
r"-·

MULTICS SYSTEM-PROGPAMM~RS 1 ~ANUAL

..
I dent if I cat. I on.

Overview of Fault Handling
Chester Jones

Puroose.

SECTION RK.3.01 PAGE 1

PURL I SHED: 9/13/66

Section BK.3.01 contains an overview of fault handling in
Multtcs. Sections BK.3.0l through BK.3.0Y contain the detailed
specifications of the individual modules and data bases.

References.

A summary of the major goals of Multics fault handl tng Is
contained in Section 11 of "Structure of the t·1ultics Monitor for
t he G E 6 4 5 , " by V • A • V y s sot s k y , F • J • Co r ba t 6 , and R • M • G r a ham,
Fall Joint Computer Conference, 1965. Although much of that
paper has been superceded hy sections of this mc:mual, it Is still
useful for back~round information and motiv~tion. It is
important to note that Multics executes as part of the user
rrocess and that each user process is divided into ~ numher of
mutually exclusive subsets, called ·rinvs. User process is
defined in Section RJ.l, Process Control; rin~s are descrthed
in Section Rn.9, Protection of the Suoervisor. It is recom~nded
that both S~ctlon RJ.l and Section BD.9 he read before Section
BK.3. The design of Multics f~ult hnpdl in~ is motivated, in
part, by the desi~n of the GE-645 processor. At present, General
Electric Computer Department publication number M50EB00107,
11 E n g I n e e r i n p, P rod u c t Spec. i f i c a t i on , G E - 6 4 5 P r oc e s so r, 11 s e r v e s a s
the processor reference manual.

Introduction.

A primary design objective of Multics fault handling is to allow
a user process to supply a procedure for handling any fault that
is not reserved for the operating system provided the user
process has administrative authorization for handling that fault.
The Multics operating system contains a standard p~ocedure for
handling each fault. However, for each fault that is not
reserved for the operating· system, there is at least one point In
the fault handl inp; procedure where control may pac.;s to some other
procedure in the process if that process is administratively
entitled to provirle Alternative handling for that fault.

\·J e de f i n e f o u r g e n e r a 1 c l a s s i f i c a t i on s of fa u 1 t s ; p r o p; ram
gene r rt t e rf , one r a t i n p.; s y s t em ~ e n e rat e d , h a r rl wa r e P.: e n e r rt t e d, an rl
manually generated. Each fAult is olaced In the classification
that corresponds to the possible cause of the fault. If a f~ult
could QQ.]_y he caused by a hrtrrlwrtre mAlfunction, it is classifier!
as harrlware ~eneraterl; if it could possibly he caused hy the
execution of a pro~ra~, it is classified as pro~ram {or operatin~

,..,.....___ system) P.:PnPraterl. All hArdware anrl manually P.;ener<=~terl ~nrl
certain oneratin~ system ~eneraterl faults are called syst~m

r--.

' MULT ICS SYSTEM-PROGRAMI•IERS' MANUAL SECTION BK.3.01 PAGE 2

faults. They may occtr• at any time, regardless of which user
process has control of the processor. They may not, in general,
be attributed to the running process. The memory parity fault,
the startup fault, and the illegal descriptor fault are examples
of system faults. Certain of the pro~ram generated and certain
of the operating system generated faults have reserved meanings
to the Multics operating system regardless of when they occur.
Such faults are called resP.rved faults. For example, directed
fault 0 is reservPrl to indicate a missing page or seP,ment; the
connect fault is reserved to !'l"ean "clear your associative
memory." The remnining program p:enerated and operating system
~enerated faults are called~ faults. Since Multics executes
as part of the user process, all user faults may he attrlbuted to
the runnin~ process. OverflovJ, rlerall, and fault tag 2 (1 inkr~ge
fault) are examples of user faults. Complete 1 ists of user
faults, system faults, and reserved faults are contained in
Section BK.3.02.

Multtcs fault handl tng consists of two parts which perform the
following functions:

1. Replaces the handler for any fault condition that is not
reserved for the operating system upon request from a
user process that has administrative authorization for
han(fl ing that fault.

2. Serves as the interface between the hardware and the
procedures for handling a fault condition when thal'-fault
condition occurs.

I
The extent to which a user precess may provide replacement fault
handling procedures is controlled hy the system administrator;
it depends on the possible effect the replace~ent procedures may
have on the overall ooerr~tion of the system. Procedures for
handl inP; reserved faults are huilt into ~.-1ultics and may not be
replacerl while the system is running. Procedures for handl in~
system faults affect the operation of the entire system since
they are shared hy all user processes running under the same
version of Multics. The effect on the overall operation of the
system, that procedures for handling user faults may have,
varies, since some onrts· of the operating system are more
sensitive than others. (See Section R0.9, Protection of the
Supervisor.) For example, procedures for hr~ndl ins; overflow
faults that occur within the user program's domain of access can
affect the operation of only a single user process; procedures
for handling overflow faults that occur in the hard core ring can
affect the operation of the entire system since all of the shared
data bases are "exposed" while control is in the hard core ring.

Figure 1 Is a rough block diagram of the modules and data bases
for handl inp; faults in Multics. The sol i.d 1 ines indicate the
flow of control between modules; the dashed 1 ines indicate the
flow of data between modules and data bases.

\

MULT1CS SYSTFM-PROARAMMERS 1 MANUAL SECTION RK.3.01 PAGE 3

l'·

All of the modules Involved in Multlcs fault hanrll in~ execute as
~- part of the user process ~enever that process requires some

action re~ardln~ fault handling. These modules are the fault
maintenance module, the catastrophe module, the fault
interceptor, and the individual modules for handling the various
faults. Only the fault maintenance module may be called by
procedures not shown in the diagram; the remaining modules are
invoked as a result of a hardware fault condition.

Fault Maintenance Module.

For each protection. ring of each user process, the fault
maintenance module (Section BK.3.05) maintains a list of pointers
to the procedures for handling user faults that occur in that
ring. In addition, the fault maintenance module maintains a
system-wide 1 ist of pointers to the procedures for handling
s~stem faults. When a user process is created (Section BJ.lO),
It Is christened with 1 ists of pointers to the "standard action"
procedures for handling user faults in the respective rings. All
user processes running under the same version of Multics share
the procedures for handling system faults. In orrler to replace
the procedure for handling any fault that is not reserverl for the
operatin~ system, the user proc~ss calls the fault maintenance
module, passing the name of the fault condition anrl a pointer to
the replacement fault handling procedure. The fault maintenance
module determines whether the caller Is administratively entitled
to orovide a replacement procedurP for handl in~ that fault, and,
if so, places the nointer 'to the replac-ement procedure In the
a pp roo r i rt t e 1 i s t •

Fault Interceptor.

The fault interceptor (Section RK.3.03) is a master mode
procedure that can be entered Qllly as a result of a hardware
fault condition. Since the fault interceptor contains the wall
crossing mechanism (Section BD.9), it is accessible in every ring
of each user process in the sense that it can be entered without
first crossing a wall, and it is able to switch rings when
necessary.

When a Multics processor generates a fault, control passes
automatically to the fault interceptor which executes as part of
the process that is running at the time of the fault. While
executing within the ring in which the fault occurs, the fault
interceptor safe-stores the processor state in the Process
Concealed Stack (Section BJ.l.05) that belongs to the running
process and makes space available for safe-storing the processor
state should another fault occur. Then, the actions taken hy the
fault interceptor vary, depending on the probable cause of the
fault. For missing-page faults, the fault interceptor switches
to the hard core rln~ rlescriptor segment and uses the Process
Concealed Stack to call the Basic File System {Section Rr,) to
supply the missing page. For other system faults, the fault
Interceptor switches to the hard core rln~ rlescriotor se?mPnt,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.01 PAGE 4

copies the safe-stored processor state from the Process Concealed
Stack into the hard·core ring stack that belongs to the running
process, and calls the appropriate procedure for handling the
fault. For user faults, the fault interceptor copies the
safe-stored processor state from the Process Concealed Stack into
the stack for the ring in which the fault occurred and uses that
s t a c k t o c a 1 1 t he p roc e d u r e f o r h an d 1 i n g t he fa u 1 t I n t h a t r in g •
I t i s imp o r tan t to note that for use r fa u 1 t s, the fa u 1 t
interceptor does D..Q..t cross a wall, but executes entirely within
the rin~ in which the fault occurs. If, and when, control
returns from the fault handling procer:lure, the fault interceptor
checks the val inity of the processor state, restores the
processor state, and returns control to the point at which the
fault occurred.

Catastronhe Module.

The catastrophe module (Section RK.3.04) performs the initial
handl lng of system faults that Indicate either an appending
hardware malfunction or some possibly fatal error in the
operating system. For example, followinp; an ille~al descriptor
fault, the catastrophe mociule checks the validity of the
descriptor for the fault interceptor before transferring control
to the fault interceptor •

.
The catastrophe module is an absolute mode module that can be
entered .Q.D.]_y as a result of a hardware error condition. -Ground Rules for Fault Handlin~; Procedures.

-The following is a set of ground rules for both user-supplied and
"standard action" fault handling procedures.

1. Each fault handling procedure may modify the safe-stored
control unit Information If some modification is
required. The fault Interceptor does not modify the
control unit inforMation. The fault Interceptor does
check the vallriity of the safe-storerl processor state
after control returns from the fault handl in~ procedure.

. . '

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL Section BK.3.01 5

