
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2&00 PAGE 1

Pub 1 i shed: 12/23/66

Identification

Summary of the Dumping Processes
G. F & C 1 ancy

PurQose

The backup system provides protection against the destruction
of any data known to the file system. It insures retrievabi 1 i ty
from detachable storage of any segment destroyed while
residing on secondary storage and the ability to retrieve
such a lost segment from more than one place in the detachable
storage archives should a portion of the archives be destroyed.
The insurance provided by the backup system is effected
by several dumping methods. These methods employ some
redundancy in order to provide multiple sources in the
archive~ for each segment 1 to facilitate execution of
the secondary storage reload processes and to provide 1

to the extent possible, user directed backup.

In general, backup strategy consists of the following:

1 • Search out and dump in duplicate onto detachable storage
all newly created or modified segments or, in the case
of directory segments, all newly created or modified
directory entries. This is known as primary incremental
dumping.

2. Search out and dump in duplicate onto detachable storage
secondary copies of all segments whose primary incremental
copies were produced some ti~e ago and whose secondary
copies have not yet been produced. This is secondary
incremental dumping. Primary and secondary dumping pro
duce four backup copies of each segment that resided on
secondary storage for a sufficient period of time~ Each
copy is produced with a spatial or temporal separation
between it and any other. Thus maximum reliability from
detachable storage is achieved.

3. Periodically dump in duplicate all ·segments used since some
set time in the past onto a body of detachable storage which
is physically distinct from incrementally produced storage.
This .lL.§.§L. cl}gckQQ_i_[1t .9!l..DlR has the effect of consolidating
copies of oft used segments together where they may be

4.

found swiftly by the reloading processes.

Periodically dump in duplicate onto a third distinct body
of detachable storage a copy of the hierarchy skeleton
(all file system directories) and a minimal set of
accounting and system se~Jmentso This -~-~ ffi.~Q.Q)r~t
.¢um2 consolidates sufficient data where it can be pro-

. -·-"' ~----- MULTICS SYSTH1-PROGRM~~·1ERS' MANUAL SECTION BH.2.00 PAGE 2

cessed quickly by the reload processes and hence enable
a swift return to normal Multics operation following a
secondary storage catastrophe.

5. Allow a user and the multilevel storage management system
to forceably backup a particular segment without waiting
for the incremental dumper.

6. Allow a user to insure that a particular hierarchy subtree
be scanned by the incremental dumper in a consistent way,
i.e., all newly created or modified segments in the sub
tree are forceably dumped in a mutually consistent state.

Forced backup (item 5 above) is done via the services
of the single segment dumping proces~ whose description
appears in section BH.2 .. 04. That process dumps segments
onto the same detachable storage used by the incremental
dumping process and produces dumping records which make
it appear'as if the incremental dumper itself had done
the \tvork.

Primary and secondary incremental dumping and consistent
dumping (item 6 above) are effected by the incremental
dumping process which operates continually within Multics
and produces one continuous body of incrementally produced
detachable storage. The system checkpoint dump is carried
out by the system checkpoint dumping Qroces~ and the user
checkpoint dump by the ~ checkooint _9urng,ing pJocess.

The program structure of each of these last three processes
is identical except for a single module that applies the
criterion to data selected for dumping. This module,
the decision module, is different for each process. The
remainder of this section describes the common modules
of the dumping processes while sections BH.2.01 - BH.2.03
detail the selection logic applied by the individual processes.

BH.2.01 The Incremental Dump Decision Module

BH.2.02 The System Checkpoint Dump Decision Modules

BH.2.03 The User Checkpoint Dump Decision Module ..
Thus, a dumping process with entirely different selection logic
may be created by specifying the·appropriate decision module.

Output produced on detachable storage by the incremental
dumper is kept permanently or until consolidation occurs
(section BH.1 .04). Checkpoint dumps (of either type)
are temporary in that only the latest two or three are
preserved at any time, the outdated ones being discarded
as nev.;er ones are produced. All data vJr-itten onto detachclble

-..

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BH.2.00 PAGE 3

storage by any of the fou(dumpers is in identical logical
record format. That format is: mandatory header and
preamb 1 e records fo·ll owed by an opt iona 1 segment copy.
Detachable storage data format is thoroughly described ·
in section BH.4.03. The header contains certain identifying
information about the logical record. The preamble consists
of a string of successively inferior directory entries
that uniquely' positions the object segment (following
the preamble~ in the directory hierarchy. Since each logical
record uniquely positions its own data in the hierarchy, each
such record is entirely independent of any other.

The Process

The basic function of a dumping process is to conduct a
search of some prespecified portion or sub-tree of the
directory hierarchy dumping, accordin~ to its particular
objectives, individual directory entr1es and segments.

' The modular constituents of the dumping process are a
dumQ control module, hierarchy ~~ a replaceable decision
module, a dumQ module and a data base called the Qositiop
segmen~. These modules are introduced briefly below while
Figure 1 shows their block configuration.

1 • Dump Control - This module serves as the main logic
program for the process. Its function is to select a
hierarchy tree node defining a sub-tree to be scanned by
the process and then to initiate the hierarchy scan module.
Whenever control returns from the call to scan indicating
that the specified search is complete, another node is
selected and the scan module invoked again.

2. Hierarchy Scan- This procedure is initiated by dump control.
It systematically traverses a specified hierarchy sub-tree.
A copy of each directory entry encountered in this path is
made and passed to a decision module where the dump
criterion is applied. Dumping decisions are recorded by
that module and acted upon whenever the scanner invokes
the dumQ module. \vhen the specified sub-tree has been
exhaustively searched once, control returns to the caller.

3. Decision Module - A different decision module exists for
each type of dumper. In gener~l, it examines the directory
entry last extracted from the hierarchy by the scan module.
If dumping of the entry itself or of the segment defined by
the entry is required, switches are set detailing the re
quired operation and \'.Ji 11 be read later and acted upon by
the dump module. Dumping decisions are usually reached by
testing specific items in the directory entry itself.

4. Dump Module- The dump module is called periodically by the
hierarchy scanner and is asked to examine the dumping
switches set by the decision module for that directory entry

-"''.· ...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.00 PAGE 4

5.

corresponding to the ~urrent hierarchy position of the
process. It may find switches set compelling it to dump
that entry itself or its associated segment. If any of these
operations is to occur, the request is placed in an output
queue where it will be read ahd effected by the output
process (BH.4.01).
The Position Segment -

The position segment is used by the process:

1)

2)

3)

4)

to keep track of its ever changing hierarchy position,

to communicate dumping decisions from the decision
module to the dump module, -

as a staging area for the construction of the preamble
record and

' . to store entry cop1es while dumping decisions are being made.

The current hierarchy position of the process is determined by a
list of successively inferior directory entries that eventually
lead to the directory in which the dumper is currently working.
The .Q.Osition seqment contains, for each of these entries, in
addition to a copy of the entry itself, the following:

1 • The date/time the entry was readfrom the hierarchy.

2. The switches set by the decision module when it considered
the entry.

3. The count of the number of entries of the current type
presently in the directory.

4. The date/time when that count (item 3) was last 'changed.

5. The unique position of the entry within the directory
(this is described later as slot number).

The significance of these items will soon become evident.

The DumQ Control Module
..

Whenever a dumping process begins execution, the dump control
module assumes control. Its only function is to determine the
set of hierarchy sub-trees to be scanned by the process. For
each distinct member of this set the hierarchy scan module is
invoked. Whenever that list is exhausted, dump control returns
if it is a checkpoint dumper (thus eliminating the process) or
goes blocked for a period of time before its list of subtrees is
again searched if it is ah incremental dumper.

A dumping process is initiated by the follovJing- call into dump
cont ro 1.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.00 PAGE 5

call type_dumper;

where "type" is used to specify the desired dumper (e.g.,
call incremental_dumper).

Hierarchy Scan Module

The hierarchy scan module is a procedure which conducts
a linear scan of all entries in a single directory and
which is capable of calling itself recursively whenever
an entry in a directory defines another inferior directory.
In this way an exhaustive search of any hierarchy sub-tree
is effected.

A directory is a collection of links, branches and a common
access control list (CACL). Since all links and branches
are uniquely numbered \ivi thin the directory, a directory
search consists of an orderly sequence of requests for
entry via the getentr.~ primitive of directory control
for each 1 ink, the CACL followed by a series of consecutive
requests for each branch.

Each entry so returned by getentLY is preserved in the
position £egment by the scan module until it is no longer
of use. Thus, due to the recursive nature of the procedure,
a scan module invoked at level n in the hierarchy adds
to a list of n-1 already existing entry copies. Due to
their origin, this list of entries forms a string of successively
inferior entries which originates at the hierarchy root
node and uniquely positions the scanner at an entry at
level n. If a recursive call is made to level n+1 another
item is appended to the present list and if a return is
made from level n, the last entry in the list is deleted.
In this way, the entry list always uniquely positions
the process at some position in the hierarchy. Should
the scan module move laterally from one entry to another
in the same directory, then the current entry in the list
at level n is replaced by another.

Once an entry has been safely extracted from a directory,
.the decision module for the process is called and determines
whether or not dumping operations are necessary (since
the decision module is called immediately after each entry
is fetched, the entry copy to be considered is always
the last one in the current entry list). The nature of
the actual dumping process is that whenever some hierarchy
data is dumped that data must be accompanied by a form
of the current entry list (the preamble) which uniquely
positions the data in the hierarchy. Therefore, the entry
considered by the decision module may be a branch defining
an inferior directory and in addition, a decision might
be made requiring that the entry itself be dumped. In

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2 .00 PAGE 6

this case,· since a recursive call to scan an inferior
directory is required, the entry is not dumped immediately
but this action is delayed since if dumping occurs at ·
some lower level the required dump of the current entry
will automatically be accounted for as a consequence of
dumpin~ the e~tire entry position list (of which the current
entry 1s a pa~t). Thus, a return from the dump module
which just co'nsidered a directory branch wi 11 be followed
immediately by a recursive call to the scan module to
search level n+1. When return is made from scan back
to level n, the.dumQ module is called to see if there
still exists a dumping operation to be performed at the
current level (n). A return from any non-directory branch
call to the decision module is followed by a call to the
dump module to accomplish any required dump of that entry
since the next action taken will be to either replace
the current entry at the present level or return to the
previous, level; both of which will destroy the current
entry information. Figure 2 presents a diagram of the
scan module.

A scan of some hierarchy directory is initiated by the
f o 1 1 01.v i n g ca 1 1 •

call scan(psp, n, node, decision);

A recursive call to scan the next inferior directory takes
the following form.

call scan (psp, n+1, nodellbranch, decision);

In these calls rr is a number signifying the depth into
the tree from the root at which scanning is to occur and
therefore is the depth of node which defines the directory
to be consi~ered. n also defines the position in the
entry position list to be used when scanning the directories
at level n. node! !branch defines some directory immediately
inferior to node. .2.§..Q is a pointer to the base of the
Qosition segment in which the entry copies are stored.
decision is the entry name of the decision module to be
called by the scan module. These arguments are declared
as follows:

del n fixed,
node · char (";'{),
decision entry e~t,
psp ptr;

Dec i s ion f'.1odu 1 e

..

There exists a unique decision module for each different
type of dumping process used by the backup system. Each

~~ULTICS SYSTEfv\-PROGRMJ\f"\ERS' ~1/\NU/:'\L SECTION BH.2.00 PAGE 7

is designed to examine a directory entry as presented
by the scan module and to flag for dumping those which
are significant or which define segments significant to
its own backup function. The decision module also takes
measures to insure the proper disposition of such data
by the dump module. In general a decision module may
request that the entry being examined be dumped or that
the segment defined by the entry be dumped.

The decision module must distinguish the entry type and
decide what must be done. In general there are three
distinct alternatives.

1. If the entry is a link or a common access control list~
then no other segment is defined and the entry itself is
a terminus of the hierarchy tree. The decision module
must decide if such a terminal entry need be dumped.

2 •

3.

' If the entry is a non-directory branch~ then it too is a
terminal entry of the tree but associated with it is a
non-directory segment. The decision module must first
decide if the entry need be dumped and~ second~ if the
segment itself fulfills the decision module's specialized
requirements for dumping.

When a directory branch is encountered~ the decision
module must determine if the entry contents information
is such that dumping is required and if the scan module
subsequently should scan or ignore the subtree defined by
the branch or if the entire associated directory should be
dumped.

Since the dump module is not nece~sarily called after
returning from the decision module (a recursive call to
the scan module may intervene), the dumping decisions
relevant to the entry at each successive level in the
entry positio~ list are recorded by the decision module·
in such a way that the dump module may later read and
interpret them. Requests made by the decision module
refer only to the particular entry being processed and
are of the follovving form

..
1. Dump the entry itself.

2. Dump the segment defined b~ the entry (the entry is
a non-directory branch).

3. Dump the associated inferior directory defined by this
entry (the entry is a directory branch).

r·

t.t\ULTICS SYSTEM-PROGRArvlMERS' MANUAL SECTION BH.2.00 PAGE 8

If one of the above operations is necessary the decision
module makes use of a set of decision switches permanently
attached to each entry of the entry position segment.

A complete set of switches exists for each entry and allows
one setting for each operation defined above.

A decision module is called by the following:

call decision~odule (dsw,psp, deeper);

In this call deeper is the return to be made when the
current entry under consideration is a directory branch
and the associated inferior directory is to be scanned
subsequently. If a normal return is made, scanning continues
in the current directory. Note that the decision module
can cause an entire sub-tree to be ignored.

' dsw, the dump SlrJitch is returned OFF if no dump switches
have been set by the decision module and otherwise left
ON. It is a signal that the scan module must call the
dump module for the entry only if ON on return from the
decision module. .P.§12 is a pointer to the base of the
position segment.

These arguments are declared as follo\i'JS:

de 1 dsvJ bit (1) ,

psp ptr,

deeper label;

The Dump Module

The dump module exists in conjunction with the decision
modules, Its·purpose is to perform dumping duties as
communicated via instructions found attached in the current
(last) entry in the position segment. When the dump module
is called it is always asked to examine only the last
entry in the list which corresponds to the current depth
into the hierarchy of the scan. Those functions which
may be performed are the dumping of ~n entry or a segment.

The dump request switches attached to the entry copy in
the entry position list are the following.

1 • entry switch - if this switch is ON for the entry
b~ing examined then a copy of the entry itself is to
be dumped,

2. segment switch - if this is ·oN, then the entry defines
a non-directory segment which is to be dumped.

MULTICS SYSTEM-PROGRA~iMERS' MANUAL SECTION BH.2.00 PAGE 9

3.

4.

5.

directory switch- if ON~ then the entry is a directory
branch whose associated directory is to be completely
dumped.

!

update switch - this switch is a signal (if ON) to the
dump mod~le that the process is the incremental dumper.
As such~ /the detachable storage produced wi 11 be
permanently kept in the off-line archives and may be used
for user 1 retrieval of segments. Therefore~ if the update
switch is ON, the date/time at which anything is dumped
and the exact location of all segment copies within de
tachable storage must be updated into the directory
hierarchy .. If the update switch.is ON in conjunction with
the entry, segment or directory switches then the date/time
the entry was read from the hierarchy replaces the date/time
last-dumped in the hierarchy entry .. If the update switch
is ON in conjunction with the segment or directory switches,
the~ the position on detachable storage where the dumped
segment may be found is copied into the hierarchy entry
to facilitate the segment's retrieval at a later date.

Consistent dump switch.

If a user desires that a particular hierarchy sub-tree be
dumped in a mutually consistent state, then this intention
is signaled by the setting of a switch (consw) in the
directory entry defining this subtree to the value 1.
When that entry is considered by the incremental dump
decision module, the consistent dump switch attached to the
entry is set ON and consw in the dumper's entry copy is set
to 2. When the dump module recognizes the switch, the sub
tree has been dumped in a mutually consistent state. The

.consistent dump switch in a branch is set to 0 and the entry
dumped again in this state. (This is so because the dump
module ·reads the switches for a particular entry only after
all dumping inferior to that entry has been ~ffected.
During a reload, the .latest dumped version of this entry
(whose branch consistent dump switch (consw) is zero) will be
reloaded. If the dumper did not scan the entire specified
sub-tree due to a catastrophe during the dump then the
latest version of the entry has its branch consistent dump
switch sti 11 set to 2 as a wa.rn,ing to the user.

The user can therefore tell the exact state of the subtree
by testing his· local dump consistent variable in the entry.
The possibilities are: ·

0. The tree is consistent. Either a dump II'Jas successfully
requested, completed, and reloaded or no dump was re
quested.

1. The tree is consistent but vvaiting to be dumped in the
consistent state.

·-----·---------~'------___.:_ ___ _

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BH.2.00 PAGE 10

2. The tree is inconsistent. Either the dump was aborted
while in the subtree or the entire subtree was not
reloaded.

6. Secondary Dump Switch - This switch is used only for non
directory branches. It is a signal that the secondary back
up copy of the associated segment is to be dumped. This
switch is used only by the incremental dump process and
hence must be ON only in conjunction with the update switch.
When a secondary se~ment copy is dumped its position in
detachable storage 1s recorded in the hierarchy branch as a
second (alternate) set of retrieval arguments.

If dumping is required (as determined from the setting of the
file, directory, entry, secondary or consistent dump switch)
then the following actions are taken.

1 •

2.

The'preamble record to be dumped as part of the logical
record on detachable storage is created. Copies of all
entries in the position segment specifying the current scan
position are converted to a certain bit string format.
This format is described in Section BH.4.03. A distinct
preamble seament is created by the·successive concatenation
of the bit string form of all entries. ·

If the directory switch is ON, copies of all entries in the
directory segment specified by the last entry in the list
are fetched via successive calls to getentry.

Each entry from this directory is converted to the same bit
string format as were the components of the preamble segment,
and all are concatenated together to form a distinct
directory copv seament. ·

3. Next, the names of one or two segments (preamble seqment
and possibly a non-directory segment or the directory
£Q.QY. segment) are placed in an output service queue where
they will be noticed and copied onto detachable storage by
the output process (section BH.4.01). Wh~n the request is
given output service, the.exact position where the data may
be found on detachable storage is retu~ned. If the update
switch is ON, and either the ~~rectory, file or secondary
switch is ON, this position is recorded into the hierarchy
data of the current entry.

4. Since the entire current position entry list was dumped,
requests that any entry superior to the current entry be
dumped (entry switch ON) have also been fulfilled. The
switches corresponding to all entries in the position list
are scanned, and for each entry whose entry switch and
update switch are ON, the date/time read from the hierarchy
is updated as the date/time last dumped and both switches

--·-------- MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.00 PAGE 11

are turned OFF. If just the entry switch is ON then it
is merely turned OFF since the entry dump request has
been fu 1 f i 11 ed..

The dump module is called by the following:

call dump (psp~ name);

In this call~ is a pointer to the base of the position
segment; ~ is the tree name of the current entry with
the position segment. The PL/1 declaration of the arguments
is as fo 11 ows.

del psp ptr,

name char ('i'r);

The Position Segment

The position segment is a data base common to all modules
of the dumping process. It acts as temporary storage
for the various data necessary for the execution of the
dumping process. Essentially it is composed of a one
dimensional array of structures; one level being used
for each entry needed to determine the current process
hierarchy position. The following is a brief outline
of the contents of the position segment.

1. Current scan depth into the hierarchy.

2. Array of entry data (one array location for each level).

a)

b)

c)

d)

e)

f)

g)

h)

decision switches

date/time the entry was read from the hierarchy

packed switch

slot number (integer format)

slot number (character format)
..

pointer to packed bit string of entry information

pointer to entry information structure

current count of entries of this type in the directory
(type count)

i) date/time type count last changed

3. Area for entry structure and bit string allocations.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.DO PAGE 12

I

The following is an.explanation of the items in the position
segment.

1 •

2.

Current scan depth into the hierarchy - This number is
used as an index into the array of entry data. When the
decision;module or dump module is called, the current scan
depth 1 o,cates the entry to be cons ide red by the ca 11.

I .
Array of entry data - This array contains the data pertinent
to an entry at any level in the hierarchy. Each entry
currently required to specify the current scan position is
itemized by an appropriate item of the array. Each item
of the array contains the following data concerning its
associated entry.

2a. Switches- When the decision module is called to
consider this entry it sets ON one or more of the

' following switches.

The switches are eventually interpreted and their
commands executed by the dump module.

1) segment switch (SOW) - the segment switch is set ON
by the decision module if the non-directory seg
ment defined by the entry is to be dumped.

2) directory switch (DSW) - the directory switch is
set ON by the decision module if the directory
segment defined by the entry is to be dumped.

3) entry s'vvri tch (ESitJ) - the entry switch is set ON
by the decision module if the entry itself is to
be dumped.

4) update switch (USW) - the update switch is set ON
by the decision module only if the process is the
incremental dumper. This is a signal, if ON, to
the dump module that a record of any data dumped
should be written into the hierarchy.

5) consistent dump switch (CSW) - this is a signal to
the dump module (if ON) that the hierarchy sub-tree
defined by this entry is to be dumped in a con
sistent state.

6) secondary dump switch (SSW) - this is set ON by the
decision module if the secondary copy of the segment
defined by the associated entry is to be dumped •

. .

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.00 PAGE 13

2b. · Date/trme the entry was read from the hierarchy -
This date/time is used to update the date/time-the
entry-was-last-dumped in the hierarchy entry informa
tion if that act is required (update switch ON). The
time dumped must coincide with the time read since the
dumped version may differ from the hierarchy version
after that time. The date/time read is set to the
current time immediately preceding the ~etentry
request. ·

2c. Packed switch - The entry data is returned from
qetentry as a structure. Before dumping of the entry
can occur~ this structure must be converted to a

2d.e.

packed bit string with certain format (see section
BH.4.03). Since one entry may be dumped as part of
more than one preamble the packed switch is used to
signal that (if ON) the packing operation has been done

' and that this string exists elsewhere in the position
segment.

Slot number - The slot number is used to position the
entry within the directory from which it was extracted.
A directory consists of any number of links~ branches
and possibly a common access control list (CACL).
A slot number of zero defines the entry as the CACL
for the directory, -n~ the nth link and +m the mth
branch. The slot number is used in the getentry call
to retrieve any entry from the hierarchy. · It exists
in 2 forms~ character and fixed point binary. The
character representation is the following:

11> sdddddd"

where sis either 11 +11 or 11 - 11 and dis eithe·r a digit
or a blank. If blanks occur they must be to the right
of .all digits. Preceding zeroes are allowed. An·
example might be

>+413bbb

for slot number plus 413 (i.e." a branch). Another
example is >-04bbob for tbe link with slot number minus
4 (the 4th link).

2f. Pointer to packed bit strin~ - Once the entry informa
tion has been converted to 1ts bit string form it is
placed in the allocation area~ the packed switch is set
ON and this pointer set so that the bit string may be
referenced.

····-------------- MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.00 PAGE 14

2g. Pointer to entry structure - Whenever an entry copy
is to be returned by a call to getentry~ space is
allocated for the storage of the structure. This
pointer is then set so that the entry items may be
referenced by the process.

2h. Current entry count - The entry is either of type
branch~ link or CACL. The current entry count is
returned by getentry and specifies the current number
of slots in the directory of the same type as this
entry.

2i. Date/time count last changed- This date/time, returned
by 1etentry 1 specifies when the current entry count
(2h in the directory last changed.

3. Area for allocation- Whenever a new entry structure must be
fetched via qetentry or whenever a structure must be con
verted to bit string form 1 space is allocated within this
area for that purpose.

The following the PL/1 declaration for the position segment:

de 1 1 posseg ct 1 (pspL

2 m fixed bin (17) 1

2 entrydata (maxen) 1

·I* position segment */

I* current scan depth */

3 (sdw1 dsw,esw,usw,ssw1 csw)
bit (1), /*switches*/

3 dtread bit (72)

3 packed S\\1 bit (1) ~

3 slotno fixed bin (17),

3 slot char (8),

3 strptr ptr,

3 i t ems p p t r,

3 date bit (72),

3 count fixed bin (17);

2 var area ((260000));

I* date/time read from hierarchy /*

I* =1 if entry has been packed */

I* slot number (integer) */

I* slot number (character) */

I* pointer to packed string */
..

I* pointer to items structure */

I* type max update date */

/-,": type max *I
I* area for entry allocations*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BHo2.00 PAGE 15

Diagram of the Position Segment

Area

- -- ---- l
Branch I '

posseg~ m RACL or
I (structure)

Link
'

I
PTR to

witches structure
entrydata

I Bit String I I
I
I b
I

etc. PTR to
string

switches structure
(2) etc. string

(3)
structure

strine_

~ I
I_ _l

(m)
structure

string

A preamble record is formed by the concatenation of all entry bit strings pointed

to in

entrydata (1) through entrydc:ta (m).

/,

MULTICS SYSTEM-PROGRAMMERS' MANUAL

'

Figure_!

Decision
Module

' '

Process
Control

' '

Block Diagram of the Dumping Process

SECTION BH.2.00 PAGE 16

Dump
Module

/
/

"' " /

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.2.00 PAGE 17

'

normal
r--·-·-----'----, return

Call dump module
to consider entry
at level n.

..

scan (n, name)

1

Get next entry in
directory ~ and

No more place in position
en tries string at level n.r----~----~-~~eturn

branch "" entiy
name

u

Ca 11 dec is ion
module to consider
entry at level
n.

deeper return ,,
._call scan(n+l,name !!branch)

Figure 2

Hierarchy Scan Module

..

