
,

MULTICS SYSTEM-PROGRAMMERS' MANUAL

I dent if icat ion

Tape Reader
N. I. Morris~ M. Ae Padlipsky

Furpose

SECTION BL.6.02 PAGE 1

Published: 02/06/68

When Collection 1 has been read from the Multics System
Tape~ the Multics Initializer is able to employ a considerably
less primitive tape reading mechanism than has been used
heretofore in the initialization process. This mechanism
is known simply as the Tape Reader~ and will be employed
throughout the remainder of initialization by the Segment
Loader (see BL.6.01); it is also employed by the system
initializer (fs_init_4; see BL.10.03). The Tape Reader
is the only Multics Initializer procedure which need take
cognizance of the Multics standard format for magnetic
tapes (BB.3.01); it does not take cognizance of the logical
structure of the MST. The Tape Reader's role is to furnish
a specified number of words from the MST (via the I/0
hardware and a physical record buffer area) to an area
specified by its caller 1 the words are taken from the
MST sequentially.

Introduction

The bu+fer area used by the Tape Reader is segment
<physical_record_buffer>. This segment is created by
the Bootstrap Initializer~ which uses a magnetic tape
input routine similar to the Tape Reader. The organization
of <physical_record_buffer> is as follows: In <physical_
record_buffer>fO (referred to as record_indexi below~
a1tho11gh tl1e segment has no linkage definitions associated
with it), a count is maintained of the number of words
which have already been delivered to the user from the
currc:.nt buffer. Locations <phys lea l_record_buffer> f 1
th ro·1qh --:phys lea l_record_buffer> 1272 contain the "current
rE:cord buffer", and relative locations 2·73 through 544
con tal n the ''next record buffer". Both the "current record
buffer11 and the 11 next record buffer" have the same structure:
The first 8 words contain the physical record header~
the next 25G words contain the physical record data and
the final 8 words contain the physical record trailer
(see BB.3.01). The role of the "next buffer" wi 11 be
discussed below.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 2

The Tape Reader comprises two distinct procedures: tape reader
and tape io. Procedure tape reader is responsible to -
its caller for the proper manipulation of the physical
buffers and transmission of the data contained therein
to the caller. Procedure tape_io is responsible to tape_reader
(its caller) for causing the actual magnetic tape input-output
operations to be performed. One way of looking at the
division of labor involved is that tape_io fills <physical_
record buffer> and tape reader empties it. It is important
to note that included under the notion of proper manipulation
of the buffers is the elimination (i.e. non-transmission)
of "repeated records11 --that is, records which were re-written
owing to tape errors in writing, of which only the final,
accurate version should be passed on.

Usage

The calling sequence for the Tape Reader is:

call ~ape_reader (loc, nwords)s

where loc is an EPL-type pointer to the base of the area
into which the data are to be copied, and nwords is the
number of words to copy.

Implementation

Pictorially, the Tape Reader's processing may be viewed as

Current record buffer

Next record buffer

I Caller's area I
i tape_reader

<-B-><-256·-><-8->

Header

where the arrows represent data flow and the names beside
the arrows indicate which internal subroutine in tape reader
is managing the flow of the data. Tape reader extracts
data from the current record buffer untTl it is empty.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 3

At that point, tape_reader invokes an internal procedure
named get_current_buffer, which refills the current record
buffer from the next record buffer and in turn invokes
an internal procedure named get_next_buffer, which refills
the next record buffer via the tape_io procedure. If
the call to get_next_buffer proves to have brought in
a repeated record, get_current_buffer writes the later
version (in the next record buffer) into the current record
buffer and calls get_next_buffer again (details are given
below).

The logic is as follows:

1 •

2.

3.

4.

5.

Calculate ~. the number of words left in current record
buffer. The physical record header portion of the
current record buffer contains a bit count of the
length of the data record; call it nbits. Then, nbits
divided by 36 minus record-index (the running count of
words already copied from the current buffer, maintained
at <physical_record_buffer>IO) gives the number of
as-yet-uncopied words left in the current record·buffer.

Any words left? If a is greater than zero, there are
meaningful data left-in the current buffer; proceed to
step 4.

Refill current buffer. At this point, there are
no words to copy left in the current record buffer;
therefore, call the internal routine get_current_buffer.
On return, set record-index to zero and a (the number of
data words now in the buffer) to nbits divided by 36
(as in step 1).

Adjust counts. If n, the number of words remaining to
be copied (i.e., the current, possibly already decremen
ted, value of nwords), is less than ~. set ~ to that
value; that is, ~ is set to the lesser value of ~and n.
Next, decrement n by ~and set the result into n; that
is, subtract the number of words about to be copied from
the running total of words needed to be copied.

Transmit. Call the internal routine move, to cause~
words to be copied through the loc po1nter at the
appropriate index values.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 4

6. Done? On return from ~~ if there are more words to be
transmitted (~~0) 1 transfer to reader loop (step 3). ·
Otherwise~ update record_index (<physTcal_record_buffer>fO)~
and return.

The internal routine get current buffer:

The calling sequence is

call get_current_buffer;

The logic is as follows:

1. Move the contents of the next record buffer into the current
buffer.

2. Call the internal routine get_next_buffer. This routine wi 11
invoke the external procedure tape io appropriately~ and on
return from it the next data record from the MST will be
in the next buffer.

3. At this point~ it is necessary to investigate the record
number of the new record 1 in order to determine whether it
represents a repeated record. If the record number of the
data record in the next record buffer is equal to the record
number of the data record in the current record buffer~
transfer back to step 1 and get another new record (because
the record in the next record buffer is a re-writing of the
one in the current record buffer).

4. If the record number of the data record in the next record
buffer is one greater than the record number of the data
record in the current record buffer~ return. (The current
record is valid.)

s. If the record numbers are neither equal nor sequential~ an
error condition exists. This error is fatal; the current
initialization run is terminated by a call to panic.

The internal routine get next buffer:

The routine is called to manage the reading of a physical
record from the MST into the next record buffer of <physical_
record_buffer>. (Upon return from get_next_buffer~ the
next record buffer will contain either another copy of the record
in the current record buffer~ in which case get_current_buffer
must call get_next_buffer again 1 or the next record in .
sequence after the current record.) The logic is as follows:

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.6.02 PAGE 5

1 •

2.

Initialize 1£Y. Set the variable 1£Y, which is a count
of the overall number of attempts to read the tape, to
zero.

Initialize n. Set the variable n, which is a count of the
number of records read this try, to zero.

3.a. Increment n by 1.

b. Call tape io$read to read one record from the MST
into the next record buffer.

4. Check status. If the tape was not ready, return to step
3b. If an end of file mark was encountered, go to step
12. If a device data alert was encountered, return to
step 3a. Otherwise, proceed to step 5.

5. Validity checks. The first and eighth words of the header
and the trailer and the checksum must be checked for
validity (see BB.3.01 for tape format). If not valid,
return to step 3a.

6. If an administrative record was encountered which is not
an EOR record, return to step 3~.

7. If the record number of the record at hand is the same
as the record number of the record in current record
buffer, proceed to step 10. If the former number is-less
than the latter, this implies that the tape has been
backspaced too far; return to step 2.

B. If the next record number is ~reater than the current
record number plus one, this 1mplies that the tape has
been spaced along too far; proceed to step 14. Also,
if n minus files (a count of the number of EOFs
encountered) minus one is not equal to the repetjtion
number of the current record, proceed to step 11-l- for
backspacing.

9. Return. The checks in steps 4 through 8 having been
passed, the routine returns to its caller with a new
record in the next record buffer.

10. At this point, the record numbers of the next and current
records are the same. It is necessary to confirm the fact
that the repetition numbers are correct before returning;
therefore, if the repetition number of next record is
less than or equal to that of current record (implying
that the tape has been backspaced too far), return to
step2. Otherwise:

l:

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.6.02 PAGE 6 ~

11. Return (next_record_buffer contains a repeated version
of current_record_buffer).

12. At this point in the logic, an end of file mark
encountered. If u equals one, set ~ to one.
one EOF should never be encountered; therefore,
ones are ignored.)

has been
(More than

unexpected

13. Return to step 3a.

14. At this point, the tape must be backspaced unless the
allotted number of tries h~s been exceeded. Therefore,
increment !rY by one; if try is now greater than ten,
call~ (see step 5 of get_current_buffer.)
OtherWise~ call tape_io$backspace !!.+2 times. (The "extra"
two times are included at attempt to insure that the tape
is backspaced at least enough to try again; empirically,
it turns out that certain sections of bad tape will require
this sort of treatment, as the apparent number of records
encountered when going forward can be greater than the
a,,parent number of records encountered when going backward.)

15. Return to step 2.

tape i~2

It is intended that the reader of this section be familiar
with the operation and use of the GIOC (see G0050) and
the High-Performance Common Peripheral Channel (HPC).

Tape_io is a procedure called by tape reader to do all
magnetic tape I/O operations. The phase 1 version of
tape_io issues all connect operations itself. It does
llQ1 us~ the GIM. The following entries are provided in
tape_io:

1. read (ptr, count, status): read binary tape

2. backspace (status): backspace tape one record

3. rewind (status): rewind tape

4. unload (status): rewind and unload tape

5. skip_file (status): forward space tape one file

~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 7

where g!r is a pointer to tape buffer

count is the number of words to be read from tape

status is a fixed binary number to contain the major
status of the tape controller after the i/o operation
is performed.

Tape_io assumes that upon first entry, the GIOC mailbox
segment <mailbox> will contain a COW at location 24(10) and
a CCW at location 14(10)J the CCW contains the channel .
number and the device number in use by the Multics Initializer.
The tape io routine will use connect channel 8 for all
connect operations and status will be returned through
status channel 1. All operations are performed in multiple
physical instruction (MPI) mode. Emergency status will
cause the GIOC bell to ring. Since the DCW list for all
I/0 operations and the status queue are contained within
tape io, it is an impure procedure. It must be
wired down.

The sequence of operations for all 1/0 requests is shown below:

l .

2.

3.

4.

s.

6.

7.

8.

Set up CPW in <mailbox>IB.

Set up CCW in <mailbox>l14. Insure that the MPI mode
is set. Save the channel number (c) from ccw.
Set up the LPW in <mailbox>l2*c.

Set up the DCW list inside tape_io.

Pick up and discard status words until status queue is
empty.

Issue connect to <mailbox>IO.

Wait until terminate status or external signal status
appears in status queue.

Return major status and return to caller.

MULTICS SYSTfM-PROGRAMMERS' MANUAL

yes

yes

no

move word # count of
the data area from
current buffer to
loc+t

Figure 1: Tape reader

SECTION Ble6.02 PAGE 8

call get_current_buffer

MULTICS SYSTEM-PROGRAMMERS' MANUAL

MOve next buffer

into current buffer

call get_next_buffer

Figure 2: Get Current Buffer

SECTION BL.6.02 PAGE 9

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 10

retry:

again:

read in:

try 0

n = 0

n = n+l

call read

call
checksum

bad status

I* Compute checksum *I

bad •(again)

.~n~o~~~~c admin_record)

Figure 3: get next buffer

MULTICS SYSTEM-PROGRAMMERS' MANUAL

continuation of figure 3

validate record:

/*Backspaced
too far*/

retry

/*Backspaced
too far*/

<

I

return

/*we passed·
good info 1

backup

SECTION BL.6.02 PAGE 11

I* too far
along tape*/

too far

/*good record*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 12
Continuation of Figure 3

bad status

read in

no

yes
read in

/*try again*/

again

/*read next record*/

eof

/*handle eof' s*/

/*unrecoverable status*/

MULTICS SYSTEM-PROGRAMMERS; MANUAL SECTION BL.6.02 PAGE 13

Continuation of Figure 3

eof:

f~'rHere on eof reading tape~'r/

again
/*read next''r/

files = 1

/*count valid eof*/

again

\...

\.

~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 14
continuation of Figure 3

/*Backspace n+2 records*/

/*Unreadable
tape*/

try=try+l

ok

back2: retry

n = n - 1

back3:

call backspace

bad -

<: bad_backspace :>

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.02 PAGE 15

bad_backspace:

back3

/*try again*/

back3

/*try again*/

back2

/*continue~~/

retry

/*beginning of tape
stop backspacing*/

Figure 3 concluded

