
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Implementation Qf EPL Blocks
D. B. ~vagner ang ~lj. D. Mcilroy

Purp9_se

SECTION BN.5.01 PAGE 1

Published: 03/07/67

The PL/I definition of a block is, '' ... a collection of
statements that defines the program region--or scope-­
throughout which an identifier is used as a name. It
also is used for control purposes11 (IBJ"l form C28-6571-3,
p. 19, which should be seen for a detailed discussion
of blocks from the point of view of the language). A
block may be an ~~ _2rocedure, an internal procedure,
or a beq1n block. The most 1mportant fact.about the
implementation of blocks is that each generation of each
block has a corresponding frame in the stack. This section
describes the mechanisms used for initializinG and terminatinG
these blocks, and for accessing variables of ~ontaining -
blocks.

External Procedures

Ignoring the fact that segments may be bound together
(for which see The Binder, MSPM BX.14.01) external procedures
correspond one-for-one with procedure segments. Every
Pl/I program segment is an external procedure with one
or more external entries. The first label on the first
E!~ed~ statement in the pro9ram segment is considered
the 11 procedure name" and the ''primary entry point"; in
EPL (but not in PL/I) this name is used as the name of
the procedure seGment. -
An external entry is of course called using the standard
call-save-return sequences described in 80.7.02-03 (with
one trivial change noted below). An entry beta in segment
al£ha is referenced using the notation -:----

alpha$beta

and the simple name beta with no 11 $11 refers to

beta$beta

r

f·1UL TICS SY S TEfli- PROG Rf-1111\rJiERS' HA f\JUA L SECTION BN.5.01 P.L!.GE 2

Internal Procedures

In EPL internal procedures are called using the standard
·call-save-return sequences with the argument list modified
by attaching to it the value of the stack pointer for
the embracing block. This modification is described in
80.7.02. This implementation is mandatory for internal
procedures that may be called f:-::xn another segment. As
an example consider the statements:

a: begin;
b· proc;

A call to~ (no matter whence) includes in t~e araument
1 ist the sta·~': pointer for the generation of storaQe for
a. (of course a must be active at the time of the call
to Q_. This stack pointer is used by 12_ ·for accessing variables
in embracing blocks.

This situation is complicated by the fact that an internal
entry may be passed as an.argument, and thus may be called
from procedures 1:1hich ·have no ~,,;ay of knovJing the stack
level of its embracing block or even whether it is internal
or external. To solve this problem, whenever an entry
is passed as an argur.1ent, the object passed is a six-vJord
block (identical to a label) as follows:

ITS to entry

ITS g1ving stack pointer (for
embracing block if internal;
dummy if external)

2 spare ~ords for compatibility
with PL/I

Whenever any entry parameter is called, the caller includes
the stack pointer value from the entry parameter in the
same vvay as it vJould be passed in a call to an internal
procedure. External procedures ignore this extra, while

r

r

tv\ULTICS SYSTEH-PRCGRAnHERS"' ~·\A~·JUAL SECTION BN.5.01 PAGE 3

internal procedures use it to create a display without
caring about its source.

Beqin Blocks

In EPL a begin block is implemented precisely as an internal
procedure, so that the statements

a: begin;

end a;

might compile to something like

a: . (set up argument list for no arguments,
but vJith value of sb~sp attached)

cal 1 xx0239 (argument list)
tra xx0240

xx0239: save
.

return
XX 02 4 0 : n U 1 l

The displav
.;_

As was mentioned earlier, an internal procedure or begin
block receives attached to its argument list the value
of the stack pointer for its static~lly embracing block.
In EPL it uses this to enable it to refer to outer blocks
by s e t t i n g up t he d i~J?..l.§.Y., v1 h i c h i s a 1 i s t of I T S pa i r s
giving stack levels for a·I_J statically embt·acing blocks.
The display starts at a fixed location in the stack frame
for any internal block and for a block at level i (where
an extern~l procedure is at level 0) is 2*i words long.
To refer to a variable at location a in the stack frame
for an embracing block~ levels bac~, the code might then

eapbp sp[display+2*n-2,*

lda bp!a

b D•
~.

r

fvlULTICS SYSTEH-PROGRA.Hi11ERS' fvlANUAL SECTION BN.5.01 PAGE 4

When an internal procedure or begin block at level i is
entered, it sets up its display by inserting the stack
pointer attached to the argument list into the display
and then appending a copy of the display from the embracing
block (which is~2*i - 2 words long).

ProloE:Jues, EpiJo~ues, and the ~!on-Local Go To

Each block (exte~nal or internal) begins with a prolooue
and ends ~vith an eoi looue. The prologue performs various
initialization tasks such as setting up the display, creating
specifiers and (sometimes) dope for automatic variables,
~tc. It is not terribly important in this discussion.

The epilogue performs a number of tasks which must be
done when a block is terminated. These include:

1)
2)

3)

Reverting on-conditions
Freeing the storage occupied by
automatic varying strings
Popping up the epilogue stack

The problem with epilogues is sho\·m by the following series
of statements:

a:
q:
b·

C:

begin; . . .
begin; . . .
begin;
. . .
go to q;
end c;
end b;
end a;

,...

SECT)ON BN.5.01 PAGE 5

The statement 11 go to q11 is a non-local .9..£_J:o: when it
is executed, the stack level must be brought down to the
level of~; furthermore, the epilogues for both of the

.blocks £ and 2 must be performed.

For the benefit of the non-local go to, a push-down list
of epilogues to be performed is kept in a static segment.
In location

<trap_ >I[epi]

is a pointer to what is called the current eoil.,£g_u....:e~h,....a'-n_d_l_er.
The value of this pointer is initially null. An epilogue
handler has the form of the following structure:

del 1 epi loaue handler ctl (p)'
2 loc ptr,- ;-·· " location of epilogue -··I . "
2 stack pt r, ;-·· stack level of block i'~ I " I

2 back pt r; ;-·· " to previous epilogue handlers

This piece of data is normally located in the stack frame
for the block to which the epilogue belongs.

The prologue for a block with an epilogue executes the
fo 11 ov1i ng sort of code:

del my_handler auto like epilogue_handler;
my_handler.loc = .•• ; I* location of epilogue*/
mv handler. stack = .•• ;~·~ current sb~ sp -:.;
my-handler.back=trap $epi;
trap_$epi_ = addr (my_handler);

At the end of the epilogue, the follo"ving statement serves to
revert to the previous epilogue handler:

trap_$epi~ = my_handler.back;

The epilogue is a sequence of code which performs its task,
reverts the epilogue pointer trap_$epi_, and_finally executes
a return sequence.

;'{I

MULTICS SYSTEM-PROGRAf"i~1ERS" fv1ANUAL SECTION BN.5.01 PAGE 6

Because of difficulties with asynchronous interrupts~ an
attempt is made to code the epilogues generated by EPL
with the following doctrine:

11 It wi 11 be harmless to execute all
or part of an epilogue more than once 11 •

The chain of epilogue handlers described above is used
by the run-time routine synep which performs a so-called
''synthetic epilogue" for the non-local go to. Synep_
is described in BN.7.03.

EPL's Variation of the Save Sequence
'

There are two problems with the save sequence presented
in 80.7.02: it does not permit stack frames longer than
16k words~ and it does not permit use of a single copy
of the code (which is six words long) by every procedure
and block in a program. Thus the follmving slight variation
of the~ sequence is compiled by PL/I:

.SV:

eax7 t 16ad index register 7 with length of next frame
tsxO .sv to save subroutine . . .
eapbp
stpsp
stpap
eapap
stpap
eapsp
stb
tra

spl18~~··
bpi 16
bpl26
bpl0,7
sp 118
bpiO
spiO
010

Since EPL .never uses the entrance value of ab~ap except as -it
is stored in spl26 1 it is unimportant that this save sequence

11 clobbers 11 that base pair.

The instruction above~

stb spiO

saves the value of the base pair lb <.1-lp for use by internal
procedures in case they are entered from outside the current
segment.

