-

MULTICS SYSTEM=-PROGRAMIMERS' MANUAL Section BL.9.01 1

Published: 10 April 1967
Identification

The Fault Initializer
Chester Jones

Purpose

This section provides the specification of the fault initializer
which is run under control of the Multics initialization control
program (MSPM Section BL.5.01). The basic goal of the fault
initializer is to initialize the fault interceptor module (l1SPH
Section BK.3.02) and to establish the data bases associated with
fault handling. 7This section assumes a thorough knowledge of
Multics fault handling and a general knowledge of Multics system
initialization. ’

Introduction

When the initialization control program passes control to tne
fault initializer, the hardcore supervisor is in the following
state.

1. All of tne segments of the hnardcore supervisor, whicn are
required at initialization time, have been loaded into core
and all external segment references have been linked by the
prelinker. (All of tne data bases used for fault handling
nave been provided by tne segment loader altnough tneir
contents are zero.)

2. The system configuration table which describes the hardware
available to the Multics .system has been built by the
configuration table generator (MSPHM BL.5.03). Of particular
interest to the fault initializer are the system
controller-processor assignments, the memory port number
assignments, and the address ranges assigned to each system
controller.

3. The dinitialization linker has ©been provided by the
initialization control program; symbolic intersegment
references made by the fault initializer cause linkage faults
wiicih are handled by the initialization linker. (Althougn
the hardcore supervisor segments have been pre-linked, tne
favlt initializer has not.)

4. The process concealed stack (MSPM Section BJ.1.05) and the
processor stack (iSPH Section BK.1.03) have been provided and
initialized by the Bootstrap program.

Fault Initialization

In oxder to initialize the fault interceptor module, tne
initialization control program makes the following call.

MULTICS SYSTE!N~PROGRAMNMERS' MANUAL Section BL.9.01 2

call faultminitl

Upon return from this call, the fault interceptor module is fully
initialized, but not yet in operation. The steps required for
this initialization are as follows.

1.

The segment descriptor word for the fault interceptor segment
is changed (temporarily) from "master procedure" to "data,
writing permitted.”

The linkage pointer and linkage base (lp-1b) values for thae
fault interceptor are obtained from tne Segment Loading Table

and stored "inside" the fault interceptor procedure. (Since
tne fault interceptor is not called, it must e able to
establish its own linkage wvalues wusing an "internal"

address.) To obtain the pointer to the linkage section for
the fault interceptor, the fault initializer performs tne
following call.

call slt _manager$get link seg ptr(text ptr,link ptr,errtn)
Pointers to the various locations in the process concealed
stack and tne processor stack are built and stored . "inside"
the fault intcrceptor procedure. (The fault interceptor must
save and restore the processor state wusing only "internal"
addresses.)

The segment descriptor word for the fault interceptor segment
is changed from "data, writing permitted" to "master
procedure."

The processor communication tables (IISPII Section BK.4.01l) are
initialized. 1In particular, the following arrays are built
based on information obtained from the system configuration
table.

a. time-out pattern array

b. pre-emption pattern array

c. quit pattern arrayv

d. time-out pointer array

e. pre-emption pointer array

f. quit pointer array

g. connect operand word array

(At first, tne processor communication tables will be «r

e
from tape. This step is included here as a reminder £
later.)

ad
or

-

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BL.9.01 3

6. ILntries in the process definition segment (MSPM Section
BJ.1.06) tnat are vused by the fault interceptor are
initializea. Of particular interest to the fault interceptor
is the 'stacks' array which contains pointers to the Dbase
locations of the various paged stacks for the wuser process.
(When a process 1is created, it must be christened with a
non-empty 'stacks' array.) The first entry of the ‘'stacks'
array is set to point to the base location of the initial
process' ring 0 paged stack.

7. Control is recturned to the Multics initialization control
program.

After all modules that are called by the fault interceptor have
been initialized, the Multics initialization control program
issues the following call to initialize the fault vector and to
switch to the Multics fault interceptor.

call fault_initz

Upon return from this call, the Multics fault handling mechanism
is fully operable. (An important implication of this is that the
Multics protection ring mechanism is in effect; the Gatekeeper
nust have been initialized.)

70 initialize the remainder of the fault vector, the fault
initializer "compiles" instruction pairs of the form

scu a,*
tra D,*

where a is an ITS-pointer to the concealed stack and b is an
ITS~-pointer to the fault interceptor. The fault initializer
builds the necessary pointers in segment 'vector redirector’.

