/\

MULTICS SYSTEM~PROGRAMMERS* MANUAL SECTION BJ.3.02 PAGE 1
Published: 11/30/66

Introduction

Wakeup
R. L. Rappaport

Purpose

This procedure provides the mechanism whereby processes
may signal one another.

Preface

The description of wakeup that follows is divided into

two sections. The first section presents the basic outline
of the subroutine. This would be an adequate description
if it could be assumed that execution of the subroutine
will take place while:

1) The processor is completely masked against
interrupts.

2) A global interlock is on which denies access to the
Process Exchange to all processes except the one in
which this subroutine is currently executing.

The second section is a complete specitication that describes
the steps that must be taken to allow more than one processor
to be concurrently executing in the Process Exchange.

Basic Qutline

In Multics, a process wishing to signal another process,
calls subroutine wakeup, in the Process Exchange, on behalf
of the other process. (In this documant the process calling
wakeup will be referred to as the caller and the process
being signaled will be referred to as the target.) The
action taken by the target process, in response to the
signal, does not concern us here. We are only concerned
with how the signal is passed along.

The strategy taken by wakeup in attempting to signal the
target process depends on the current execution state

of the target process. In order for-a process to be "aware'
of anything, it must be execcuting. Hence, wakeup must

do two things to insure that the target process is made
aware of the signal:

1. It nust leave evidence of the signal to the target
process.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.3.02 PAGE 2

2. It must make sure that the target process is either
scheduled to run in the future, or running now, so
that it can inform itself of the signal.

The above steps are accomplished in the following way.

If the target process is currently in the blocked state,
wakeup calls subroutine ready-him (see section BJ.5.02)

in the Process Exchange, in order to schedule the blocked
target process. This one step accomplishes both of the
above tasks. The scheduling clearly accomplishes task

2. The first task is accomplished by implication in that
the scheduling of the target insures its future return

to the running state, and upon elevation to the running
state, the process will return to the procedure which
called block (see Section BJ.3.01). This return from
block implies that a signal has been received. If, however,
the target process is not currently blocked, no scheduling
must take place but in this case explicit signaling must
take place. This is done by setting on the target process”
wakeup~waiting switch. This switch is one of the data
items in the target process” entry in the Active Process
Table (see Section BJ.2.01).

The calling seqguence for wakeup is:
call wakeup (A, error-return):

where A is the process 1.D. of the target process and
error-return i1s an alternate return to which control should
be passed in case A is not active. An inactive process

has no Active Process Table entry and vakeup is incapable
of doing anything (see Section BJ.1.00) for such a process.
The stack used on this call is the processor stack.

To recap briefly, wakeup simply ascertains the execution
state of the target. If this state is "blocked", ready-him
is called on behalf of the target. If this state is not
blocked then the wakeup-waiting switch for the target

is set on. Figure 1 illustrates this basic outline of
wakaup '

e il b

Complete Specification of Wakeup

With several processes possibly executing in the Process
Exchange simultaneously, steps must be taken to coordinate
their actions. In particular, two general steps have

been taken. First, certain interlocks and switches have
been established in the Active Process Table entiry of

ecach process. By observing common rules about the interlocks,

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BJ.3.02 PAGE 3

the various modules are able to guarantee the integrity
of the data with which they deal. Second, the processor
may, at times, have to be masked against all interrupts,
or inhibited, while it is altering these interlocks or
switches. (For a complete discussion of coordination

in the Process Exchange see Section BJ.6.). Wakeup makes

LNl

several contributions to the coordination effort.

To understand the first extra step taken by wakeup one

must first understand the purpose of subroutine wakeun

and what receipt of a wakeup signal means. To do this,

it must be understood that no information is passed along
to the target as to the nature of the reason for the signal,
as a result of the call to wakeup. Any explicit data
comnunication is accomplished, by the caller, prior to

the call to wakeup, for example by storing information

in a common data base. The wakeup signal is only an indication
that something of interest has occurred. Hence a process
wishing to wakeup another process can save itself the
trouble if a third process is already in the midst of
waking up the desired target, since the second wakeup,
itself, will give the target no new information. We call
such & call to wakeup a redundant call. A call to wakeup
for target process A is redundant if scmeone is in the
midst of waking A, or if process A is not running and

if the time at which A ceased running the last time is
prior to the last call to wakeun on A”s behalf. That

is if A is not running between times Tq and To, all but

the first call to wakeup for A after T4 but before Ty
would be redundant. It should be noted that redundant
calls to wakeup are not disastrous, only wasteful. Therefore,
if a call is possibly non-redundant, it must be allowed

to go through. It must also be noted that redundant calls
to readv-him must not be allowed as this would put the
process on the ready-list twice.

To summarize the above, it is desirable to prevent redundant
wakeups and absolutely essential to prevent redundant

calls to ready-~him. This is accomplished by the use of

an interlock known as the wakeup lock, This per-process
data item exists in the Active Process Table entry of

each process. Yakeup makes use of it in the Tollowing

way. Upon entry wakeup attempts to set the wakeup lock

of the target process. If the lock is already set, wakeup
merely returns to its caller kinowing that some other process
will succeed in waking the target.

IT the wakeup lock is not already set, wakeup sets 1it.
Immediately before returning wakeup resets the lock.
The wakeup lock succeeds in preventing redundant calls

MULTICS SYSTEM-PROGRAMMER © MANUAL . SECTION BJ.3.02 PAGE L

to ready-him since it allows only one process to be instan-
taneously waking up a particular target. After the first
call to wakeup 1s complete, the target is guaranteed not

to be blocked and hence subsequent calls to wakeup will

not be translated into calls to ready-hin.

Besides the wakeup lock of the target process, wakeup
makes use of one other interlock and one switch in the
coordination effort. These are the process-state lock
and the intermediate-state switch of the target process.

The process-state lock controls access to a group of data
items in the respective process” Active Process Table
entry, which define the process’ execution state. The
effect of this lock is to guarantee that the state of
a process, as defined by these data items, can only be
referenced or altered by one process at a time. In wakeup
this means that the target process” process-state lock

ust be locked before determining whether or not the process
is blocked. It also means that the process-state lock

if this call is necessary, since ready-him will attempt

to lock the target process” process-state lock also.

The intermediate~state switch of a process, if on, indicates
that the process should not be considered as a candidate
for running at this time, even though the process may

be on the ready list. This switch is used in wakeup in

the following way. As mentioned above, it is absolutely
necessary to insure that all possibly non-redundant calls
to wakeup go through. The strategy Tor accomplishing

this goal makes use of the intermediate-state switch of
the target if this process is currently blocked. After

it is determined that the target process is blocked, its
state is unlocked and its intermediate-~state switch is

set on. The wakeup lock must remain locked to prevent
redundant calls to ready-him on behalf of the target,

and the intermediate-state switch being on prevents the
target from running, until the wakeup lock can be unlocked.
If the target process were to start running before its
wakeup lock was unlocked, it could generate a need for

a wakeup that could be blocked by the wakeup ‘lock. Upon
return frem ready~him the wakeup lock is unlocked and

the intermediate-state switch set off.

In addition to the above use of interlocks and switches,
wakeun also makes use of processor masking in- its attempt
to coordinate with other Process Exchange modules. If
the target process is not blocked then the sequence of
instructions that unlocks the target’s wakeup and state

MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BJ.3.02 PAGE 5

locks must be executed while the processor is masked against
all interrupts. Otherwise, if, in between the time the
wakeup lock of the target was reset and the state lock
was reset, an interrupt occurred on this same .processor
which necessitated a call to wakeup for this same target
then the processor would be caught in an infinite loop
waiting for the target’s state to unlock. (This example
points out the most important benefit derived from the
wakeup lock. It allows subroutine wakeup to be executed
while the processor is relatively unmasked (i.e., wakeup
executes with the mask with which it was called) and yet
this lock still prevents redundant calls to ready-him
the same target.) Figure 2 is a complete flow diagram
of wakeup.

It might be argued that reversing the two steps described
in the immnediately preceeding paragraph would make un-
necessary the masking of the processor. However, this

will not work for the same reason that the intermediate-
state switch was a necessity above. If, in between the
time the process-state Tock and the wakeup lock were reset,
an interrupt occurred on the processor executing wakeup,
enough time would be spent in servicing the interrupt

so that the target may have generated the neced for a wakeup
which would have been stopped by the wakeup lock. (See
Section BJ.6 for a complete justification of the above
arguments.)

MULTICS SYSTEM=-PROGRAMMERS “ MANUAL

In process B, call wakeup (A);

/////;s No .
>, o < go to
A active - D-\error-return :)

SECTION BJ.3.02

Set A's

%akeup~

— o Waiting
w{,w_ Switch on

blocked

Call V
Ready-him
(8)

<j' return ><ﬁ

Figure 1. Basic Outline of Wakeup

P/

\
A

GE

6

e et i i b o 3 ki 2 o e i B

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.3.02 PAGE 7

No SR

S S, Go to)
Lrror-return . In process B, call wekeup
) (A, erxor-return); :

Yes R
"""‘*3\ return ‘)
Y

Set A's
wakeaup
lock on

v

Lock A's

state’

~ Unloek
Set A's ‘Save amznd nLoex
fwakeup romask, mask! ____ .| A's wake-
“lwalting all inter—l | up lock
swiltcer runts !

\Y
Unlock
A's
state
¥

Restore

£ ready Previous
not rea v
witch mask

!

NI, SRS

Call readyy
1im (A); -j

-

SN ¢ SSS—
Unlock A's Resat A's ‘
nlock A ¢ SUROVS 1’10(1"1'6’.8('.y - = retuirn
b ~ ! . .. e
Lock ™ sitch |

Figure 2, Complete Flow Diagram fox Wexe

