
Q6
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1.ik PAGE 1

Identification

The Process Data Block

Published: 11/03/67
(Supersedes: BJ. 1 .04, 03/15/67)

J. H. Saltzer, R. L. Rappaport, A. Evans

Purpose

Each process in Multics has its own b16ck of storage,
maintained by the hardcore supervisor, known as the Process
Data Block. The process data block of a process is in
wired-down core whenever the process is in the loaded
state, but it can be paged onto secondary storage if the
process is unloaded. The process data block of a process
is contained in the Process Data Segment (see Section
BJ.1.03). .

Contents of the Process Data Block

Each process data block has an identical structure. The
process data block is only accessed by one process, so
it needs no interlock. The following items are contained
in each process data block. PL/1 declarations are shown
at the end of this section.

1. Process Identification. This item allows the Basic
File System, the Traffic Controller and others to
ascertain the identification of the process with a
single core reference. The format of a process id is
given in BJ.7.03.

2. Stack Pointer Value. This item contains the value
of base register sp the last time this process was in
execution. It is used to reload spin swap_dbr. See
BJ.5.01.

3. Process Se9ment Table Entry Pointer. This is a relative
pointer WhlCh points to this process' entry in the
Process Segment Table. It is returned by actproc when
the process is activated, and it identifies the proce.ss
to the file system. See BG.3.03. (This item is also
kept in the APT- see BJ.1.01.)

4. Current Ring Number. This item is the simulated ring
register. Its value is the ring in which the process
is currently executing. See BG.3.05.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1.04 PAGE 2

5.

6.

7.

Wired Ring Number. This item contains the number of a ring
whose descriptor segment is currently wired down. This
rin~ is either the current ring or a ring in which a fault
or 1nterrupt was encountered which caused the process to
leave the ring temporarily. See BG.3.05.

Wired DBR. This item is the dbr value of the descriptor
segment for the ring specified by item number 5. Its
format is compatible with the 645 opcodes ldbr and
sdbr. See BG.3.05.

Hardcore DBR. This is the dbr value of the hardcore
descriptor segment, The format is as in item 6 above. See
BG .3. 05.

8. Block Lock Count. This item records the number of hardcore
ring "block type" interlocks that this process currently
has set. The maintenance of this count makes it possible
to determine when the process may be "quit" without leaving
critical system data bases locked and when it is entitled
to special priority from the scheduler. See BG.15.02 and
BJ.4.00.

9. Stack Switch Temporary. This item provides a small amount
of wired down temporary storage needed by the Stack
Switching Module. See BK.5.04.

10. Create type. When a new process is bein~ created, special
attention is required the first time it .1s switched to.
The fact of this item's being non-zero indicates such a
need to swap_dbr, and the specific value indicates what
type of processing to use. This item is almost always zero.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1.04 PAGE 3

PL/1 Declarations

All the above items are entries in the process data block.
The item names and their respective PLII declaration are
given below.

I* Declarations for the Process Data Block */

del (

pds~processid bit(36),

pds~last_sp bit(36),

pds~pstep bit(18),

pds~cur_ring fixed,

pds~wired_ring fixed,

pds$wired_dbr bit(36),

I* Process Identification *I
I* save sp while blocked *I
I* entry in Process Segment Table *I
I* current ring number *I
I* ring whose descriptor is

wired down *I
I* descriptor for previous

item ~"I

pds~hardcore_dbr bit(36),1* address of hard core ring
descriptor *I

pds$block_lock_count
fixed,

pdsstemp bit(72),

pds~create_type fixed

) external J

I* count of block locks set *I

I* wired down temp for stack
switcher *I

I* process-being-created switch *I

