
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.6.00 PAGE 1

Published: 10/01/68

Icientlfica~ion

Multi-programming Control
Robert L. Rappaport, Michael J. Spier

Puroose

In order to achieve optimum system performance, a mechanism
is needed to coordinate the (othenwise independent) core-control
and processor-multiplexing mechanisms. This coordination
is done by the Traffic Controller in conjunction with
the Traffic Controller System Process (TCSP). Thi~ section
is an overview of System Resource Management and provides
a complete discussion of the issues involved. The Traffic
Controller System Process is described in section BJ.6.01.

Introdys;tion

The Traffic Controller's function is to multiplex the
system's processor resources among all competing processes.
To briefly summarize, multiplexing is achieved by giving
a processor to a process with the understanding that the
process is to willingly abandon the processor as soon
as it does not have immediate use for it (walt, block,
or stop) and with the further understanding that if it
does not willingly abandon the processor within certain
time limits then the processor wi 11 be forcibly taken
away from it (timer runout).

Core Control does the memory-resource management. Whenever
a process is reaching out for. a page that is not In core,·
Core Control brings that page ln. If necessary, it first
throws some other page out of core in order to provide
the necessary space •. "Page turning" is relatively expensi~e
in processor time as it involves computations as well
a·s 1/0.

A process is expected to be thrifty with processor time.
Whenever it has no immediate use for a processor, rather
than loop until some condition be satisfied, It calls
wait or block to give its processor a..,ay.

By giving the processor away, the process saves the amount
of time that would otherwise have been wasted looping.
However, by the time that that process is made to run
once more, it may find that one or mor~ of its pages have
been thrown out of core, and that the expense of recovering
those pages might be completely out of proportion with
tbe original saving. In other words, we find ourselves

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.6.00 PAGE 2

in a situation where we pay dollars for the satisfaction
of saving pennies. The problem arises from the fact that
a process is given not only a processor, but the totality
of system resources (processor, core, secondary storage,
I/0 devices) to dispose of. By polarizing oneself on
efficiently managing one of these resources, one may eas~ly
over-burden and wastefully mismanage the others. ·

The system must be managed economically, similar to any
commercial business enterprise. The cost of saving must
be known, and only when the expense of saving some resource
is known to be fractional in comparison with the expected
return should such saving be implemented.

Discussion

A process may be in one of the following five execution
statesa Running, Ready, Waiting, Blocked and Stopped.
Also, a process may be in one of the following three loading
statesa ·unloaded, Being loaded/unloaded, Loaded. These
two state variables are associated with processor and
core resources respectively and are independent of one
another except for the prerequilsi te that a running process
must be loadedJ otherwise, any :combination of the two
states is possible. When a proCess is made to run for
the very first time, it must spend a considerable amount
of processor-time in establishing its working memory space(
(making segments known and bringing pages into core memory).
A process needs a certain minimum amount of free core
in which to put its pages so that it could execute for
a certain amount of time without incurring any page faults.
Unless that much free core is provided, the process will·
spend the larger part of its life thrashing around handling
page faults. Consequently, only a very limited number
of processes can be allowed to execute concurrently if
this condition is to be maintained. Moreover, if one
of those concurrently executing processes reaches a point
in which it knows that it will hot be able to go on executing
until some event happens in the ~ .oar. future, it· seems
unadvisable to let it give the processor away to some
other process, because we then risk the loss of all the
time invt:!sted in establishing the current working memory
space. So, it seems more econ~ically sound to let a
few milliseconds of processor time to go to waste'rather
than risk the loss of those invested seconds.

In view of all this, if one wants to maintain an overall
system efficiency one has to be able to exercise control
over processes in a way such as to maintain a reasonable
relationship between the actual work performed by the
process and the overhead in managing its memory space.

I

...
..

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.6.00 PAGE 3

Control is exercised by allowing only a limited number
·of processes to actually participate in the race for a
proces.sor at any given time. Such processes are said
to be "eligible for multiprogramming". An eligible process
is a process in which an investment has been made and
which is therefore guaranteed to execute long. enough in
order to make that investment profitable. Similar to
the above-made definition of processor multiplexing, a
process is made eligible with the understanding that it
will wi 11 ingly abandon this state whenever it reaches
a point where it must give its processor away for an undetermined
length of time (block or stop) and with further understanding
that if it does not willingly abandon its state within
certain time. limits then the state will be forcibly taken
away from lt.

A process is said to be loaded when it has enough information
in core to enable it to take segment and/or page faults;
this includes a wired-down ring-0 descriptor segment,
a wired-down PDS and the activation of its PDF and KST
segments. A loaded process is using up wired-down core,
so the number of loaded processes must also be restricted.

Two system variables, tc_data$max_loaded and tc_data$max_eligible
delimit the number of loaded and eligible processes, respectively.
These .. variables can be changed by the system administrator
to allow him to cont ro 1 and "f i netune" system performance.
These variables are related to one another so that

tc_data$max_loaded ~ tc_data$max_eligible

The relationship between execution-state, loading-state
and eligibility is as follows:

1 •

2.

3.

Only a ready process can be made eligible (however,
once eligible that process can assume the ready :
or wai tilig states without affecting its e llglblli ty).

An eligible process must be loaded (an Ineligible
process which is a candidate for eligibility must
first be loaded before it can assume the eligible
state).

A process which assumes the blocked or stopped stat~ !
(or which has suffered pre-emption) must give up
its eligibility.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.6.00 PAGE 4

4. Only processes which are eligible and ready and loaded
are considered as candidates for running. When a
processor is available and none of the currently ready
processes is eligible and loaded, then the processor
is given to the idle process (see BJ.7). ·

1 mplementation

When a process is put on the ready list a check is made
to see how many eligible processes there are, currently.
If their number is less than the maximum number of eligible
processes then a wakeup is sent to the Traffic Controller
System Process. Also, when a process gives up its eligibility
it sends a wakeup to the Traffic Controller System Process.
The TCSP wakes up and tries to confer eligibility upon
the topmost ready & ineligible process(es) on the ready
list, within the limits of tc_data~max_eligible. Then,
it looks for unloaded eligible processes, and tries to
load those which it finds. In attempting to load, it
checks to see whether the maximum number of loaded processes
has been over-reached, in which case it first unloads
the oldest ineligible loaded process.

The following is a resu~ of the above-mentioned logica

1. A process is made eligible if it is on top of the
ready list by the time that an eligibility-vacancy
occurs. ·

2. A process loses its e ligibi 11 ty when its e 1 igibi 11 ty
time-limit has run out or when it calls block or
stop or when it has suffered pre-emption, thus
causing an eligibility-vacancy. .

3. An eligible process is always automatically loaded
by the Traffic Controller System Process.

4. An eligible process is unloaded only if this is
necessary in order to allow the loading of an
unloaded eligible process.

s. A process is chosen to run only if it is the
topmost

I

ready & eligible' & loaded

process on the ready list.

Certain srstem processes are always eligible, such as

I I

the Traff c Controller srstem Process, or the idle processes.
The maximum number of el glble processes is therefore · ~
adjusted to include all those system prOC:esses. . . · .

