
HUL'l'ICS SYS'l'EH-PHOGR.l\I'H'lLrtS' HANUAL Section I3L.9.01 1

Published: 10 April 1967
Identification

The Fault Initializer
Chester Jones

This section provides the specification of the fault initializer
Hhich is run under control of the Hultics initialization control
program (MSPM Section BL.S.Ol). The basic goal of the fault
initializer is to initialize the fault interceptor module (MSPM
Section BK.3.02) and to establish the data bases associated Hith
fault handling. 'l'his section assunes a thorough knmvledge of
Hultics fault handling and a general knoHledge of Hultics system
initialization.

Introduction

Hhen the initialization control proc:rram passes control to tne
fault initializer, the hardcore supervisor is in the following
state.

1. All of the segr.:ents of the hardcore supervisor, \·1hici1 are
required at initialization time, have been loaaed into core
and all external segment references have been lirJ~ed by the
prelinker. (All of tne data bases used for fault handling
nave been provided by tne segment loader altnough their
contents are zero.)

2. 'l'he system confiquration table \'lhich describes the hard\·lare
available to the Multics .system has been built by the
configuration table generator (MSPM BL.5.03). Of particular
interest to the fault initializer are the system
controller-processor assignments, the memory port number
assignments, and the address ranges assigned to each system
controller.

3. The initialization linker has been provided by the
initialization control program; symbolic intersegment
references rnade lJy the fault initializer cause linkage faults
\'li.1ich are handled by the initialization linl:er. (Although
the hardcore supervisor segments have been pre-linked, tne
fault initializer has not.)

4. The process concealed stack (MSPN Section BJ.l.OS) and the
processor stack (HSPI-I Section BK.l.03) have been provided and
initialized by the Bootstrap program.

Fault Initialization

In o::r.der to initialize the fault interceptor moduler tne
initialization control program makes the following call.

HULTICS SYS'l'EII-PROGiU\!!!!ERS' NAiWAL Section BL.9.01 2

call fault initl

Upon return from this call, the fault interceptor module is fully
initialized, but not yet in operation. 'I'he steps required for
this initialization are as follows.

1. 'l'he segment descriptor Hord for the fault interceptor segment
is changed (temporarily) from "master procedure" to "data,
\vriting permitted."

2. The linkage pointer and linkage base (lp-lb) values for the
fault interceptor are obtained from the Segment Loading Table
and stored "inside" the fault interceptor procedure. (Since
tne fault interceptor is not called, it must be able to
establish its own linkage values using an 11 internal 11

address.) To obtain the pointer to the linkage section for
the fault interceptor, the fault initializer performs tne
following call.

call slt._manager$get _link_seg_ptr (text.: _ptr, link _ptr, errtn)

3. Pointers to the various locations in the process concealed
stack and ti1e processor stack are built and stored 11 ins ide"
the fault interceptor procedure. ('l'he fault interceptor must
save and restore the processor state using only 11 internal"
addresses.)

4. The segment descriptor word for the fault interceptor segment
is changed from 11 data, writing permitted 11 to 11 master
procedure. 11

5. 'l'he processor communication tables (HSP£.1 Section BK.4.01) are
initialized. In particular, the follm..ring arrays are built
based on information obtained from the system configuration
t.able.

a. time-out pattern array

b. pre-e~pt.:ion pattern array

c. quit pattern array

d. time-out pointer array

e. pre-emption pointer array

f. quit pointer array

g. connect operand word array

(At first, tl1e processor communication tables will be read
from tape. This step is included here as a reminder for
later.)

NUL'l'ICS SYSTE!·:-PROGEl~HNERS' HhNUAL Section BL.9.01 3

6. Entries in the process definition segment (MSPM Section
DJ.l.06) that are used by the fault interceptor are
initialized. Of particular interest to the fault interceptor
is the 'stacks' array which contains pointers to the base
locations of the various paged stacks for the user process.
(l.vhen a process is created, it must be christened \·Tith a
non--empty 'stacks' array.) Ti1e first entry of the 'stacks 1

array is set to point to the base location of the initial
process' ring 0 paged stack.

7. Control is returned to the Hultics initialization control
program.

After all modules that are called by the fault interceptor have
been initialized, the Multics initialization control program
issues the follm·ling call to initialize the fault vector and to
switch to the Multics fault interceptor.

call fault init2

Upon return from this call, the Multics fault handling mechanism
is fully operable. (An important implication of this is that the
Hultics protection ring mechanism is in effect; the Gatekeeper
must have been initialized.)

'J..'o initialize the remainder of the fault vector, the fault
initializer 11 Compiles" instruction pairs of the form

scu
tra

* a,
, * o,

where a is an ITS-pointer to the concealed stack and :0 is an
ITS-pointer to the fault interceptor. The fault initializer
builds the necessary pointers in segment 'vector redirector'.

