
"" I

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

SECTION BN.5.02 PAGE 1

Published: 06/02/67

Implementation of QU-conditions in EPL
D .B. Wagner

Discussion

.Qn-conditions in PL/I provide a kind of machine-independent
trap-handling mechanism. See the PL/I manual, IBM form
C28-6571-3, p. 80, for a detailed discussion. Briefly,
the 2n statement specifies a sequence of statements called
an on-unit which is to be executed when a condition arises.
some-conditions, such as overflow, may arise as a result
of the execution of ordinary codeJ however the signal
statement can be us·ed to simulate the occurrence of any
condition. (In the case of the overflow condition, the
machine overflow fault is handled by a special fault catcher
which uses the signal statement to raise the EPL overflow
condition.)

Within a block, Q!l-statements reset each other, but "push-down"
Qn-statements executed in dynamically embracin~ blocks.
The revert statement causes the Qn-unit which 1s current
in the dynamically embracing block to be reinstated.

Some conditions take an argument, e.g.:

conditions (x_err)
endfile (user_input)

and these require a special treatment described later.

The present Section describes the code generated by EPL
for the Qn, signal, and revert statements and the form
of the Qn-unit.

Condition Prefixes

"Condition prefixes" may be placed on blocks and on single
statements to "enable" or "disable" conditions. \rJhen
a condition is disabled in a block, all signals of that
condition, whether implicit or explicit, which occur while
control is in that block or any static descendant of it,
are suppressed.

In PL/I, eight conditions may be enabled and disabled
using condition prefixes:

underflow
overflow

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.5.02

zerodivide
fixedoverflow
conversion
size
subscript range
check (identifier)

PAGE 2

Because of implementation difficulties~ the first four
(which depend upon hardware fault handlers) may not appear
in condition prefixes in EPL. Because no difficult conversions
are supported by EPL, the conversion condition is not
necessary and may not appear in condition prefixes. Similarly
the check condition is not supported by EPL. This leaves
two cond1tions which may be enabled and disabled in EPL:

size
subscriptrange

When these conditions are enabled~ the compiled code checks
for them whenever they might occur~ and executes the standard
code for the signal statement if they do occur. No more
need be said here about condition prefixes.

Global Strategy

The 2n~ signal~ and revert statements are implemented
using the Multics system routines condition~ signal~ and
reversion~ described in BD.9.04.

For any of the "standard" conditions which do not take
arguments~ e.g. overflow~ the name given to the system
routines is the name of the condition. Thus the statement

signal overflow;

is equivalent to the statement

call signal ("overflow•);

For a programmer-defined condition~ e.g. condition (x_007)~
the name given to the system routines is normally the
identifier specified in the statement. Thus the statement

signal condition (x 007)

is equivalent to

ca 11 signa 1 (" x_007");

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.5.02

However for a programmer-defined condition in which the
identifier in parentheses happens to be the name of one
of the ten standard PL/I conditions which do not take

PAGE 3

arguments (conversion, fixedoverflow, overflow, size,
underflow, zerodiv de, subscriptran¥e, area, finiSh; and
error) a special naming conventions used to avoid ambiguity.
The name given to the system routines is the name in parentheses
with the constant 11 condition. 11 prefixed to it. Thus the
statement

signal condition (overflow);

is equivalent to

call signal (11 condition.overflo\rJ');

Implementation

The above is all that needs to be said here from the point
of view of global strategies. What follows is merely
a discussion of the implementation of the global strategy
in greater depth. The Multics condition-handling routines
were not designed with PL/I in mind, and a certain amount
of fiddling is needed to implement correctly the PL/I
rules of how and when things get reverted.

The following discussion applies to each block in the
program, and each on-condition which may have an on-statement
executed for it in~he block. Versions of the code generated
by EPL are shown written in EPL for the sake of clarity.
The precise EPLBSA code generated by EPL should eventually
be documented in BN.6.07.

A call is kept in the block's automatic storage which
is non-zero if and only if an gn-unit is currently in
effect for this gn-condition in this block. This cell
is set to zero by the prologue. Call this cell c· Then
the code for the gn-statement is equivalent to:

if x 1\ = 0 then ca 11 revers ion (11 name");

call condition ("name" unit)· -, ,
X= 1;

unit: proc;

ca 11 revers ion ('' ~~~);

. .
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.S.02 PAGE 4

••• (the go-unit)

ca 11 condition (11 name". unit) J

end;

where name is the name derived from the naming conventions
discussed in Global Strategies. above.

The code for the revert statement is equivalent to:

if x 1\= 0 then doJ

call reversion (11~1)

X = 0;

end;

And in the epilogue (executed at block termination) code
equivalent to the following is executed:

if X/\= 0 then call reversion (11~');

The code for the signal statement requires no prologue
or epilogue. It is simply

call signal (11~11);

l

