated location in the hash table·
contains a slot number~ i.e., an index into a slot table
(explained below) 1n the directory, identifying the location
in the slot table which contains the pointer to the entry
with that name. A count is kept of the number of locations
in the hash table that are currently or have been used
to point to an entry.

Each hash table location contains a signed number where
the magnitude of the number denotes a location in a slot
table. If the sign is + 1 the slot points to a branch
through a pointer in the branch slot table. If -~ to
a link through a pointer in the link slot table.

slot tables

There are two slot tables in a directory, a link slot
table and a branch slot table. These tables contain pointers
to each branch and link in the directory. The first branch
(link) to be created in a directory will have its pointer
stored in the fir.st slot in the branch (link) slot table.
As long as that branch 11ink) remains in the directory·

its pointer will remain in the first slot. As successive
branches (links) get created in the directory successive
slots will be filled with pointers to them. As branches
(links) get freed, their slots will be zeroed. These
zeroed slots now become candidates to be used for ne\vly
created branches (links). A branch or link in the heirarchy
can now be located by either a path name, a string of
symbolic names of each entry from the root to the branch,
or a slot name (positional notation), a string'of slot
numbers of each entry from the root to the branch.

slot number of latest vacated entry

Each number is a pointer to the bottom of a linked list
of vacant directory entries. One~ if non-zero, is the
slot number of the most recently vacated branch. This
branch in turn contains the slot number of the next most
recently vacated branch, etc. If this initial index is
zero~ there are no vacant branches.

The other, if non-zero, is the slot number of the most
recently vacated link. This link in turn contains the
slot number of the next most recently vacated link, etc.
If this initial index is zero~ there are no vacant links.

ML:JL TICS SYSTEt-'1-PROGRAMMERS' t~ANUAL SECTION BG.7 PAGE 7

II. common access control list (CACL)

The common access control list contains access information
common to all entries in the directory.

~nt switch:

date and times:

CACL entry

user name:

mode:

,Erotection list:

trap procedure:

araument list:

III. branch information

If this switch is ON, there is no
CACL for this directory

There are three dates recorded in
the CACL in units of microseconds
since the year 1900. The date/time
when the CACL was last used, last
modified, and last dumped

This is a symbolic user identif
ication consisting of a personal
name, project identification and
instance tag

The mode is a five bit flag indica
ting trap, read, execute, write,
and append attributes

This is a list of numbers used to
determine the access bracket, call
bracket and gates of all segments
in the directory for this user
(brackets and gates are defined in
section 80.9, Protection of the
Supervisor, and the structure of
this list is defined in section BG.
9, Access Control)

This is the path name of a proced
ure to be called if the trap attri
bute is ON

The arguments are in a character
string with appropriate separators
(those recognized by the Shell) be
tween arguments and are passed
through the Access Control Module
to the trap procedure

Branches are directory entries which point directly to
segments.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 8

III. fixed information:

This information may be read or written only when
the branch is locked to the process, except for the
interlock flag itself and the unique identifier which
may be read whether the branch is locked or not.

_v=a~ca=-nt~--e~n_t~r~y~s~w~i~t~c~h:If this switch is ON, the following
information is meaningless, except
for the usage count which is inter
preted as the slot number of the
next vacant branch. If OFF, mean
in$ful information is stored in
thls entry.

main interlock flag:If this is non-zero, then the
branch is locked by the process
whose process id. is its value.

directory switch: If this switch is ON, the branch
points to a directory segment.
If OFF, the branch points to a non
directory segment.

unigue identification:

date and tim~:

options switches:

usage status:

This is a unique number within all
versions of Multics which defines
the precise copy of the segment
pointed to by this branch.

The date/time in number of micro
seconds since the year 1900 when
the branch was last modified and
the date/time segment to which the
branch points was last dumped.

This is a string of two switches
indicating the setting of the two
options, f2PY and relate, for the
segment to which th1s branch
points. Both of these options are
interpreted by the Segment House
keeping Module.

This indicates the current state
of the file; not-used, used for
reading, used for writing, or used
for data-sharing.

--

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 9

III. no-more-users-switch:

usage count:

bit count:

maximum length:

retention date:

active information

If this switch is ON, no more pro
cesses will be allowed to use this
segment. This switch is set ON by
a process going blocked to wait for
the usage count to become zero.
When the usa~e count becomes zero,
this switch 1s turned OFF and
blocked processes are awakened.

This is a count of the number of
processes which are using the seg
ment for the current status. If
that status is read or data-share,
or the process id of the process
which is using the segment for
writing

This is a count of the number of
bits of information in the segment
(EOF mark).

This is a preset maximum of the
segment expressed in units of 1024
words.

This is the date after which the
branch and segment are to be del
eted.

This information may be read if the main branch lock and
the active lock are set for this process and written if
the active lock is set for the process.

seament active switch:

~ctivity indication:

If this is non-zero, the active in
formation is readable and writeable
by the process whose process id. is
its value. If zero, the active in
formation may not be read or
~tJri tten.

If this switch is ON, the segment
is active and the follo~Jing infor
mation must be updated since it may
not be accurate. If OFF, the seg
ment is inactive and the follOIJIJing
information is accurate.

This is a measure of i/o activity
due to paging and is set and in
terpreted by multilevel (BH.1.01).

MYLTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 10

III. current length:

move identification:

high and low limits:

account number:

device identification:

file pointer:

variable information

This is the current length of the
segment in units of 64 words (users
will see this in units of 1024
only).

This identifies the device to which
this se~ment is being moved, e.g.,
drum, d1sk, etc.

These are two preset constants by
which the user specifies to the
multilevel system the range of de
vices on which he wishes this seg
ment to reside.

This is the account number to which
storage for this segment is charged

This identifies the device on which
this segment resides, e.g., drum,
disk, etc.

The file pointer is an index used
by the DIM (for the device on which
the segment resides) to determine
the physical location of the seg
ment on the device identified above.

The following information involves a variable amount of
space in the directory. In order to read the information
the main branch must be locked by the process, and in order to
modify it the directory must be locked also (see the discussion
be low).

list of names:

ret r ieva 1 trap
and switch:

The list contains the names by
which the branch is known.

This trap consists of the path
name and argument list for a pro
cedure to be called when the seg
ment is referenced by a user if the
switch is ON. The switch is set ON
after the segment has been removed
to off-line storage by the backup
or multilevel systems.

,-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 11

system trap and switch:

III. link information

This trap consists of the path name
and argument list for a procedure
which is called (if the switch is
ON) each time this branch is refer
enced by a user.

Links are directory entries which point to other direc
tory entries (those items in a link which are identical to
items in a branch are defined the same).

fixed information

date and time:

variable information

path name:

These are three date/times
indicating when this link entry was
last used 6 last modified, and last
dumped.

This is the symbolic path name of
the entry to which this link points

PL/I Implementation of Directory Data Bases

Directories are data bases common to many processes. They
consist of sets of information where the size of some sets is of
fixed length and the size of others is variable length. These
sets of variable size (eg., the set of names for a branch in a
directory) contain information which when changed may increase 6

decrease 6 or not affect the size of the sets. In order to handle
information of this type, there exist routines which will
allocate and free storage for the sets. (NOTE: Because the pool
of free storage in the directory may be changed when this type
of information is being modified, the directory must be
interlocked by the modifier). When a set of certain size has
been allocated# a pointer (ITS pair) to the base storage location
for this set is returned. This pointer is used to fill in and
refer to this set in its allocated area. In order to remember
where this set of information is located 6 there is a need to save
the pointer to it in the directory. Since a pointer contains a
segment number and a directory is a common data base 6 pointers
(ITS pair) cannot be stored in directories.

Two routines exist which wi 11 handle this problem. One routine
called rel will create a relative pointer (offset without
segment-number) from a pointer. This relative pointer may then
be stored in a directory.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 12

The other routine called E1£ will create a pointer (ITS
pair) from a relative pointer and the base pointer of the
directory in which the relative pointer was found (see BY.14).

Figure 1 is a diagram of the various sets of information
in a directory giving a 11 clue11 to how they are al·located
and accessed.

The variable £e is a pointer variable (ITS pair) in automatic
storage and po1nts to the base of a directory segment.
The layout of the entire segment is defined by the following
statement:

del 1 dir ctl(dp),

2 ilock(3)bit(36), I* lock, nomore, readcount *I
2 (tbcount,tlcount)bit(36),

I* size of branch(link)slot table*/

2 (tbdate,tldate,tcdate)bit(52),
I* date and time above totals were
last updated and CACL was last
modified */

2 (bcount, lcount)bit(17), /* number of non-vacant branches
(links) ·kf

2 hrtp bit(18),

2 htsize bit(17),

2 htused bit(17),

2(vbsn,vlsn)bit(17),

2(bsrp, lsrp)bit(18)

2 caclrp bit(18),

2 var area· ((1));

I* rel pointer to hash table */

I* size of hash table *I

I* number of used entries in the
hash table *I

I* vacant branch(link)slot number*/

I* rel pointer to branch(link)slot
table *I

I* rel pointer to CACL */

The followng are structure declarations for the various sets of
information to be found in a directory. These sets will be all
ocated in dir.var.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 13

See section BG.1.00 for the distinction between declaration for
reference and declaration for allocation. All following struc
tures which are starred refer to this reference.

The pointer variable caclp points to the CACL of the directory.

caclp = ptr (dp, dp.,dir.caclrp);

de 1 1 cac 1 c t 1 (cac 1 p),

2 ilock bit (36),

2 (dtu,dtm,dtd) bit (52),

2 c.l rp b i t (1 8) ; I* rel ptr to first CACL
entry ·kf

The relative pointer, clrp, points to the first CACL entry .in a
linked list of entries. These entries have the following
declaration:

del , clentry ctl (clp),

2 use rid,

3 project_id char

3 name char (24),

3 instance_id char

2 mode bit (5) ..

2 p 1 i st rp bit (, 8) ..

2 gatesrp bit(18),

.
2 traprp bit (18) ..

2 c 1 rp bit (1 8) ;

(24) ..

(2) ..

f·kc 1 P=Pt r (dp,
cac 1 p.,.cac 1 • c 1 rp) ~·~I

l*rel pointer to protec
tion list ~·~1

/*rel pointer to list of
names of gates */

l*rel pointer to trap
procedure and argument
1 ist ~·~1

l*rel pointer to next
control list entry *I

,·~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 14

*del 1 protect ctl(plistptr),

2 listsize bit(17),

l*plisptr=ptr(dp,
clp+clentry .Pl istrp~·-1

2 1 ist(pl istptr-+protect. 1 istsize)bit (18);

-:'>del 1 trapproc ctl (tp),

2 size bit (1 7 L

l*tp=ptr(dp,clp~clentry
• traprp -:,1

2 string char (tp~trapproc.size);

*del 1 gates ctl (gPL

2 s i ze b i t (1 7) ,

2 gate char(gp~gates.size),
.

2 grp bit (18Y;

I* gp=ptr(dp,cl~ clentry
.gatesrp) ~·-;

I* rel pointer to next
gate name -,',1

The hash table in a directory contains an array of slot numbers.
The slot numbers refer to relative locations within the branch
slot table (if type of slot numbet~ is 0) or the link slot table
(if the type of the slot number is 1).

The hash table is located by the pointer h!Q where
htp = ptr (dp, d~dir.htrp);

del hashtbl (dp~dir.htsize) ctl (htp),

2 vacated bit.(1), 1-,''= 1 if location
used ··-I "

2 type bit (1), 1-.':= 1 if link,=O
··-I "

2 slotno bit (17); ;··- 0 "':::::: if location
ty -·-; "

had been

if branch

now emp-

__ , __ _

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 15

The branch and link slot tables have the same structure.

The pointer~, where sp = ptr (dp, dp~dir.bsrp);

or sp = ptr (dp, dp·~dir. lsrp);

points to the branch or link slot table.

,,_.de 1 1 s 1 at s c t 1 (sp) ..

2 s i ze b i t (1 7) ..

2 rp(sp ... slots.size)bit(18);

/'';-=dp+-d i r. tbcount or =
d~di r. t lcount ,•;-;

/*array of relative poin
ters to branches or
1 inks ,•;-;

The following code might be used to get the pointer to the entry
with a name which hashes into the third location in the hash
table: ·

htp=ptr(dp,dp~dir.htrp);

i=htp~hashtbl(3).slotno;

if htp~hashtbl(3).type
then
sp=ptr(dp,d~di r .bsrp);

e 1 se
sp=ptr(dp,d~ir. lsrp);

ep=ptr(dp,s~lots.rp(i));

/*i=slot number in third
location of hash table*/

/*:ype of entry pointed
to by this slot number */
I* is a branch */

f-i;- is a 1 ink ~·;-I

;~·;-ep=ptr to i th branch or
1 ink ~·;-;

The branches of a directory are pointed to by the pointer §.2
where:

ep=ptr(dp,s~slots.rp(i)); /*sp=ptr(dp,d~dir.bsrp)
··-; "

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 16

del , branch ct 1 (bp).,

2 ilock bit(36),

2 activinfo bit(36),

2 ui~ bit(70),

2 vacant ht(1),

2 dirsw bit(1),

2(dtd,dtbm)bit(52),

2 usage bit (2),

2 usagect bit(17),

2 nomore bit(1),

2 be bit (24),

2 ml bit(8),

2 options bit(2),

2 rd bit (52),

2 activsw bit(1);

2 (dtu,dtm)bit(52),

2 actind bit(17),

2 actime bit(52),

2 move b i t (4),

/*branch lock */

/*lock on active info in
branch *I

/*if=1,this branch is
vacant */

/*if=1,branch points to a
directory */

/*date and time segment
dumped and branch
modified *I
/*usage status */

I* no. of bits of
information in segment *I
/*max length of segment*/

/*two options switches~
copy and relate *I
/*retention date */

1*=1, if segment active*/

/*date and time segment
used and modified */

/*i/o activity indicator
*I
/*time above indicator
updated -.'(;

/*identification of dev
ice segment being moved
to "1:f

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 17

2 (llim,hlim)bit(17),

2 acct bit(36),

2 did bit(4),

2 fp bit (180),

2 retrievesw bit(1),

2 retrieve bit(18),

2 systsw bit(l),

2 s y s t rp b i t (1 8) ,

2 bn rp bit (18),

2 ac 1 rp bit(. 1 8);

/*high and low limits*/

I* account number *I
I* device id. */

I* file pointer*/

/*=1 if trap tp be
executed */

/*rel pointer to
retrieval trap *I
/*=1,if trap to be
executed -:~I

/*rel pointer to system
trap -:~1

/*rel pointer to first
name of branch *I
I* rel pointer to first
acl entry (''clentry"
type) -:~I

The first name in the linked list of names for a branch is
pointed to by n£ where

np=ptr(dp,bp branch.bnrp);

*del , names ctl(np).,

2 size bit(18),

2 name char(np names.size),

2 pnrp bit(18),

2 nnrp bit(18);
-

/*rel ptr to next name*/

/*rel ptr to previous
name -:(1

The links of a directory are pointed to by the pointer~.

ep=ptr(dp,s~slots.rp(i))i /*SP=Ptr(d~di r. 1 srp)~'~/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG7 PAGE 18

del 1 link ctl(ep).,

2 i lock bit(36)..

2 vacant bit(1).,

2 uid bit(70),

2 (dtu.,dtm.,dtd) bit(52).,

2 lnrp bit(18) /*relative pointer to
1 i n k name s ~·~I

2 pnsize bit (17) I j·k tot a 1 char count of
path name ~·:1

2 pnrp bit (18); /*relative pointer to
path name ~··I

To get the path name of the entry to which a link points set ED£.

pnp = ptr (dp, ep~link.pnrp);

del pathname char (e~link.pnsize) ctl (pnp);

' c

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.7 PAGE 19

dir var

lock

) slot m in link slot table

bsrp

v sn
branch

'--~slot table tf l

vbTn ~~rJt=-'----)~1..;:;;b-=-ra=..:n:.:.::c:.=.:h_:n;.:.
J, r~---~1 rel p~_1

	Scan 13.PDF
	bg-7.670203.directory-data-base.pdf

