
MULTICS SYSTE~1-PROGRAM~4ERS' MANUAL SECTION BL. 1 .01 PAGE 1 

Published: 03/21/67 

Identification 

. Multics System Tape Format 
A. Bensoussan 

Puroose 

The Multics system tape (MST) is the tape which contains 
all information needed by the Multics Initializer. It 
is manufactured by the t~1ultics system tape generator command, 
running under Multics (initially it will be written by 
a 6.36 program), and it is read successively by the boatload 
program, the bootstrap initializer, the segment loader 
and, if the file system hierarchy must be reloaded, by 
the file system initializer. 

General Qiscussion 

When a user creates a tape under Multics, the tape contains 
the information that the user wants to record (logical 
information) plus some information added by the I/0 system 
(physical information). When the tape is read under Multics 
the 1/0 system returns to the user the logical information, 
in such a way that the physical information is transparent 
to the user. 

The t·~ T is a spec ia 1 tape in the sense that, a 1 though 
it is written in Multics Standard tape format using the 
1/0 system, it is read without using the I/0 system. 

This section describes the content of the MST with respect 
to both aspects, logical format and physical format with 
the main idea of making them completely independent so . 
that it is possible to isolate the code which has to deal 
with physical format in order to return only the logical 
in format ion. 

The following items are defined in this section: 

a. Logical record 
b. Segment unit 
c. Collection 
d. S yntact ica 1 description of 1 og ica 1 ~15 T format 
e. List of the MST collections 
f. Phys ica 1 format of the HS T 



MULTICS SYSTEM-PROGRA.M~~ERS' tv1ANUAL SECTION BL.1.01 PAGE 2 

Log i ca 1 record 

A logical record consists of one control word followed 
by a variable number of words that contains the information 
to be recorded. 

The variable length information which follows the control 
word may be of 3 different classes: segment, header associated 
with a segment, or mark. 

The control word contains the class and the lenqth of 
the information which folloiJIJS it. 

Therefore we have 3 classes of Logical records: 

a. Log ica 1 header 
b. Logical segment 
c. Logical mark 

0. Control word 

The content of the control word is the following: 

Bits 0-17: 

Bits 18-35: 

1. Header 

0 if header control word 
1 if segment control word 
2 if mark control word 
length in words of the header, segment or mark 

The header keeps track of information needed to make up 
an entry in the Segment Loading Table (SLT). Therefore 
it contains the same items that are found in the SLT entry 
(see BL.2.01), with the same format, except that: 

In the SLT, segment names and path names are provided 
through pointers to the names themselves located in the 
name segment associated with the SLT; in the header, segment 
names and path names are written explicitly as character 
strings with the format they have in the name segment 
(see BL.2 .01 ). 

2. Segment 

The segment, of course, does not have any conventional 
format. It consists of text, link or data. 



r 
MULTICS SYSTH1-PROGRAr~rv1ERS' MANUAL SECTION BL.1.01 PAGE 3 

3. Mark 

The mark consists of only one word: Bits 0-17 of this 
word contain the mark number; this mark number is an integer 
starting from 1 and increasing by 1 from one mark to the 
next one. 

Seament unit 

A logical segment is al~.rJays preceded by a logical header. 
A logical header followed by a logical segment is called 
a "segment unit" 0 

Col Jection 

It is possible to group a certain number of segment units 
to form a collection. 

A "collection" consists of a Jist of n segment units (n~O) 
followed by a logical mark. 

If n = 0 the collection is empty. 

The logical MST is a list of collections. The end of the tape 
is detected by an empty collection the mark number of which 
is 777777 octa 1. 

Syntactical description of logical MST format 

1. Syntax 

<logical record > .. = <logical header>l<logical segment> . . 
l<logica 1 mark> 

<logical header > .. = <header control word><header> .. 
<logical segment > •. = <segment control word><segment> 0 • 

<log ica 1 mark > •. = <mark control word><mark> .. 
Logical headers 1 logical segments and logical marks are. 
the only logical records that can be found on the MST. 
They are used below to define a syntax describing rules 
of their occu renee on the t-1S T. 

< segment unIt>:: = <logical header><logical ·segment> 
list <empty>l<segment unit>! < of segment units>: : = 

<list of segment units><segment unit> 
< collection>:: = <list of segment units><logical mark> 
< list of collections>:: = <collection>l<list of collections> 

<co 11 ect ion> 
< logical MST>:: = <1 ist of collections> 



MULTICS SYSTEM-PROGRAMt-1ERS"' MANUAL SECTION BL.1.01 PAGE 4 

2. Semantics 

The syntax does not allow detection of the end of the 
MST; one could have defined two types of logical marks 1 

one for the end of collection 1 one for the end of the 
MST. It appears to be simpler to do it using the following 
rule: The end of the MST is detected by an empty collection 
having the mark number 777777 octal. 

List of the t·'lST collection 

1. Collection 1: Bootstrap 

Contains one segment unit for each segment that has to 
be loaded by the Bootstrap Initializer before control 
is given to the Initializer Control program. The first 
segment unit is the bootstrap initializer itself 1 the 
first physical record of which is loaded by the boatload 
diode program. 

2. Collection 2: Configuration Part 1 loadlists 

A given hc:lrd\rJare configuration may require more than one 
segment to describe it. Therefore a loadlist is needed 

. for each hardware configuration. 

Collection 2 contains one segment unit for each loadlist 
naming the segments that d~scribe the configuration. 
The segment loader selects and reads only one segment 
unit in this collection. 

3. Collection 3: Configuration Part 1 Library 

Contains one segment unit for each segment that may be 
mentioned in any configuration loadlist. The segment 
loader reads~ in this collection 1 all the segments which 
are named in the loadlist selected from collection 2. 

4. Collection 4: Supervisor Part 1 loadlists 

Contains one segment unit for each loadlist naming the 
segments that have to be loaded by the segment loader 
during part 1 of the Initializer control program. 

5. Collection 5: Supervisor Part 1 Library 

Contains one segment unit for each segment that may have 
to be loaded by the segment loader during part 1 of the 
Initializer control program. 

~- .. 



MULTICS SYSTEM-PROGRAMMERS' ~~NUAL SECTION BL.1.01 

6. Collection 6: Supervisor Part 2 loadlists 

Contains one segment unit for each loadist naming the 
. segments that have to be loaded by the segment loader 
-during part 2 of the Initializer control program. 

7. Collection 7: Supervisor Part 2 library 

PAGE 5 

Contains one segment unit for each segment that may have 
to be loaded by the segment loader during part 2 of the 
Initializer control program. 

8. Collection 8: Supervisor Part 3 loadlists 

Contains one segment unit for each loadlist naming the 
segments that have to be loaded by the segment loader 
during part 3 of the Initializer control program~ 

9. Collection 9: Supervisor Part 3 library 

Contains one segment unit for each segment that may have 
to be loaded by the segment loader during part 3 of the 
Initializer control program. 

10. Collection 10: Configuration Part 2 loadlists 

Contains one segment unit for each loadlist naming the 
segments that make up the second part of the configuration. 

11. Collection 11: Configuration Part 2 library 

Contains one segment unit for each configuration segment 
that may have to be loaded during part 3 of the Initializer 
control program. 

12. Collection 12: Hierarchy 

Contains one segment unit for each segment that will have 
to be loaded by the file system initializer during part 
4 of the Initializer control program~ if the file system 
hierarchy must be reloaded. 

13. Collection 13: End of MST 

This is an empty collection (no segment unit) with a mark 
number equal to 777777 octal. 

Note 1 

The loadists contain only names bf text segments; if a 
text segment has an associat?d linkage section segment, 
which is indicated in the header of the text segment,. 
the linkage segment unit is expected to be immediately 
after the text segment unit in the library collection. 

·The linkage section segment name must not be in the loadlist. 



MULTICS SYSTEM-PROGRAMMERS' ~~NUAL SECTION 8L.1.01 

Furthermore, the relative order of the segment units in 
a library collection is expected to be the same as the 
appearance of their names in the corresponding loadist. 

Note 2 

PAGE· 6 

In the MST used in phase I, collections consisting of 
loadlists contain only one segment unit.· The segment 
loader does not select the loadlist but rather takes the 
only one which is in the collection. In addition, collections 
consisting of libraries contain only the segments mentioned 
in the corresponding loadlist. 

MST physical format 

1. Physical record 

The way the logical information is recorded on the MST 
is the following: the logical information is broken up 
into blocks of n words. An h-word physical header is 
added in front of them and a t-word physical trailer is 
added after them. 

A physical record is comprised of 

a. an h-word physical header 
b. an n-word block of logical information 
c at-word physical trailer. 

A physical record is located between 2 gaps. 

Every k physical records, the MST contains a physical 
end-of-file mark. The values of n, h, t, and k are specified 
in 88.3.01. 

2. La be 1 

A label is added at the beginning of the MST; this label 
is ended by a physical end of file mark. 

The label is not part of the logical MST and it is skipped 
by the boatload program which reads in the first physical 
record that follo\IIJS the label. 

The complete definition of the Multics standard tape format, 
includin~ the content of the physical header and trailer, 
is descr1bed in 88.3.01. · 

Note that the boatload and the bootstrap initializer program 
are organized in such a way that the bootstrap initializer 
does not constitute an exception to either the physical 
format or the logical format of the Multics System tape. 


