
MULTICS SYSTEM-PROGRAMMERS' Mt\NUAL SECTION BJ.9.02 PAGE 1

Published: 11/13/67

Identification

pre_linker_driver
R. L. Rappaport

Purpose

The major task involved in process initialization is the
prelinkin~ of a linker in the new process' address space.
The pre l1nker driver making use of its database, the
pre_linker driving table (see Section BJ.8.03), directs
this pre_linking bY. calling upon appropriate subroutines
to accomplish the 1ndividual tasks.

Introduction

The pre_l i nker _driver is bas lea 11 y a table driven program
which is independent of the particular segments which
are to be pre-linked. The pre_linker driving table lists
the segments to be pre_linked and the pre_linking is accomplished
in the following general way. The linkage sections, among
the se~ments listed in the table, are searched to find
potent1al linkage (fault tag 2) faults. When a fault
is encountered the symbolic segment or call name to which
the fault word points is obtained. A table lookup is
then performed to see if this name is the call name of
one of the segments listed in the pre_linker driving table.
If it is, then the fault word is replaced by a pointer
to the appropriate segment, and the fault will never be
encountered dynamically. If the name is not found in
the table, the fault word is left as is. To sui11Tlarize
the above, all intersegment references between segments
listed in the pre_linker driving table are serviced while
those references to segments not listed are ignored.

Discus§ion

The pre-linker driving table consists of two segments:
<pre_linker_dt> and <pre_linker_nametable>. Pre_linker_dt
is a table which contains a fixed length entry for each
listed segment while pre_linker_nametable contains the
variable length character strings which name the individual
segments. The fixed length entries contain relative pointers
to the appropriate character strings in the nametable.

The pre-1 inker driver makes three passes over its driving
table in accomplishing its task. The first pass is made
to establish (or map) each of the listed segments into
the new address space. That is, pre_linker_driver calls

MULTICS SYSTEM-PROGRAMME~S~ MANUAL SECTION BJ.9.02 PAGE 2

file system primitive estblseg (see BG.8.04) for each
segment listed in the table. The arguments for estblseg
(i.e. the path name of the segment) are obtained from the
nametable and estblse~ returns a pointer to the segment
just established. Th1s pointer is stored in the fixed
length entry of the driving table for later reference.

The second pass over the table is made to in order to
"pre-load" each appropriately flagged linka~e section
among the se~ments 1 is ted. Pre-1 oad ing a llnkage section
means establishing the pointer, in the linkage section,
to the definitions block (see 80.7.01) and storing the
segment number of the text segment in the linkage section.
Not every linkage section in the list will be pre-loaded.
The reason for this is that several of these segments
will be shared linkage segments which were pre-linked
at system initialization time and have since been made
11 read only11 • They are only included in the list because
other segments on the list refer to them and they are
needed to provide information so that others may link
to them. For example, hcs_. link is such a segment. It
is included on the list only because other segments (notably
the segment management module) refer to it. At pre-linking
time, we will not attempt to pre-link hcs • link. However,
we need it in order to pre-link segment management. To
summarize the above, the second pass over the table is ·
made to find all appropriately flagged linkage segments.
These are segments whose entries indicate they are linkage
sections (link_sw is equal to "1"b) and that they are
to be pre-linked (pre_link_sw is equal to "1 11 b). For
each such segment, subroutine pre_linker91oad_link (see
MSPM BL.7.02) is called. This routine is passed pointers
to the linkage segment in question and its associated
text segment. The routine pre-loads 'the linkage segment.

The question may arise as to why all linkage segments
are pre-loaded before any pre-linking takes pla.ce. This
is understood immediately once it is realized that <a>
cannot be linked to until <b.link> is loaded.

The third and final pass over the table is made in order
to actually accomplish the pre-linking. In this pass
we again only look for the flagged linka9e segments.
This time for each such segment, subrout1ne pre_linker9scan_1ink
(see BL.7.02) is called. This routine searches the linkage
section and calls subroutine pre_linker~force_link (see
MSPM BL.7.02) for each fault word found. Force_link handles
the individual faults, servicing them when the reference
is to a listed segment. Upon return from pre_linker9scan_link,
all appropriate faults in a particular linkage segment
have been replaced by ITS pointers.

'""' .

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.9.02 PAGE 3

At this point, all pre-linking has been done. The pre_linker_
driver then merely destroys its now useless driving table
and returns to its caller.

Pre 1i nker driver is called from i ni t_proc (see BJ. 9. 01)
and-the calling sequence is:

call pre_linker_driver;

Figure 1 is a flow diagram for pre_linker_driver.

One point has been neglected until this point. The subroutines
called by pre linker_driver are the same ones used to
accomplish pre-linking at system initialization time.
Since the driving table at system initialization, the
segment loading table (SLT, see BL.2.01), is different
in format from the pre-linker driving table, these conmon
subroutines have been made independent of the table format.·
This has been accomplished by providing table manager
subroutines, for the respective tables, which present
identical interfaces to the shared pre-linker subroutines.
The pre-linker is passed the entry points of the appropriate
table manager, as an argument. In particular, pre_linker$scan_
link is passed the entry point of a procedure that manages
the pre-linker driving table: pre_linker_driver~tabman.
Scan_link makes no use of this argument directly. It .
instead passes this entry point on to subroutine force_link
which goes about making the appropriate ca 11 ~ Pre_l i nker _driver~
tabman is described below.

Pre linker driver~tabman

Entry point tabman in <pre_linker driver> is designed
to interface with subroutine pre Tinker~force link (see
BL.7.02). Given a symbolic call-name of a segment, tabman
compares this call name to the call name of each segment
named in the driving table. If a match is found, a pointer
to the segment and a pointer to the associated linkage

;. segment are returned to the caller. Also, the value of
a status bit is set to 1. If a match is not found, the
status bit is set to 0 and no further action is taken.

The calling sequence is:

call pre_linker_driver~tabman (call_name_ptr, text_ptr, link_ptr,
found_sw);

where:

call name ptr is a pointer to the call name desired.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.9.02 PAGE 4

text_ptr is the return argument into which we store a pointer to

the segment, if found

link_ptr is the return argument into which the pointer to the

linkage segment is stored, if found

found_sw is the status bit.

The PL/1 declarations for these are:

declare (call_name~ptr, text_ptr, link_ptr) pointer,

found_sw fixed binary (1)s

Figure 2 is a flow diagram of pre_linker_driver$tabman.

- ..

/

,-

MULTICS SYSTEM-PROGRAMMERS' MANUAL
call pre_linker_driver;

Establish ptr
to force link

and
pre link dtma - -

SECTION BJ.9.02 PAGE 5

i = 1

i = 1

~,/'"_No
~ . ~ > n ;.--------4111

i = i+l

i = i+l
~~u

i) be

-~,

No Yes

Call scan .. -
link for
·seg(i)

i = 1

Figure 1

~ld
~~(~~) be No ·

link
? ~~----~

Call load I. link for
Yes seg(i)

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.9.02 PAGE 6

pre_linker_driver$tabman (call_name_ptr, text_ptr, link_ptr, found_sw)

look up call
name in

pre_link_dt

>-----"ll found sw = 0

return pointers~· · .
to text and
link segments found sw = 1,_ ____ _.~

\Figure 2

