
TO:
FRm~:
SUBJ:
DATE:

MSPM Distribution
J. H. Saltzer
BL.O
04/28/67

Multics system initialization has been completely redesigned
since October, 1966, \11/hen the previousovervielf.J was published.
Enclosed is a new ·overview, BL.O, which describes the
new design. The major improvement in the design is that
the file system paging mechanism is initialized very early,
so that it may be used during the remainder of initialization.

r
. -

t·1UL TICS SY S TE!Vl- PROGRAHfvi ERS" ~·1ANU~. L. SECTIGtiJ BL.O PAGE 1

Published: 04/28/67
(Supersedes: BL.O, 10/31/66)

Identification

Overview of the Multics System Initialization
A. Bensoussan

Purpose

This section provides an overview of the various steps
taken in initializing Multics.

Introduction

The various initialization segments as well as the segments
that wil 1 comprise the hardcore supervisor of Multics
are all stored on a single magnetic tape known as the
Multics System Tape (MST).

From the time the bootload button is pushed to the time
Multics is initialized, 3 different stages are to be
distinguished, corresponding to 3 programs of different
nature:

1. The boatload program
2. The bootstrap initializer
3. The Multics initializer

The boatload program is a special program in this sense
that it is located· in the GIOC diodes and therefore it
is part of the 645 hard\JIJare. Furthennore, it is executed
in absolute mode.

The bootstrap initializer is a higher level program; although
it is entered in absolute mode, its first vJorry is to
set up a descriptor segment and to institute the appending
mode. HovJever, i.t is sti 11 a ''handicapped' program since
it does not tolerate any fault; as a consequence it cannot
use the standard call-save-return macros.

As for the ~·1ultics initializer, it can be coded like a
normal Multics program, using the call-save-return macros,
the dynamic linkage, the dynamic core allocation following
a missing page fault, and the dynamic descriptor segment
fabrication follo\ving the missing segment fault. The

MULTICS SYSTtf'·1··PRC'"·~Afvlt-1ERS' fv1ANUAL SECT I O~J B L. 0 PAGE 2

linkage, missing page and missing segment fault handlers
have been made available by the bootstrap initializer;
they are not, of course, the standard f'1ultics handlers
but they perform the functions expected by the Multics
initializer programmer. It is precisely one of the most
important Multics initializer's duties to make the Multics
handlers available for the above mentioned faults.

Having justified the ~xistence of the 3 stages by the
different nature of the programs that comprise them, we
give below a brief description of each stage.

The boot 1 oa~LJ?.C.29.I~

The GIOC contains, in fixed storage, 64 words which are
transferred into selected locations in core memory when
a button (knovm as the "boot load button11) is pushed.
The 64 words arc stored in the GIOC in a form of a diode
matrix and the base of the locations in core into which
they are transferred is determined by panel switches on
the system control console. As soon as the 6Ll words are
read into core, an interrupt is sent to the processor
which services interrupts on this GIOC. The interrupt
transfers the processor to the base of the block into
which the 6L} words have been stored. This processor is
the only processor which will be executing during most
of the initialization sequence.

The diode matdx contains the 11 boot load program11 • The
bootload program i-s expecting a tape to be ready on the
tape handler connected to channel 31, device 0. If for
some reason, channel 31 is not available, any other channel
connected to a tape handler can be used;_ in this case,
the channel number has to be made known by the operator
to the boatload program through the 36 bit processor switches
as described in BC.4.01. Furthermore~ the boatload program
is designed to read a tape written in the Multics standard
format (BB.3.01); briefly, any information recorded on
a fliultics _tape has in front of it a 11 label 11 that ends
with an end of file physical record.

When entered, the bootload program takes the following
actions:

r.

SECTION BL.O

1. It skips the label unti 1 the end of file
physical record is encountered.

2. It reads into core the next physical record.

PAGE 3

3. It transfers to the loaded program at a conventional
entry point, passing interface information through
index registers.

The boatload program is designed to read any Multics tape
provided that it satisfies the entry point convention;
this tape may contain the Multics system or any dump or
diagnostic progt-am. For this reason, the boatload program
is not documented in BL sections (initialization) but
rather in BC sect ions (harclvvat-e),

In our case, the tape is the Multics system tape; therefore,
the boatload program loads the portion of the bootstrap
initiallzer contained in the first physical record following
the label and transfers to its entry point.

The bootstrap initializer

The bootstrap initializer is the interface between the
boatload orooram and the Multics initia1izer. As the . .._) ' '11, f 1 1'. ,. . reacer 11111 no-cJ.ce, Lil2 -,u -c1cs lnlCla.lzer 1s a vel-y
1 1 • 1' • • • r r 1• arge program wn1cn nas an 1mpress1ve numoer or runc~1ons
to perform. Th-:::-efore, ''he'' positiv.21y r-efuses to do
any IPJOI-k i.n the p·:)c)r environment left beJ·Jincl the bootl·'JaC:
·~,-,,~r..,rn '''-':::.'' IP'l"-c:; ''s·--···l·'·o' .-,r:,t'' "-o 1"--,..-1 ~nc1 in!·•-!-_,1;/ 0 iJ ' '-' '::J c; , • r , ~ r, '-"', L. _ ,. , , · .• '- '-' 1 L. _a '--• c< 1 ' ~ 1 1 ~ .._ o .. __ ...

a fev.J of ''his!! seg1-r1ents; that is the sine qua non condition
for 11 hirn11 to be able to ~·Jerk. 11 Son:ebody'', of course,
is the bcctstrap initializ~r. Therefore, the bootstrap
initializct· star·ts readino the rest of itself, then i·~

·" , ' . . " • 1. t 1 ,. • t. d , reacs ano 1n1c1a 1zes -ne revJ segmen-cs men-lone-. ao:-)ve,
whereby providing the Multics initializer with:

1. An initialized descriptor segment

2 . P •. , ,, • . ,. t "h au·ec oase aocress reC'lSiers, accoro1no -o c.,e
Multics standard conve~tion so that cal1-sav~
ret~rn macro can be used.

SECTh.11'~ BL.O

3. A loader~ known as the ''segment loader"~ that is
capable~ with the help of its utility routines,
of loading segments from the MST

4. A fault handling mechanism such that

PAGE L}

a. When a linkage fault occurs, the fault can be
replaced by the correct machine address, if the
referenced segment is in core

b. When a missing page fault occurs memory is
dynamically allocated

c. When a missing segment fault occurs, an appropriate
segment descriptor word and the page table are
manufactured.

The first instructions of bootstrap initializer execute
in absolute mode and they create a descriptor segment.
From this point on, all the stages of the initialization
can execute using the appending hardware.

For each segment that it reads from the MST 1 the bootstrap
initializer creates a segment descriptor word that is
appended to the descriptor segment, and an entry in a
segment knovm as the "Segment Loading Table'' (SLT). In
this statement~ three important objects have been mentioned:
the MST 1 the descriptor segment and the SLT; some comments
would be wise at t~is point.

The MST contains all the segments that need to be loaded
during Multics initialization: the initialization segments,
as well as the seaments that comprise the hardcore supervisor,
as well as the se~ments that comprise the basic file sy~tem
hierarchy in case the hierarchy must be reloaded. Each
of these segments recorded on the MST 1 whether it is a
"text" or "1 ink" segment, is preceded by an additional
piece of information: its "header". This header contains,
among other things, the name of the segment, its current
length, its maximum length, its access right, its status,
the page size~ its type (initialization segment or supervisor
segment), etc. Briefly it c,ontains anything that might
be needed at any point of the initialization

~1ULTICS SYSTEf'•\-PROL,v-\rJW:ERS" fv\/'-II~UAL S E C T I m~ B L • 0 PAGE 5

The SLT is the segment in which all the headers recorded
on the MST will be saved during initialization. Each
time a segment is to be loaded from the MST, its header
is loaded first, since it precedes the segment; this header
is used to manufacture a fixed length entry for the segment
in the SLT. Therefore, the SLT contains an entry for
each initialization or hardware supervisor segment which
are currently known during system initialization. Creating
an SLT entry for a segment implies assigning to it a segment
number because the SLT is indexable by segment number.
After the SLT entry is created, a segment descriptor word
has to be built in the descriptor segment.

Tht~ desc.rj.ptor segment created by the bootstrap initial izer
WTll 5e used throughout the rest of system initialization.
The structure chosen for the descriptor segment is based
on the following remark: There is no reason why hardcore
supervisor segments should have different segment numbers
during Multics initialization and during Multics operation.
Therefore, in the descriptor segment, segment numbers
0 ton are reserved for hardcore supervisor segments while
segment numbers greater than n are reserved for initialization
segments, This structure gives the following advantages:
first, as far as the linkage mechanism is concerned, any
hardcot~e supe1~visor vJhich has been 11 prel inked!! can sti 11
be used by the Multics initializer; second, when all the
hardcore supervisor segmerts have been loaded from the
t~ST, the upper part of the descriptor segment i§. the 11 template11

descriptor segment _used at process creation time.

When the set of segments needed by the Multics initializer
to be able to stand alene have been loaded 2nd initialized,
the bootstrap initializer calls the. Multics initializer's
main program knmvn as 11 In(t1alizer Control Progre.m 11 , using
a standard call macro instruction. since it now is available.

The Multics initializer

It is in fact at this staqe that the whole initialization
takes place. The purpose-of the two previous stages,
boatload program and bootstrap initializer, was merely
to provide the Multics initializer with the minimum machinery
needed for being able to run'alone properly.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.O PAGE 6

The Multics initializer is basically concerned with the
follo~ving functions: It makes known the hard~t.Iare configuration,
ini tia 1 izes the secondary storage devices, loads and pre-1 inks
the hardcore supervisor, initializes per-system data bases,
initializes per-process segments, and per-process entries
in the system tables in such a way that the Multics initializer
becomes a ~ultics process, and it creates the necessary
system processes so that Multics can stahd alone. Then
it passes control· to the Multics system control, that
is no more part of the Multics initializer.

rJ1ake known the hardlrJare configuration. The hardvJare
configuration is described in several segments that
are recorded on the MST. Let us assume that K segments
are needed. Call each of these segments CONF.SEG(k)
where k=O, 1, ••. K. The names of these segments are given
in a loadlist, which is also a segment. Call this
loadlist segment CONF.LL. At the time the Multics
system tape is created, the desired configuration may
not be known; therefore, the rviST contains a description
for a certain number I of possible configurations.
For a given configuration CON~(i), the loadlist CONF.LL(i)
contains the names of the K(i) segments needed to describe
this configuration. Call each of the segments
CONF.SEG(i,k) vJhere k=1,2, .•• k(i). In the r-1ST, the
information is organized into 11 collections11 • A
collection is a logical file. A 11 the segments
COf!F.LL(i), for i=1,2, ••• I, are contained in the same
collection, the 11 configuration loadl ists11 collection.
All the segmen,ts CONF.SEG(i,k), for i=1,2, . .,I and
k=1,2, ••. K(i) are contained in the next collection, the
11 configur-atlon 1 ibrary 11 collection.

The Multics initializer is able to interact with the
operator during initialization. It first asks the
configuration number i; then it loads the corresponding
configuration loadlist CONF.LL(i) and asks the operator
if he wants to update it; the loadlist is changed
according tci the operator's requests and every segment
\I'Jhose namr2 appears in the configuration loadlist is
leaded ftom the configuration library collection. Then
the operator has the ability of changing the content
of any CCNF.SEG(i,k) seQment that has been loaded. When
this is done, using the content of al 1 the segments
CONF.SEG(i,k) that have been loaded (and eventually
updated), the Hultics initializer builds the system
configuration table.

MUL TICS SY STEt·1- PROGRAfv1MERS" MANUAL SECTION BL.O PAGE 7

2. Initialize secondary storage. If the file system
hierarchy must be reloaded~ free storage maps are
written on all secondary storage devices available
to the file system. Then 1 areas of secondary storage
to be used by this version of Multics are defined~ the
root directory is initialized and the segments needed
to operate the hierarchy reconstruction process are
loaded in secondary storage.

3. Load the hardcore supervisor. Like the configuration
segments~ the hardcore supervisor segments are
mentioned in a loadlist. The MST may cbntain a
certain number J of hardcore supervisor versions.
For a given supervisor version SUP(J)~ the loadlist
SUP.LL(j) contains the names of the K(j) segments
that make up this supervisor version. Call each
of these segments SUP.SEG(j 1 k) where k=1,2, ... ,K(j).
In the MST, all the segments SUP.LL(j), for j==1 1 2, .. 01 J,
are in the 11 supervisor loadlists 11 collection. All
the segments SUP.SEG(j,k), for j=1,2, ... ,J and
k=1,2, ... ,K(j) are contained in the 11 supervisor
library 11 collection.

The operator is asked for the number j of the supervisor
version he wants. The Multics initializer loads the
corresponding supervisor loadlist SUP.LL(j). Then
the operator is asked if he wants to update it; the
loadlist is changed according to his requests. Then
every segment SUP.SEG(j,k) whose name appears in the
SUP.LL(j) segment (eventually updated) is loaded
from the supe~visor collection library. The operator
does not have the ability of requesting to change
any of the segments loaded from the library collection.

4. Prelink the hardcore supervisor. In the hardcore ring
of the Multics supervisor, dynamic linking is not a
necessary feature, since all modules to be used in
any single version of the hardcore supervisor are known
at initialization time. Thus~ a dynamic link and
search mechanism will accomplish nothing that pre-linking
at initialization time cannot do. Since in addition
the majority of all processes share the same copies
of virtually all data ~nd procedure segments of the
hard-core ring, pre-linking these data and procedure
segments permits the linkage sections themselves to
be shared also. Prelinking therefore has two purposes:

t-1UL TICS SYSTEtv1-PROGR.l1.iVIMERS' Hil.~JUAL SECTI01'J BL.O . PAGE 8

1) The M~ltics dynamic linking and search mechanism
does not have to be a part of the hardcore ring,
and does not have to be "wired do~rm", and

2) The number of per/process segments is reduced.

5. Initialize per-system data bases. They are:

a. The file system data bases: the core map, the
hardcore segment table (HST), the device
disposition table (DDT), the data bases
(buffers, DIM history) of each device interface
module (DIM), the active segment table (AST),
the descriptor segment table (DST), the process
segment table (PST), the process waiting table
(PWT).

b. The traffic controller data bases: the known
process table (KPT), the active process table
(APT), a processor data segment for each processor,
the template descriptor segment, stack history.

c. The fault-interrupt interceptors data bases: the
fault interrupt vectot-, the vector redirector
segment, the system communication segment, the
processor communication segment.

d. The I/0 system data bases: GIOC interface module
(GIM) data bases, tape controller interface
module (TCIM) data bases. ·

Although it is not an exhaustive list of the system
data bases, this list contains the major system da~a
bases that have to be initialized.

6. Initialize per process data bases. A t·1ultics process
is characterized by 5 basic segments that are created
in the process creation module. These segments are:
process directory, known segment table, process data
segment, process definition segment and hardcore stack.
They must be created and initialized on the behalf of
the Multics initializer.

MULTI C S SY S TEH- PROGRA11UVtERS"' fviA~JU;4 L SECTIC.~ BL.O PAGE 9

7.

8.

9.

Create per-process entries in system data bases. An
entry for the Multics initializer process is created
in the kn01,·m process table (KPT), in the active process
table (APT) and in th~ process segment table (PST).
One entry is created in the descriptor segment table
(DST) for the descriptor segment of the Multics
initializer. An a.ctive file trailer (AFT) is associated
with every AST entry, showing that the corresponding
segment is active on the behalf of the Multics
initializer.

Create one branch for each ex!stinq seoment in the
appropriate subtree of the hierarchy. ~

Create necessary system processes. When the functions
described above have been done, the Multics initializer
presents all the characteristics of a Multics process,
with the only restriction that it is the only process
in the system and therefore it cannot afford to be
blocked. In order to negate this restriction, necessary
system processes are created, using the standard process
creation mechanism. The system processes to be created
by the Multics initializer are specified in the system
configuration table. They can be for instance the
file system device monitor process, an idle process
assigned to a processor, etc.

At this point the Multics initializer is a full active
and loaded Multics process. The work assigned to it is
completed and the Multics initializer issues a call to
the system control procedure:

call <t11ultics> r [system_control].

lrJhen this call is given, the fV1ultics initializer evolves
into the System Control Process, and f''lultics is nol.i'J "in
operation''. The system control process creates the other
members of the system control process-group; then it creates
the ansv.Jering service process to allow r·•lultics users to
''dial·-up!! the computer.

~Jote that the system control is not part of the hultics
initializer. It is documented in BQ section.

MUL TICS SY STEfvi- PROGRAfv1t·lERS" f111ANUA L SECTION BL.O PAGE 10

After having read this paragraph, the Multics initializer
might appear to be a straightforward program, with 9
independent modules to perform the 9 functions mentioned.
The main disadvantage of this approach is that it l!vould
require a large amount of special purpose code to perform
functions that can be done automatically by the hardcore
supervisor. Therefore the strategy that has been chosen,
which is described in BL.5.00, is basically as follows:
A group of hardcore supervisor segments is loaded and
initializedi then another group of hardcore supervisor
segments is loaded, and it is initialized using the hardcore
supervisor segments made available previously and so on.

The second disadvantage of the straightforvvard method
is that it would require to have in core, at the same
time, all the hardcore supervisor segments even if they
do not need to be wired down when Multics is operating.
For the present time, the size of the hardcore supervisor
-is such that this requirement cannot be satisfied. In
the strategy that has been taken, only the wired-down
segments of the hardcore supervisor need to be in core
at the same time during Multics initialization.

Identification of a Multics System

When a Multics System is initialized it is identified by
three items:

1. Tape identification
2. Configuration ·identification
3. Supervisor identification

The tape identification (TI) is a unique name recorded
on the Multics system tape when it is created, for example
II fv1AC23''

The configuration identification (CI) is the name of the
configuration loadlist selected by the operator, for
examp 1 e, " 1 8"

The supervisor identification (SI) is the name of the
supervisor loadlist selected by the operator, for example
II L"

fvlUL TICS SYS TEf'"l- PK.OGRAHHERS' tJIA~·JUA L SECTION BL.O PAGE 11

A typical system identification might then be ~~C23.18.L

If operator editing of the configuration list or load list
has occurred, a "single quote'' (prime) character is

. appended to the appropriate part of the system identification,
e.g., f1AC2 3. 1 8 ... L

Oroanization of BL sections

As it can be noticed, the first stage "boatload program"
is not part of BL sections. It is documented as part
of the hardvvare, in BC.4.01. A 11 the data bases used
by the "bootstrap initializer'' and by the fviultics initialize
itself: the MST, the SLT and the system configuration
table are grouped at the beginning of the BL chapter under
BL.1,2 and 3. BL.4 is the bootstrap initializer. BL.S
is the 1,\ultics initializer. The point this paragraph
wants to make is that sections BL.6,7,8,9,10 and 11 have
to be thought of as BL.S subsections since the modules
they describe: segment loader-, initialization linker,
I/0 initializer, fault···inten·upt initializer, file system
initializer and traffic controller initializer, are part
of the Multics initializer.

BOOTLOAD

PROGRAM

'

SkiP MST Label

--0>

.,
.e.ad BI first r~~

Transfer to BI

8
BOOTSTRAP

I
INITIALIZER

1--·

Set appending mode

..Re.ad_n~_c_~_g_g?J:Y-__Ml se_gments

Initialize SLT

~~ialize linkage fault handlin!

~a!_~- MULTI~-~ INI~IALIZER I

I

'
8 e

MULTICS - INITIALIZER

Make known configuration

~~~~li~e secondary storage 
Load hardcore supervisor 

Pre-link hardcore supervisor 

Initialize per system data bases 
1- ·- -----·--·--·--·--·--

~itialize per process data bases 

Initialize per process entries in 

r--p.er __ sy_s_t.~m __ d_a..t.a.....b_a..~~EI 

Jlre_at_e_b_I_<!_Dche_s in Hierarchy 

Create necessary system processes 

Call SYSTEM CONTROL 

' 

SYSTEM -- CONTROL 

! 

::s: 
c 
r 
-1 ,_. 
0 
(./) 

(./) 

-< 
(./) 

-l 
fTl 
::?; 
I 
-o 
;o 
0 
GJ 

~ 
3: ...,. 
-"'" Pl 
;a 
(./) 

'\ 

~ 
z 
c 
)> 
r 

(./) 

fTl 
() 

-1 ,_. 
0 
z 
OJ 
r . 
0 

jg 
G) 
fll 

N 


