
l
1
~-·-·-·· -· ···--

MULTICS SYSTEM PR0Grrl001ERS 1 MANUAL

Identification

The traffic Controller Functions
S. H. Webber

Introduction

SECTION BJ. 2

The traffic ~ontroller consists of procedures to recognize and act upon

changes in the multi-programming environment. Some of these changes invoke

certain functions of the traffic controller which are invisible to the

user. Other changes are broU>ght about by explicit calls to the traffic

controller by the us-er. This section describes in detail the workings of

the important functions performed by the· traffic controller.

The Schedule/Reschedule Function

A major role of the traffic c.ontroller i~ to determine which process to run

and how long to run it. It is a basic goal of the current scheduling

design that highly interactive users be given be~ter access to the hardware

available than other users. To this end the traffic controller keeps

track of a per-pro9ess switch, the interaction indicator. This indicator

is turned ON when.a :Process goes blocked yet deserves high priority (e.g.,
(W\{1. .IJ'J .

typewrit-er· I/O)l\turn.ea· OFF the next< time that process is scheduled.

The scheduling algorithm makes use of the eligible and priority queues

described in BJ. L These two queties can be thought of as one large queue

the head of which is the eligible queue. When the· traffic controller looks

for a process to run it first searches the eligible qu~ue and ~hen searches

the .priority queue. If no process if found. in the eligible queue and the

-·
tnllxtmam ailowed number of processes are a·lready eligible then an idle

process is run; otherwise the· first process in the priority queue is awarded

·I
·I
·I

l
j
l

·j
! . ~

MSPM SECTION BJ.2, Page 2

eligibility.

A proces$. remains in the eligiblity queue until it either goes blocked or

its allotted eligible time (temax) is exceeded. The method of determining

the eligible time for a process is described below. When a process's

eligible time does expire, the process loses eligibility and may be rescheduled

(by bei11g r.e-sorted into the priority queue at the appropriate place a.~ ,
\...a{ ()<N,ViJ

described below). The highest priority process in the priority queue ,-?-s then

given eligibility.

The following is a brief sUlllliJ.ary of the scheduling parameters:

I'~-Proeess Variables

1) te is the amount of cpu time the process has run since eligibility

was last awarded.

2) temax defines the maximum value of te (i.e., if te :i!:temax, the process

may ·lose its eligibility)

i~t th.e .. amQU.V.t o.f c.p:Q., time the process has run si;nc~ it. w~

last scheduled.

4) tsmax defines the maximum value of ts (i.e., if ts ~ tsmax, the process

is rescheduled) .

. 5) ti is the amount of cpu time the process has run since its last

interaction.

6) timax defines the maximum value of ti and serves to define the last

scheduling queue which the process may be scheduled. This

I
1

I

MSPM SECTION BJ.2. Page 3

variable is usually set only once from the system wide

default value of timax. However, in special cases, the

per-process timax may be set lower than the system value to

give a process higher priority.

Per System Variables

1)

('

te·first
>-'·
.)

2) te,.,last

3) timax

specifies the mi(l~mum value of the per-process valiable temax.

specifies the maximum value of the per-process variable

temax.

specifies the system default value for the per-process variable

of the same name.

When a process iS first scheduled after going blocked with the interaction

indicator ON the following initial assignments are made to its scheduling

parameters:

te, ts, ti = 0

tsmax, temax = tefirst

One~ a process

the flow chart

begins executing, these variables are changed as
('[-l~VN 1)

belo~\ These updates are made whenever a process

pictured in

gives away

the processor (i.e., page faults, blocks, timer runout, pre-empts, etc.).

Whenever a process has run for more than tsmax seconds' it is rescheduled.

This rescheduling consists in updating ti and resorting the process in the.

priority queue.

A process is sorted in before all processes with a larger ti and after all

processes with an equal ti. A process, however, is never sorted into

- ,. .._ ... l-. ;..,..; i
• ..,.._..;...·.;.•..yO!!!!'-- ;;• -t.o-~v-.=-. .. :.._,~~ • •

t
r-----..-.~·-··---""f'l

\'-.40 .¥""'-<i<J ~J .

------~~--~-·--------.. -·~-·-.. -~·-··--~·----~
-l '5 ~- t s -t-le
ke c.- o

tewv.-;.<-- ~\V\~,e~o.~·) -l:·" '\'"t!> t-t::e~\v~t)

v--.J:A_:_~~~ ... --~ .

.
4: 6.::- i:.
. L. .

•,.· .. ,;·,· .. · ~(,;-b~.:

'*~ ~- 0

· . · . t~w·o-x ·(.~ V'f,, \l'{~~~v~t.)·~·'- ""-let\ rst) • ,f~--"J.-'"~Jilool,:~""'~ -~~~-~ .. , J 41NJ11!'.iiiii!WCA "

.............. ··'""'"""-...... ~-~_ --,. . ' . .

.1 .

' •

l
I
i

.
'

MSPM SECTION BJ.2. Page 4

the eligible queue. The effect of this algorithm is to give the processes

which have ru.n the most (since interacting) the lowest priority.

If a process completes its computation in its first eligible time it will

be awarded relatively high priority. This is because the process will go

bloci<ed waiting for typewriter I/0 which is considered an "interaction"•

This in turn causes the interaction indicator to be turned ON which will

cause the traffic controller to set that process's ti to 0. When the

process is later scheduled (after a wakeup) he will be sorted into the

prio.rity queue with a!.!. of 0 which results in high priority. In fact

only the eligible proc.esses and other processes already in the queue

with a ,t;i, of 0 will have a higher priority.

To illustrate the algorithm consider the following two representations of

the queues seperated by a small amount of time.

Eligible

Queue

Process

(A

~- B

(c -,
D

tir

3.1

2.0-

.4

0

Process ti

B 2.0

c .4

D 0

A 0

..; Priority F 4.0

)
F 4.0

•.

Queue G 4.1 G 4.1

H 4.2 H 4.2

\ I 4.3 I 4.3

MSPM SECTION BJ.2. PAGE 5

Process A had highest priority, finished its computation in its first

eligible time, and then immediately requested the processor again.

Since process A was re-sorted with a ti of O.it was given fairly high

priority. Process A will run again before any of F, G, H, or I, and

hence. will, haye better J;"esponse. Proces.s I in fac-t may not run for

quite a while. When process I does run, however, it will be given a

temax (and tsmax) large enough so that a substantial amount of work

can be done before again loSing eligibility and the processor to the

interactive users.

As· can be determined from the flow chart the following values of tenrax

and tsmax will be used for compute bound processes.

Scheduling temax tsmax

1. tefil::St tefirst

2 min(telast, 2*tefirst) min(titnax, 2*tefirst)

3 min(telast, 4*te£irst) min(timax, 4*tefirst)

4 miil(telast, 8*tefirst) min(timax, 8*tefirst)

..

If tefirst is 1 second, telast is 4 seconds and timax is 8 seconds this

I

1

j .,
I

i
l

·I
'-J
·i
t
;

'·i

~

MSPM SECTION BJ.2 PAGE-6

would give

Scheduling temax tsmax ti

1 1 1- 0

2 2 2 1

3 4 4 3.

4 4 8 7

5 4 8 8

6 4 8 8

Note there are effectively 5 queues with these settings. The queues correspond

to the following values of ti: . 0, 1, 3, 7, 8.

If tefirE?-t,. tela~t.,, and timax had the values of 4,4 and 8 seconds respectively

this would give.

Scheduling temax tsmax ti

1 4 4 0

2 4 8 4

3 4 8 8

4 4 8 8

MSPM SECTION BJ.2. PAGE 7

Note there are effectively 3 queues in this case corresponding to the

following values of ti: . 0, 4, 8.

Under either of these schemes, once aprocess falls to the lowest queue

it will r.emain in the priority queue for 8 seconds without being rescheduled.

It will however use this· 8 seconds up in two 4-second eligibility times.

~~- .~cK.~)-'.-:;·3.· t-:ntHd:~· _~,~.~t.v.t_ ~·(...;.~"·Atc·:.u} ,; ~~c:..-\.f_,~v> (•;(:.J~::,i }~_; ~-,:','·<.! :.{)., i ~ • ..
l:JC ~ • A\. I(' V· <~' "'' • d ~ ~~ \. C:.l.).'~. t• ~..:,·. clct..v·· .•.fl' ,vo.}(:. "''-~· ,..'!··"· l··,j,- ~- .. r. ~.~;;. ~ c .·v ~ ~N-!
'J ~x,.. ~ ~, ~;, ~·-~ , ., "'' ·~ , •• - a... .., II . r.. v' ' . :::-\. -t M ~~.:····;--~~·~

Timer Runo1,1ts and Pre-empts) . .)c·~ <:: ,~;·' ((_:t"· .,:~J,;l' :·c.: -:. e<-") U-·l '-\ ' A-.t i~('J..,.!;,"-1\f.• '- ~WH
w ~t\,, ;,;.()..)~. e X.>?(..l..ti?&' ;;y ... cR '\J.._,.,.,.... l't 'N()J'f_ ~-r t ,~'\f,J~, '·-~

The schedule/reschedule function is invoked by any process which must 't.:t. ,.~, c ~ • .__:< d...;A:;b .~:l
:,,.,-.?\ 0, '>t .. ·~ t.~;.,,_j

give away the processor... This is done by explicit calls into the traffie\'V'~L,-.1\l' lt-.\f.J,;\~

controller. When a process 1 s eligible time is up, however~ the process .,~.·-,:~~-~S~i:.::~\•,J.
must be forced to give up the processor. This is done with a hardware

interrupt which is set to go off while the process which has exceeded its

time allptment is actually executing. The interrupt causes control to be

directed straight to the schedule/reschedule code and then to getwork.. Note

that if_ no hig~er-priority process exists the interrupted process will be

chosen to run again immediately.

In a like manner a pre-empt interrupt is used to award the processor to a

high priority process when its P.age~ _arrives in core. The lower priority

process currently executing receives a pre.,.empt interrupt and control is

channeled exactly as for timer runout interrupts,

The Getwork function

After a process which is giving the processor away has invoked .the

s,chedule/reschedul.e function; the queues are correctly sorted by prior,itiY•

It is the job of the getwork function to run the highest priority process

SE.P!ION BJ •. 2_. PAGE 8

it can. The algorithmis simply to search first the eligible queue

and then the priority queu~.

There are several reasons (not loaded, waiting, not correct processor, etc.)

why a process which has relatively high priority can not be run. If getwork

finds on~ of .these it skips the process and goes to the next· process in
,_: 1 !'!; ._. ,....~~ .~.,'; ._.-: .. :. ·. ·- 1-.· ~- ·-~:-. ·· . .;_, \~ .. t :rt i_t ,~: ·:· :~~- ... v.:··~- ; -~ :; fl ':t;t;_.

the queue. !i!he:Ee-a~thex.....p.r..o~~lie:s . ..whi.c~ need some function performed

by getwork before they can be run, e.g., the process may need to be loaded~

If getwork is successful in satisfying such a process's need the process

will be run, otherwise it is skipped and the next process is looked at.

If getwork can find no proc.ess to run, ei!:her because there are none

wish.ing to run ,or because those which do want' ·to run can 1 t, it runs· an

~process.

The flow chart (Figure 3) describes in more detail which tests getwork

uses in deciding which process to run.

Ur\lLbftD

ltl H

,·
. ... t .~.. . ..

..
-:.

. '
\ " ' ~. . ·. ((; ,.

'... . f"

'- r;' _,.
~t'- ,_
'

'

l2lA t.J .
10~6

MS. PM SECTION BJ .2. Page 10

Note that if getwork fails to award eligibility to a process (becaus.e

the maximum number are already eligible) it has exhausted all chaQ.ces

of finding a process to run and an idle process must be run.; The

attempt to load a process may or may not succeed. If it does not

succeed on one pass it will on some other pass at a later time b-ecause

a notify will occur for each page needed by the process being

loaded. (The attempt to load a process checks to see if all pages needed

are in core and if not it puts the process in the wait state where it will

remain until all notifies occur~)

The Wait and Notify FunctioQ.s

The wait and notify functions are provided for the use of the basic file

.system and other hardcore modules. The wait function:·.is invoked when a

process cannot proceed, mainly for either of two reasons: first, a page

must be brought into core, and second, a hardcore data base. must be unlocked.

The notify function is invoked·when the page arrives or when the data

base is unlocked. When a process is notified of the event it is waiting

for -- it must be eligible -- it is placed in the ready state and a check

is made to see if another process should be pre-empted for its.·processor.

lf .s.o<; the pre-empt is sent and the highest priority process which can run

is given the processor when the .interrupt occurs.

Several processes could be waiting for the same event. When this occurs

the notify places all such processes in the ready state and the highest

priority proces-s in the eligible que1,1e is run.

-··...-- ---~· ··-......., ., ·..-··~ ..-~-~~----- ... ----·-:-·-.··

SECTION BJ.2. PAGE Jl

The Block and Wakeup Functions

During the 'life 1 of a Multics 'process, the need may arise

for this process· to have some information furnished by some other process.;

we say that this process is engaged in "interprocess communication".

Interprocess communication implies a synchronization of processes; a

·process might have to 'pause' (idle) for the other process to communicate

the information. By convention, for reasons of efficiency, such a process

gives its processor away, or blocks itself, until the awaited information

has been communicated, or until that specific "event" has occurred. It

is then taken out of the blocked state and put into the ready state, i.e.

"awakened'! The Traffic Controller functions block and wakeup provide

these basic func.t.ions •

3

An event is anything that is observed by a process and which might be o.f

;
interest to another process (>r maybe another procedure of the same process).

An event is always associated with some information to be communicated to

-
the interested (receiving) process. Examples of events are: the

ter,mitna-ting ·of a computation, l:jhe unlocking of a user-shared data-base or the

arrival of new input from an I/0 device. These events happen outside of
('

the hardcore ring and are know as "user-events 11•

Process A reaches a point in. its execution where it cannot proceed until event

E has occurred (or in other words, until some information is furnished by

some other process.) It therefore invokes function block and abandons the

\.,,,
·--~~·-·--·- - ----.... -~- ... ---.-· -·---.:--- ----............ ~- ·····---------~------------,..-~---·· . -------·- .,.._ "'-''' --- .. .,. .. -......-----~----

MSPM SECTION BJ.2. PAGE 12

the processor • Process A is now in the blocked state~i-ch--mean&.o-th.a.t

will remain in that state until awakened by some other process. Process B now e'lfecutE

and observes an event. This could be event E for which process A is

waiting, it could also be any other event Q in which process A mig!'tt

be interested some time in the future;· the point is, even though process

B knows that the observed event is of interest to process A, it has no way of

determining what process A's current state is, whether it is waiting for

some event or whether it is executing. Consequently, the notification

mechanism must be such as to allow the preservation of all cotl11tll.lnicated

information even though it might not be of immediate interest to the

receiving process.

Process B invokes the wakeup function specifying that process A should be

awakened because event E has. occurred·. After A wakes up it returns from

the traffic controller and finds the information cotmnUnicated by process

B (namely eve1i.t 'E'). If that· information is the one it has waited for,

it continues its interrupted_execution, otherwise it stores that information

somewhere in its memory-space, .and ~_invokes block again.

Both block and wakeup manipulate the Active Process Table (APT); .normally,

block puts the APT entry· of its own process into the blocked state and. removes

the entry from the queues, wakeup finds the APT entry of the target process and
~ .•. •· --:- • ""7 :: ·-~ -:-_·-:-• • :_ -. - ·;::..- ::·_:: .·. ---· ·::: . .:. -- -:.:;:. ... : =· .. .:. : :::.:·-·::__:.:·:.-.:.~ _:_.-:... .:~·: • ..;;-_-__ ·-.: ':::;..:. -- .-· ---·--·--·- ... -

restores it into the priority queue. However, .it is not guaranteed that

a call to wakeup in behalf of

MSPM ·sECTION BJ.2.

some process will actua:lly find that process in the blocked state;

also, it is not guaranteed that if a process calls block because it

is waiting for some ev.ent to happen that this event will happen

in the future, it might already have happened in the past. Evidently, some

further interaction is needed between functiotublock and wakeup to insure

that event signals do not get lost, and that a process will not mistakenly

block itself, never again to be awakened.

This interaction is provided by the pt:"ocess ~· 'wakeup-waiting' flag in

f
the process~ APT entry. A call.to wakeup always sets this flag ON.

Then;. if the process is blocked, it will be· put into the priority queue,

else it is left in whatever state it is in. A call to block w{ll actually

cause the process to abandon its processor only if its wakeup-waiting

flag is OFF; the flag's ON state indicates that an event signal (which

might be the one awaited) has already occurred, and consequently block

returns to its caller. Upon returning, subrouting block always resets

its wakeup-waiting flag to OFF.

Associated with block and wakeup is a system-wide data-base known

r
as the Interprocess Transmission Table (ITT). This table contains as

many event queues as there are receiving processes in the system. Every

receiving process has in its APT entry the head of- its ITT event queue.

· Invoking block,: before returning., detache.s · the ITT queue f;rom the process'~

MSPM SECTION BJ.2. PAGE 14

APT entry .(providing the process with a fresh, zero-length queue) and

returns the detached queue to its caller, which then copies the queue's

c . .onten,ts into its own memory space and frees· the ITT space for future

use.

The Start and Stop Functions

The purpose of the stop functio~ is to bring a process to an orderly

stop and leave it in a consistent state. Once in the stopped state

the process can be destroyed, started, or saved for later restarting.

Since much time may pass between the time a process was stopped and

the time it is restarted a stopped process must leave all supervisor

data bases in a well-defined, consistent state. This means that a process

can not be stopped while in the hardcore ring. To guarantee this a

special hardware interrupt is used to force a process to invoke the traffic

controller code to stop itself. This interrupt is masked (prevented from

going off) in the hardcore ring and hen.ce any process receiving the

interrupt is in a satisfactory state to be stopped. Note if a process

is blocked it is necessary to awaken it so that it will return to the

procedure calling block. __ Block consequently can not be callesl in the

hardeore ring.

J

The start function is used to restart a stopped process. It is invoked

by an explicit call to the traffic controller with the name (processid)

of the process to be started passeclr as an argument.

MSPM SECTION Page 15

Process Creation and Destruction

Process creation consists of two steps; First creating those per-process

segments needed by the process in order to handle segment, page, and linkage

·i);.~
faults, and second, to ·enter to process into the traffic control data bases •

• t..,f_
The per-process segments consist ~ a hardcore descriptor segment for the

process as well as the following segments, place in the "process directory"

for the process:

1) pdf

2) pds

3) kst

a segment used to store pageable information about the process

and also used as the ring 0 stack for the process. This

stack is used in handling segment and linkage faults.

a wired down segment (wired when the process is loaded)

containing information about the process which is needed at

page fault time. In addition the pds contains the stack

used by the traffic controller when executing in this process.

(known segment table) this segment contains information about

segments needed to handle linkageand segment faults.

It contains entries (indexed by segment number) which have

information about segment names and access.

To enter the process in the traffic control data bases a processid must
.

be created and an APT entry must be allotted. The APT entry is then

initialized for the process and the exep1.1tion state set to "blocked".
(

After the entire environment is created for the process it is sent a wakeup

which causes it to be placed in the ready state in the priority queue.

When the process is subsequently run it finishes initializing itself

having the capability to create a user ring (containing stack, combined linkage

segment and descriptor segment).

MSPM SECTION Page 16

Note that when a process is loaded under normal running the hardcore

descriptor segment, user ring de~criptor segment and pds must all be

wired down. The proces~ can then take page faults to bring in any segments

needed to handle segment and linkage faults.

