
MULTICS SYSTEM-PROGRAMMERS~ MANUAL

vJakeup
R. L. Rappaport

Purpose

SECTION BJ.3.02 PAGE 1

Published: 11/30/66

This procedure provides the mechanism whereby processes
may signal one another.

P rG..f..?c§.

The description of ~-R that fo'llovJs is divided into
tvJo sect ions. The first sect ion presents the bas :i.e out 1 i ne
of the subroutine. This would be an adequate description
if it could be assumed that execution of the subroutine
will take place while:

1) The processor is completely masked against
interrupts.

2) A global interlock is on VJrdch denies access to the
Pr6cess Exchange to all processes except the one in
which this subroutine is currently executing.

The second section is a co:-1lplcte spec5.fication that describes
the steps that must be taken to allm'\1 mot~e than one processo1·
to be concurrently executing in the Process Exchange.

B2~~jc putJjn~

In Multics, a process wishing to iignal another process,
calls subroutine ~9k(~!JP~ in. the Process E>(change, on behalf
of the other process. (In this document the process calling
v~<:lL~D ... tdQ vJi 11 be referred to as the ~-~lJ..Ler:. and the process.
being s i gr1a 1 ed vJi 11 be referr-ed to as the tzu::.fK":....t.) The
action taken by the target process, in response to the
signal, does not concern us here. We are only concerned
with how the signal is passed along.

The strategy taken by vJ.:::lkC:J.JQ in attempting to signal the
target process depends on the current execution state
of the target process. In order for· a process to be 11 avJare"
of anything, it must be executing. Hence, vmJ)etdQ must
do two things to insure that the target process is made
-1\,,-.l r·E~ o .r. t'nr-. ,.. 'tor·-, 1 • c.~ ~ <..... ·.... I, .:,) .. .:;) I c~ •

--~-~~----

1. It must leave ev:ldence of the signal to the:: target
process.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.02 PAGE 2

.2. It must make sure that the target process is either
scheduled to run in the future, or running now, so
that it can. inform itself of the signal.

The above steps are accomplished in the following way.
If the target process is currently in the blocked state,
wakeuP.. calls subroutine ready--him (see section BJ.5.02)
in the Process Exchange, in order to schedule the blocked
target process. This one step accomplishes both of the
above tasks. The scheduling clearly accomplishes task
2. The first task is accomplished by implication in that
the scheduling of the target insures its future return
to the running state, and upon elevation to the running
state, the process will retu~n to the procedure which
called blQ£1:5. (see Section BJ.3.01). This return from
block implies that a signal has been received. If, however,
the target process is not currently blocked, no scheduling
must take place but in this case explicit signaling must
take place. This is done by setting on the target process'
wakeup-vvaiting svJitch. This svJitch is one of the data
items in the target process' entry in the Active Process
Table (see Section 8~.2.01).

The ca 11 i ng sequence fot~ vvakeup ·is:

call wakeup (A, error-return):

where A is the process J.D. of the target process and
error-return is an alternate return to vJhich control should
be passed in case A is not active. An inactive process
has no Active Process Table entry and ~:Ls:Jl~QJ:LQ is incapable
of doing anything (see Section BJ.1 .00) for such a process.
The stack used on this call is the processor stack.

To recap briefly, ~&.~eup simply ascertains the execut5.on
state of the target. If this state is "blocked", ,ready··him
is called on behalf of the target. If this state is not
blocked then the wakeup-waiting switch for the target
is set on. Figure 1 illustrates this basic outline of
yva kCUJ2.

With several processes possibly executing in the Process
Exchange simultaneously, steps must be taken to coordinate
their actions. In particular, tv:o general steps have
been taken. First, certain interlocks and switches have
been established in the Active Process Table entry of
each process. By observing common rules about the interlocks,

HULTICS SYSTErv1-PROGRM·1MERS .. M.4NUAL SECTION BJ.3.02 PAGE 3

the various m?d~les.are able to guarantee the integrity
of the data w1tn wh1ch they deal. Second~ the processor
may~ at times, have to be masked against all interrupts
or inhibited, while it is altering these interlocks or ,
switches. (For a complete discussion of coordination
in the Process Exchange see Sect ion BJ. 6.). VJakeq.Q makes
several contributions to the coqrdination effort.

I

To understand the first extra step taken by \ll!akeld.Q one
must first understand the purpose of subroutine wakeuo
and v,;hat receipt of a vJakeup signal meons. To doth-Is,
it must be understood that no information is passed along
to the target as to the nature of the reason for the signal,
as a result of the call to ~akeu~. Any explicit data
communication is accomplished, by the caller, prior to
the call to wal~euu, for example by storing information
in a common data base. The wakeup signal is only an indication
that something of interest has occurred. Hence a process
wishing to VJc;keuQ another process can save i tse 1 f the
trouble if a third process is already in the midst of
waking up the desired target, since the second wakeup,
itself, will give the target no new information. We call
such a ca 11 to ~'Ja~e!JJ2 a redundCi[l_t ca 11 . A ca 11 to Y:L0kCLill
for target process A is redundant if someone is in the
midst of waking A, or if process A is not running and
if the time at which A ceased running the last time is
prior to the last call to '.r-'ak~&Q. on A"'s behalf. That
is if A is not running between times T1 and Tz, all but
the first call to wakeuo for A after r 1 but before Tz
would be redundant. It should be noted that redundant
calls to vvakeu;2 are not disastrous, only wasteful. Therefore,
if a call is possibly non-redundant, it must be allowed
to go through. It must also be noted that redundant calls
to r..Q?_QY.:..him must not be allovved as this vJould put the
process on the ready-list twice.

To summarize the above, it is desirable to prevent redundant
wakeups and absolutely essential to prevent redundant
calls to ready-him. This is accomplished by the use of
an interlock knovm as the vvakeup lock. This per-process
data item exists in the Active Process Table entry of
each process. Wakeuq makes use of it in the following
~.;-vay. Upon entry vJak?..lill. attempts to set the \'Jakeup lock
of the target process. If the lo.ck is already set, \'Jak:e.ug
merely returns to its caller knowing that some other process
will succeed in waking the target.

If the \'Jf-'lk~up lock is not already set, wakeup sets it.
Immecl ia te 1 y be fore returning tJakellf-2 resets the 1 ock.
The t-Jakeup lock succeeds in preventing redundant calls

/
,-.

MULTICS SYSTEM-PROGRAMMER' MANUAL . SECTION BJ.3.02 PAGE L~

to IT£.QY_::.b)IT) since it allol.rJS only one process to be instan
taneously waking up a particular target. After the first
ca 11 to VJi:~keLlQ is con1plete, the target is guaranteed not
to be blocked and hence subsequent ca 11 s to le.ia.l5£~UJ2 11v:l.ll
not be translated into calls to re9s~~GjjQ.

Besides the \·Jakeup 1 ock of the target process, t@keuQ.
rna kes use of one otl1er inter 1 ock and one svJ :t tch in the·
coordination effort. These are the process-state lock
and the intermediate-state switch of the target process.

The process-state lock controls access to a group of data
items in the respective process' Active Process Table
entry, which define the process' execution state. The
effect of this lock is to guarantee that the state of
a process, as defined by these data items, can only be
referenced or a 1 tercel by one process at a time. In YJ.?l<eUQ
thjs means that the target process' process-state loci<
must be locked before determining whether or not the process
is blocked. It also means that the process-state lock
must be u n 1 ocked before the ca 11 to re_?.drJJ..iru :i. s made,
if this call is necessary, since .r::.§:JJCb'..:hinJ vJi 11 attempt
to lock the target process' process-state lock also.

The intermediate-state s~,Jitch of a process, if or}, indicates
that the process should not be considered as a candidate
for runn :i.ng at ti1 is time, even though the process may
be on the rec:;dy 1 ist. This sv,J:i. tch is used in ~~:IIl.kP._LlJ} in
the following vJay. As mentioned c.tbove., it is absolutely
necessary to insure that all possibly non-rejundont calls
to rJCl..l.5..QUl2. go through. The strategy for accomplishing
this goal makes use of the intermediate-state switch of
the target if this process is currently blocked. After
it is determined that the target process is blocked? its
state is unlocked and its intermediate-state switch is
set pn_. The w::1keup lock must remc-dn locked to prevent
redundant calls to ready-him on behalf of the target~
and the intermediate-state switch being on prevents the
target from running, until the wakeup lock can be unlocked.
If the target process were to start running before its
\vakeup lock vJas unlocked~ it could generate a need for
a wakeup that could be blocked by the wakeup ·lock. Upon
return from I-?l..J.QY:.l:Li!TI the vJakeup lock is unlocked and
the intermediate-state svJ:ttch set otf.

In addition to the above use of interlocks and switches,
l:!:2.1sCLJJ~ a 1 so makes use of processot masking in· its attempt
to coordinatE.: vvith other Process Exchange modules. If
the target process is not blocked then the sequence of
instructions that unlocks the tarqet"s v,rakeup and state

r·

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.3.02 PAGE 5

locks must be executed while the processor is masked against
all interrupts. Otherwise~ if, in between the time the
wakeup lock of the target was reset and the state lock
VJas reset, an interrupt occurred on this same .processor
which necessitated a ca 11 to vvg_f~euQ for this same target
then the processor would be caught in an infinite loop
waiting for the target's state to unlock. (This example
points out the most important benefit derived from the
wakeup lock. It allovJs subroutine vJakeup to be executed
VJhile the processor is relatively unmasked (i.e.~ vJakeup
executes with the mask with which it was called) and yet
this lock still prevents redundant calls to re0dy-him
the same target.) Figure 2 is a complete flow diagram
of wakeup.

It might be argued that reversing the tvJo steps described
in the immediately preceeding paragraph would make un
necessary the masking of the processor. HovJever ~ this
VJi 11 not vvork for the same reason that the intet~mediate
state switch was a necessity above. If, in between the
time the process-state lock and the wakeup lock were reset,
an interrupt occurred on the processor executing wakQ.!:J.Q,
enough time would be spent in servicing the interrupt
so that the target may have generated the need fot~ a vJakeup
vvhlch vJOuld have been stopped by the wakeup lock. (See
Section BJ.6 for a complete justification of the above
arguments.)

r·

fJlUL TICS SYSTEfVl-PROGR/l.l'-'1fvlERS ~ t·t~\NUAL. SECTim~ BJ.3.02

In process B, call wakeup (A);

/ No
~ Is. .. go to

/ A act~~.:.//--1;:'>- error-return

Yes

L:--- al~---

dy-him
(A)

-l-s-~~ A's J Wakeup-
---It;!>-- Wait i.ng

Switch on

No

return <d------------~

Figure 1. Basic Outline of Wakeup

Pt\GE 6

·I

I
I

I
I

I
I
!

j (-) ' .
jl,.-.. _ .
),; .

I

/ ('"'
~r~ J
1 <,'

=·

;·

'I

MULTICS SYSTEM-PROGRAMMERS' MANUAL

No c:::;;--~ · Go to
·-----:> error-return -----

Yes

-->(retur~

SECTION BJ.3.02

In process B, call '\o.·a~:eup

(A1 error-return); ·

, -5--}- ~I · Ualock J No et A's Save G.L."'li':nQ 1 .,,

. akeup Jr.-.:1sl:, mask~_ ... , A s \-: ... «.e-
--•. ~·:<>tting ~11 inter-~ .. up lock

sw1tch runts . ---· ---
Yes
1

Unlock]
I.'s .
state ·

[_·
A's J ready
ch

T
-L-1

all read]'·
1im (A);

'~---~ I

nlock A 1 k' ~
-·, Reset As

1---{.>not··ready
ak~up &'ditch
ock .----

1lD·~ s
tate
~ I

Resto:Jre
Previous
r.1ask

