TO. MSPM Distribution
FROM . J. H. Saltzer
SURJ; BL,O

DATE . 04/28/67

Multics system initialization has been completely redesigned
since October, 1966, when the previous overview was published,
Enclosed is a new overview, BL.0O, which describes the

new design., The major improvement in the design is that

the file system paging mechanism is initialized very early,

so that it may be used during the remainder of initialization,

MULTICS SYSTEM-PROGRAMMERS ® MANUAL SECTION BL,0 PAGE 1

Published; 0u/28/67
(Supersedes: BL.,0O, 10/31/66)

Identification

Overview of the Multics System Initialization
A, Bensoussan

Purpose

This section provides an overview of the various steps
taken in initializing Multics,

Introduction

The various initialization segments as well as the segments
that will comprise the hardcore supervisor of Multics

are all stored on a single magnetic tape known as the
ultics System Tape (MST).

From the time the bootload butten is pushed to the time
Multics is initialized, 3 different stages are to be
distinguished, corresponding to 3 programs of different
nature: -

1. The bootload program
2. The bootstrap initializer
.3, The Multics initializer

The bootload program is a special program in this sense
that it is located in the GIOC diodes and therefore it

is part of the 645 hardware, Furthermore, it is executed
in absolute mode,

The bootstrap initializer is a higher level program; although
it is entered in absolute mode, its first worry is to

set up a descriptor segment and to institute the appending
mode, However, it is still a "handicapped' program since

it does not tolerate any Tault; as a consequence it cannot
use the standard call-save~-return macros,

As for the Multics initializer, it can be coded like a
normal Multics program, using the call-save~return macros,
the dynamic linkage, the dyramic core allocation following
a missing page fault, and the dynamic descriptor segment
fabrication following the missing segment fault, The

MULTICS SYSTEM-PRCTRAMMERS © MANUAL SECTION BL.O PAGE 2

linkage, missing page and missing segment fault handlers
have been made available by the bootstrap initializer;
they are not, of course, the standard Multics handlers

but they perform the functions expected by the Multics
initializer programmer, It is precisely one of the most
important Multics initializer’s duties to make the fultics
handlers available for the above mentioned faultis,

Having justified the existence of the 3 stages by the
ditferent nature of the programs that comprise them, we
give bzlow a brief descripticn of each stace.

The bootleoad program

The GIOC contains, in fixed storage, 64 words which are
transterred into selected lccations in core memory when
a button (known as the "bootload button'") is pushed,
The €4 words are stored in the GICC in a form of a d
matrix and the base of the locaticns in ccre into wh
thay are transferred is determined by panel switches ©
the system control console, As soon as thes &l words a
reacd into core, an interrupt is sent to the processor
which services interrupts on this GIQC. The interrupt
transfers the processor to the base of the block into
wnich the 84 words have been stored, This processor is
the only processor which will be executing curing most
of the initialization sequence,

jod
ich
n
,

o
<

The diode matrix contains the "bootlcad program'', The
bootload program is expecting a tape to be ready on the
tape handler connected to channel 31, device 0, If for
seme reason, chanmel 31 is not available, any other channel
connected to a tape handler can be usad; in this case,

the channel number has to be made known by the operator

to the bootlcad program through the 26 bit processor switches
as described in BC.4,01, Furthermore, the bootload program
is designed to read a tape written in the Multics standard
format (BB.3.01); briefly, any information recorded on

a Multics tape has in front of it a "label" that ends

with an end of file physical record,

When entered, the bootload program takes the following
actions: '

MULTICS SYSTEM~PROGRAMMERS” MANUAL SECTICN BL.O PAGE

1, It skips the label until the end of fTile
physical record is encountered,

2. 1t reads into core the next physical record,

3, It transfers to the loaded program at a conventional
entry point, passing interface informaticn through
index registers. :

The bootload program is oe51gnbo to read any Multics tape
provided that it satlsf1es the entry point convention;
h1c tape may contain the Multics system or any dump or

diagnostic program For this reason, the bootload program

is not cdocumented in BL sections (initialization) but
rather in BC sections (hardware).

In our case, the tape is the Multics system tape; therefo
the booLload program loads th= portion of the booLstrap
initializer contained in the first physical record follow
the label and transfers to its entry point,

The bootstran initializer

The bootstrap initializer is the interface betwesan the
bootload program and the Multics initializer, As the
reacer will notice, the Multics initializer is a very
large program which has an impressive number of funcLlwhs
to perform, Therefore, '"he" positively refuses to do

any work in the poor environment left behind the bootload
pregram, 2" wants "somebody" to lead and initialize

a few of "his" segments; that is the sine qua non conditl
for "him" to be able to work, ”Comebody“, of course,

is the beetstrap initializer, Therefore, the bootstrap
initializer starts reading the rest cf itself, then it
reacds and initlalizes the few segments menticned above,
whareby providing the Multics initializer with:

1. An initialized descriptor segment

2. Paired base
Multics sta
return macr

adaress registers, according to the
ncard convention so that call-save-~
o} n be used, :

r\

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTIun BL.O PAGE 4

3. A loader, known as ths '"segment loader', that is
capvable, with the help of its utility routines,
of loading segments from the MST

4, A fault handling mechanism such that

a. When a linkage fault occurs, the
replaced by the correct machine a
referenced segment is in core

b. When a missing page fault occurs memory is
dynamically allocated

c. When a missing segment fault occurs, an appropriate
segment descripter word and the page teble are
manutactured, :

The first instructions of bootstrap initializer execute
in absolute mode and they create a descriptor segment,
From this point on, all the stages of the initialization
can execute using the appending hardware,

For each segment that it reads from the MST, the bootstrap
initializer creates a segmznt descriptor word that is
appended to the descriptor segmznt, and an entry in a
segment known as the '"Segment Loading Table" (SLT). In

" this statement, three important objects have been menticned:

the MST, thes descriptor segment and the SLT; some comments
would be wise at this point,

The MST contains all the segments that need to be loaded
dauring Multics initialization: the initialization segments,
as wall as the segments that comprise the hardcore supervisor,
as well as the segments that comprise the basic file system
hierarcny in case the hierarchy must be reloaded, Each

of these segments recorded on the MST, whether it is a

"text" or "1ink" segment, is preceded by an additional

piece of information; its "header", This header contains,
among other things, the names of the segment, its current
length, its maximum length, its access right, its status,

the page size, its type (initialization segment or supervisor
segment), etc, Briefly it contains anything that might

be needed at any point of the initialization.

MULTICS SYSTEM-PROGLAMMERS” MANUAL SECTION BL.O PAGE 5

The SLT is the segment in which all the headers recorded

on the MST will be saved during initialization, Ctach

time a segment is to be loaded from the MST, its header

is loaded first, since it precedes the segment; this header
is used to manufacture a fixed length entry for the segment
in the SLT. Therefore, the SLT contains an entry for

each initialization or hardware supervisor segment which
are currently known during system initialization, Creating
an SLT entry for a segment implies assigning to it a segment
number because the SLT is indexable by segment number,
After the SLT entry is created, a segment descriptor word
has to be built in the descriptor segment,

The descriptor segmznt created by the bootstrap initializer
will be used throughout the rest of system initialization,

The structure chosen for the descriptor segment is based

on the following remark: There iIs no reason why hardcore
supervisor segments shculd have different segment numbers
during Multics initialization and during Multics operation,
Therefore, in the descriptor segment, segment numbers

0 to n are reserved for hardcore supervisor segments while
segment numbers greater than n are reserved for initialization
segments, This structure gives the follecwing advantages:
first, as far as the linkage mechanism is concerned, any
hardcore supervisor which has been "prelinked" can still

be used by the Multics initializer; second, when all the
hardcore supervisor segmerts have been loadad from the

MST, the upper part of the descriptor segment is the "template"
descriptor segment used at process creation time,

Wihen the set of segments needed by the Multics initializer
to be able to stand alcne have been locaded and initialized,
the bootstrap initializer calls the Multics initializer’s

3 ! e N Ry e RO, - Al :
main program known as '"Initializer Control Program', using
a standard call macro instruction, since it now is available,

The Multics initializer

It is in fact at this stage that the whole initialization
takes place, The purpose of the two previous stages,
bootload program and bootstrap initializer, was merely
to provide the Multics initializer with the minimum machinery
needed for being able to run’'alone properly,

MULTICS SYSTEM;PROGRAMMERS' MANUAL SECTION BL.O PAGE ©

The Multics initializer is basically concerned with the
following functions: It makes known the hardware configuration,
initializes the secondary storage devices, loads and pre~1links
the hardcore supervisor, initializes per-system data bases,
initializes per-process segments, and per-process entiries

in the system tables in such a way that the Multics initializer
becomes a Multics process, and it creates the necessary

system processes so that Multics can stand alone, Then

it passes control to the Multics system control, that

is no more part of the Multics initializer,

1. Make known the hardware configuraticn, The hardware
configuration is described in several segments that
are recorded on the MST. Let us assume that K segments
are needed, Call each of these segments CONF,SEG(k)
where k=0,1,...K, The names of these segments are given
in a loadiist, whlch is also a sagment, Call this
loadlist segment CONF,LL, At the time the Multics
system tape is created, the desired conflguraulon may
not be known; therefore, the MST contains a description
for a certain number I of possible configurations,
For a given configuration CONF (i), the loadlist CONF,LL(I)
contains the names of the K(i) segments neecdad to describe
this configuration, Call each of the segments
CONF ,SEG(i,k) where k=1,2,,,.k(i). In the MST, the
information is organized into "collections", A
collection is a logical file, A1l the segments
CONF . LL(1) for i=1,2,...1, are contained in the same
collect ion, the ”conflguration loadlists" collection,
A1l the socmenu\ CONF,SEG(i,k), for i=1,2,,.,I and
k=1,2,°,.m(1) are contained in the next collection, the
"configuration library" collection

The Multics initializer is able to interact with the
operator during initialization, It first asks the
configuration number i; then it loads the correspending
configuration lToadlist CONF,.LL(i) and asks the cperator
if he wants to update it; the loadlist is changed
accordlng to the opera tor’s requests and every secgmnent
whose nama appaars in the configuration lcadlist is
lcadad from the configuration library collection, Then
the operator has the ability of changing the content

of any CCNF,SEG(i,k) segment that has besn loaded, ‘when
this is done, using the content of all the segments
CONF.SEG(i,k) that have been lcaded (and eventually
updated), the Multics 1n1t1a1lzer builds the svstem
configuration table,

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BL.O PAGE 7

2. Initialize secondary storage., If the file system
hierarchy must be reloaded, free storage maps are
written on all secondary storage devices available
to the file system, Then, areas of secondary storage
to be used by this version of Multics are defined, the
root directory is initialized and the segments needed
to oporate the hierarchy reconstruction process are
loaded in secondary storage.

3, Load the hardcore supervisor, Like the configuration
segments, the hardcore supervisor segments are
mentioned In a loadlist, The MST may contain a
certain number J of hardcore supervisor versions,

For a given supervisor version SUF(j), the loadlist

SUP, LL(J) contains the names of the K(J) segments

that make up this supervisor version, Call “each

of these segments SUP.SEG(]j,k) where k=1,2,...,K(j).

In the MST, all the segments SUP.LL(j), for j=1,2,...,J,
are in the "supervisor loadlists'" collection, All

the segments SUP.SEG(j,k), for j=1,2, ,J and
k=1,2,...,K(]J) are contained in” the ”suporv1sor
1ibrary” col]ectlon

The operator 1s asked for the number j of the supervisor
version he wants, The Multics initializer loads the
corresponding supervisor loadlist SUP,LL(j). Then

the operator is asked if he wants to update it; the
loadlist 1s changed according to his requests., Then
every segment SUP.SEG(J,k) whose name appears in the
SUP.LL(J) segment (eventually updated) is loaded

from the supervisor collection library., The operator
does not have the ability of requesting to change

any of the segments loadad from the library collection,

L, Prelink the hardcore supervisor, In the hardcore fring
of the Multics supervisor, dynamic linking is not a
necessary feature, since all modules to be used in
any single version of the hardcore supervisor are known
at initialization time, Thus, a dynamic link and
search mechanism will accomp115h nothing that pre-linking
at initialization time cannot do, Since in addition
the majerity of all processes share the same copies
of virtually all data gnd procedure segments of the
hard-core ring, pre-linking these data and procedur=
segments permits the linkage sections themselves to .
be shared also, Prelinking therefore has two purposes:

r

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BL;O -PAGE 8

1) The Multics dynamic linking and search mechanism
does not have to be a part of the hardcore ring,
and does not have to be "wired down', and

2) The number of per/process segments is reduced,
Initialize per-system data bases., They are:

a. The file system data bases: the core map, the
hardcore segment table (HST), the device
disposition table (DDT), the data bases
(buffers, DIM hisLory) of each device interface
module (DIM), the active segment table (AST),
the descriptor segment table (DST), the process
segment table (P ST) the process Walting table
(PWT). :

b, The traffic contro]1er data bases: the known
process table (KPT), the active process table
(APT), a processor data segment for each processor,
the temp]ate descriptor segment, stack history.

c, The fault-interrupt interceptors data bases: the
fault interrupt vector, the vector redirector
segment, the system communication segment, the
processor communication segment '

d, The 1/0 system data bases: GIOC interface module
(GIM) data bases, tape contro1]er 1nLeradce
module (TCIM) data bases,

Although it is not an exhaustive list of the sysfcm
data bases, this list contains the major system data
bases that have to be initialized,

Initialize per process data bases, A Multics process
is characterized by 5 basic segments that are created
in the process creation module, These segments are:
process directery, known segment table, process data
segment, process definition segment and hardcore stack,
Thay must be created and initialized on the behali of
the Muitics initializer,

r

MULTICS SYSTEM-PROGRAMMERS” MANUAL SEC*ILW BL.O PAGE S

7, Create per-process entries in system data bases, An
entry for the Multics initializer process is created
in the known process table (KPT), in the active process
table (APT) and in the process segment table (PST).
One entry is created in the descriptor segment table
(DST) for the descriptor segment of the Fu1L1cs
initializer, An active file trailer (AFT) is associated
with every AST entry, showing that the corresponding
segment is active on the behalf of the Multics
initializer,

8. Create one branch for each existing seagment in the
appropriate subtree of the hierarchy,

s}

Create necessary svstem processes, When the functions
described above have been done, the Multics initializer
presents all the characteristics of a Multics process,
with the only restriction that it is the only process

in the system and therefore it cannot afford to be
blocked, In order to negate this restriction, necessary
system processes are created, using the standard process
creation mechanism, The system procosses to be created
by the Multics initializer are specified in the system
configuration table, They can be for instance the

file system device monitor process, an idle process
assigned to a processor, etc,

At this point the Multics initializer is a full active
and loaded Multics process, The work assigned to it is
completed and the Multics initializer issues a call to
the system centrol procedure:

call <Multics> | [system_control],

When this call is given, the Multics initializer evolves
into the System Control Process, and Multics is now "in
operation', The system control process creates the other
members of the system control process-group; then it creates
the answering service process to a]low Multics users to
“dial~up' the computer,

stem control is not part of the Multics

Note that the sys
It is documented in BQ section,

initializer,

MULTICS SYSTEM—PROGRAMMERS' MANUAL SECTION BL.Q PAGE 10

After having read this paragraph, the Multics initializer
might appear to be a straightforward program, with 9
independent modules to perform the ¢ functions menticned,
The main disadvantage of this approach is that it would
require a large amount of special purpose code to perform
functions that can be done automatically by the hardcore
supervisor, Therefore the strategy that has been chosen,
which is described in BL.5.00, is basically as follows:

A group of hardcore supervisor segments is loaded and
initialized; then another group of hardcore supervisor
segments is loaded, and it is initialized using the hardcore
supervisor segments made available previously and so on,

The second disadvantage of the straightforward method

is that it would require to have in core, at the same
time, all the hardcore supervisor segments even if they
do not need to be wired down when Multics is operating.
For the present time, the size of the hardcore supervisor
is such that this requirement cannot be satisfied, 1In
the strategy that has been taken, only the wired-down
segments of the hardcore supervisor need to be in core

at the same time during Multics initialization.

Identification of a Multics System

When a Multics System is initialized it is identified by
three items: _

1. Tape identificaticon
2. Configuration ‘identification
3, Supervisor identification

The tape identification (TI) is a unique name recordad
on the Multics system tape when it is created, for example
"MAC2 3"

The configuration identification (CI) is the name of the
configuration loadiist selected by the operator, for
example, "18"

The supervisor identification (SI) is the name of the
supervisor loadlist selected by the operator, for example
IYLII

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BL.O PAGE 11

A typical system Identification might then be MAC23,18,L

If operator editing of the configuration list or load list
has occurred, a "single quote'" (prime) character is

~appended to the appropriate part of the system identification,
e.g., MAC23,187.L

Organization of BL sections

As it can be noticed, the first stage "bootlcad program"
is not part of BL sections. It is documented as part

of the hardware, in BC.4.01, All the data bases used

by the "bootstrap initializer" and by the Multics initialize
itself: the MST, the SLT and the system configuration
table are groupad at the beginning of the BL chapter under
BL.1,2 and 3, BL.4 is the bootstrap initializer, BL.5

is the Multics initializer, The point this paragraph
wants to make is that sections BL.6,7,8,9,10 and 11 have
to be thought of as BL.5 subsections since the modules
they describe: segment loader, initialization linker,

I/0 initializer, fault-interrupt initializer, file system
initializer and traffic controller initializer, are part
of the Multics initializer,

Bootload
Button

BOOTLOAD
PROGRAM

Skip MST Label

BOOTSTRAP
INITIALIZER

Set appending mecde

| Read BT first record

Transfer to BI

Read_necessary MI segments

Initialize SLT

Initialize linkage fault handling

_Egll MULTICS INITIALIZER

OPERATOR

MULTICS
INITIALIZER

Make known configuration

SYSTEM
CONTROL

Initialize secondary storage

Load hardcore supervisor

Pre-link hardcore supervisor

Initialize per system data bases

Initialize per process data bases

Initialize per process entries in

| _per system data bases

Create branches in Hierarchy

Create necessary system processes

Call SYSTEM CONTROL

TYANYW L, SHIHWTEO0Ud =WILSAS SOTLINW

0°79 NOILJ3S

39Yd

4

