
MUL TICS SYSTEM-PROGRAMfviERS .. MANUAL SECTION BN.6.02 PAGE 1

Published: 03/09/67

ldentific:atiorJ.

Declarations and Data Organization in EPL
D. B. \AJagner

Purpose

The present Section describes in avJesome detail the actions
of Pass 1 and Pass 2 of EPL in dea 1 ing with management
and definition of variables, aggregates, temporaries,
etc. The average user will have no interest-in this Section;
it is intended for the use ·of EPL maintainers only, and
even for them only as a reference. See BN.6.00 for the
terminology used.

Non-string Scala~

The following data-types do not require specifiers. Each
simply requires a block of storage 1, 2, or 6 words long.
See BP.2.01 for details of implementation of these data-types;
the present discussion concerns only how their storage
is managed.

floating variables
fixed variables
pointer variables
label variables

If Pass 1 encounters a declaration for one of these data-types,
or if it needs a temporary variable with one of these
data-types, it generates a macro of the following form:

Here ~ gives the data-type:

fl floating
fx fixed
pt pointer
lb label ...

' ' ..
Nost of the macro fields are as described in BN.2.02.
f\jarng is the name used for the variable in trH:; source program
(or null for a temporary), aliQ?. is a L:n:lque name generated.
by Pass 1 for the variable_, bi~:s is the precision of a
fixed or floating variable_, a constant 72 for a pointer
variable; or a constant 144 for a label variable. [This

MULTICS SYSTEM-PROGRAtvit•1ERS' MANUAL SECTION BN.6.02 PAGE 2

constant should be 216 for a label variable 1 since labels
are now 6 words long instead of 4. However Pass 2 ignores
this field for labels so ·it doesn't really matter.] Offset
is either 0 or 11 esil'. 11 Esi" means 11 external static initial";
this· issue is discussed elsewhere. Level is the block
level at which the declaration occurred. The fields scooe
and class differ according to the storage class of the
variable: they are mentioned in the following discussions
of the various storage classes.

1. For a non-string scalar 2arameter 1 Pass 1 generates the macro

df~ ~~a1ias 1 bits,O,xxx,par U1 Xxxx,0 1 11 0

2.

where n is the parameter number. Pass 2 totally ignores
this macro.

For an automatic non-string scalar~ Pass
macro,

generates the

Pass 2 assigns sufficient storage for the variable. in
the current block. This storage is at an even location
if the variable is other than single-word arithmetic.
Pass 2 generates the follovling eplbsa 1 ine to associate
ali~ with its assignment of storage.

equ alias, loc

Loc is the stack location assigned to the variable. Name
is given as a comment for convenience.

3. For an in~ernal stat~ non-string scalar 1 pass 1 generates
the macro: ·

df,2SZ ~,al ias 1]J5. ts 1 0,xxx, int,stat,O,J.evel,O

See BN.S.OO. for the implementation of internal static
storage. Pass 2 assigns storage to the variable in the
procedure's block of iternal static storage at <stat_>l<segame>.
This storage is at an even location i~ the var).able is
other than single-vJOrd arithmetic. · t\ssignment of stor-age
in the procedure's internal static storage block begins
with location 0. Pass 2 generates the following eplbsa
line to associate alias with its assignment of storage.

fv\ULTICS SYSTEf'~-PROGRM11fvtERS ;o rv\Ll.~JU.LI.L SECTION BN.6.02

19£ is the location assigned to the variable. ~lame is
given as a comment for convenience.

PAGE 3

4. For an §_~erngl static non-string scalar without the
initial attribute 1 Pass 1 generates the macro

See BP.4.00 for the implementation of external static
storage. Pass 2 switches ~o a code stream (see BN.6.01)
outside of the any executable code stream and generates
the following eplbsa code:

. YD.: dec
dec
segref
link

muor.s:ls
0
stat_, nang ~ da tmk_(. YD.))
a 1 i?;..~ .. D.?..lJ.}g_

Here . YD. is a unique symbo 1 created by Pass 2, and nvvords
is the nurr.ber of vJords 1:11hich the variable occupies, adjusted
up to an even number.. [There seems to be no reason for
this adjustment.] The procedure datrnk __ is used to 11 gro~ti 1

storage: it is described in great detail in BP.4.01.

5. For a co;1trollec.l, based non-string scalar \rvithout the
initial attribute, Pass 1 generates the ma:ro

which Pass 2 ignores.

L{on..=..a9 ius table f\JQ.n-y,.;::lrv:tno Strinos

Strings require specifiers and dope and consequently are
more difficult to compile than other scalars. See BP.2.02
for details of specifiers: they contain its pairs \vhich
can only be created at execution time.

If Pass 1 encounters a declaratiQn.for a non-adjustable
non-varying string, or if it needs ·.a non-vary':i.r:lg string
temporary for 5.ts ovm use, :it generates a macro of the
follovJ:i.ng form.

~iULTICS SYSTEtv1-PROGRAMiVlERS"' fviANUAL

Here u gives the data-type:

bs bit-string
cs character-string

SECTION BN.6.02 PAGE 4

Most of the macro fields are described in BN.2.02. Name
is the name used for the variable in the source program
(or null for a temporary). Blts is the length of the
string in bits •. Of.fsg_i;, is either 11 011 or "esi11 • 11 Esi"
means "external static initial"; this issue is discussed
e 1 sevJhere. A 119..5, is a unique name generated by Pass 1
for the variable. Level is the block level at which the
declaration vJas encountered. The fields scooe and class
indicate the storage class and are mentioned in the discussions
of storage classes which follow.

1. For a non-adjustable non-varying string Qara~ter,
Pass 1 generates the following ma~ro:

Here n is the parameter number. Pass 2 need only ignore
this macro. Hov,Jever it does generate the label and transfer
for jumping into and back out of the prologue code sequence
(see BN.6.01). Thus one sees in the code wasted instructions
such as,

p1.4: tra p1.5

2. For an £HlQDJ.l"3t_..\f;. non-adjustable non-varying string, Pass
1 generates the macro

Pass 2 allocates storage in the current block's stack
frame for the specifier and data for the string. It compiles
the dope into the procedure. It compiles into the prologue
code sequence the necessary instructions to create the
specifier at block entry.

The layout of the string in the stack\.vill be as follovJS:

to dope in
procedure
segment

data pointer ~

i
~ dope pointer i
-...-- I !

~-----a-1c-.t-a------~l~j

L_ ___r

SECTION BN.6.02 PAGE 5

Pass 2 generates~ outside of any executable code sequence:

equ
.ia.Q:dec

vfd

ill ia~, 1 oc D.§.!11g
0
9/160,27/b:it2_

And in the prologue code sequence:

eapbp
stpbp
eapbp
stpbp

s p I a 1 :t as +4 " n
sp I a 1 ias+O, n
. ia.Q, n
splal ias+2,n

Here loc is the location assigned to the variable in the
stack. [The modifier 11 ,n" on the instructions above means
11 no modifier." It is normally left off in eplbsa code.
This is probably a harmless leftover from early misunder
standings. The symbol .ia.Q. is a uniqu~ symbol created
by Pass 2.

3. For a controlled, based non-adjustable non-varying string,
Pass 1 generates the fo 11 ovJi ng rnac ro:

Pass 2 allocates space in the current block's stack frame
for the string specifier. It compiles the dope into the
procedure segment outside of any executable code sequence.
It compiles into the prologue code sequence the code to
set up half the specifier, the dope pointer, at entrance
to the current block. The data pointer in the specifier
is set to point to a generation of the variable when it
is accessed (see BN.6.03.). [As will be mentioned e1se~t-Jhere,
this particular implementation of based items with specifiers
causes some unfortunate restrict ions in the vJays they ·
can be used in calls]

Pass 2 compiles, outside of any executable code sequence,
the following eplbsa code:

equ
.ia.Q.:dec

vfd

alias, loc name
0
9/1 60 I 2 7 llll.!.~ . .

And in the prologue code sequence:

eapbp
stpbp

. iag
sp!a15 . .:3S+2,n

Here loc is the location assigned to the specifier in the
cu rrenf-b 1 ock 's stack frame. The syrr.bo 1 . iap is a unique
symbol created by Pass 2.

MULT ICS SYS TEM-PROGRA~1r~ERS' MANUAL SECTION BN.6.02 PAGE 6

4. For an internal static non-adjustable non-varying string.,
Pass 1 generates the_following macro:

df2$.2S .!J.§.J]g.,al ias.,bit~_,O.,xxx., int.,stat.,O., lev·el .,0

. See BN.S.OO. for the implementation of internal static
storage. Pass 2 assigns sufficient space for the string
and its specifier in the procedure's internal static storage.
It generates code to create the specifier in the "internal
static specifiers' 1 code sequence. The layout of the string
in internal static storage is the same as that of an automatic
string in the stack., as di~grammed above. ·

Pass 2 generates., outside of any executable code sequence.,

.dvn:
equ
dec
vfd

a 1 i.a-2. ,l.o_c;.
0
9/160.,17/bits

And in the 11 internal static specifiers" code sequence.,

eapap
eapbp
adbbp
stpbp
eapbp
stpbp

lpl.is.,·k
ap jO ·
a] ias+4.,du
aplal ias
.dvn.
apIa 1 ia~+2

The symbo 1 .li is the 1 inkage address of the procedure's
internal static storage''; see BN.6.01. Loc is the location
assigned to the variable in this internal static storage.
The symbol .dv.Q· is a uniqu~2 symbol created by Pass 2.

5. For an external non-adjustable non-varying string without
the initial attribute Pass 1 generates the macro:

dfxx name,al ias,!)its.,O.,xxx.,ext.,stat.,O., level ,0

See BP.4.00 for the implementation of external static
storage. Pass 2 compiles., outside of any executable code
sequence, the dope and the code for setting up the external
variable on first reference. It ·anocates storage in
the procedure's internal static storage for the string·
specifier., and compiles., in the "internal static specifiers"
code sequence., the code to initialize the specifier.

MULTICS SYSTEM-PROGRAt~MERS' f'JANUAL SECTION BN.6.02 PAGE 7

Pass 2 compiles, outside of any executable code sequence,

.dvn:

.y.!]:

~Q.U
dec
vfd
dec
dec
segref
arg

91 ias .. J cc DllllJ.§.
0
9/160 .. 27/bit~
m~Jords
0
stat_,fi?~(datmk_(.ym))
~

And in the 11 internal static specifiers" _code. sequence ..

eapap
eapbp
stpbp
eapbp
stpbp

lpl.is .. ·k
.D£I:D.g., n
aplallaS+D
.dv.o.
aplal ias+2

~ds is the number of words required by the string,
adjusted up to an even number of words. [It is not clear
why this adjustment is made.] Loc. is the location assigned
to the string's specifie~ in the procedure's internal
static storage. The symbol .dv.o. and .ym are unique sy~bols
created by Pass 2. [The "arg D..?.IQ,g" above is another superfluous
remnant of the good old days of BSA.]

lJ.on-adjt,J.2.iab 1 e Va rv illg__S t r :tnq~

See BN.5.00 for the implementation of varying strings
in EPL. A varying string's specifier contains a third
jts pair pointing to a free storage area \vhere data is
kept for the string.

An anomaly concerning varying strings is that they must
be initialized to zero length before being assigned values.
Furthermore all the automatic varying strings in a block
must be cleared when the block is terminated. The jobs
of initializing and clearing varying strings and aggregates
containing them are performed through calls to the library
procedures varst_~zero and varst~_Sclear, described in
BN.7.02. Two internal subroutines :compiled into each
program vJh ich needs them,_'Ll and _;__y'2.; serve as interfaces
to these library procedures. They are called where they
are needed (normally using an g,~'-...1 follovJed by a t~.,2;;,Q).
The detailed discussions given below for the various storage
classes shm·J precisely hO'.·.J they are called ln various
cases. The code for .v1 and .v2 is as follows:

MUL TICS SYS TEt-'1-PROGRA~iMERS' r-'lANUAL SECTION BN.6.02

• vl:

.v2:

stpsp
asx7
ldaq
staq

· ca 11
tra
stpsp
asx7
1daq
staq
ca 11
tra

/

sp I. u0+2
spl.u0+3
=V18/2,54/0
sp 1. uO
<varst_>l [zero](spl .uO)
0,0
sp!.u0+2
spj.u0+3
=V18j2,54/0
sp I . uO
<varst_>l [clear](spl .uO)
0,0

PAGE 8

The symbol .uo is the stack location of a block of "utility"
storage used in many places in the compiled code. It is
available by the same name at all block levels. See BN.6.01.

[The instructions above,

stpsp
asx7

spl.u0+2
spl.u0+3

are unacceptable because-the second will cause an overflow
fau 1 t vJhen the stack ·groi.'JS longer than 2 '1;;':17 words. These
instructions should be replaced by,

eapbp
stpbp

I am indebted to C. G. Garman for this and several other
problems with overflow faults.]

1. For an gautQ.DJ£.tk non-adjustable varying string, Pass
generates the fo 11 ovJ i ng macro:.

dfg ~ .. a l ia2_,b it~~O, var, int ,auto,O,level ,0

Pass 2 allocates eight words in the current block's stack
frame for the specifier and 11 current in format ion 11 for .
the varying string. It compiles the dope into the procedure
segment, outside of any executable code sequence. It
compiles into the prologue code sequence the code necessary
to build the specifier and initialize the stri~g at block
entry. It compiles into the epilogue code sequence the
code necessary to clear the string.

MULTICS SYSTEM-PROGRA~~MERS' MANUAL SECTION BN.6.02

To dope in
procedure seg ment

--

·-

--

-· -

--- - r- data pointer

-- -- dope pointer

PAGE 9

To
<free..> r [free

...
f-· -· - - - - - free storage pointer ·

_]

current offset ~

current length

Pass 2 compiles, outside of any executable code sequence,

In

And

equ
.ia.Q: zero

the

in

vfd

prologue code

eapbp
stpbp
eapbp
stpbp
eapbp
stpbp
eax7
tsxO

the ep i 1 ogue

eax7
tsxO

alias,~
0,0
9/130,27/b:tts

sequence,

code

sp r ~ 1 ias.+6, n
sp(aJ ias+O,n
.ia,g,n
splal ias+2,n .
<free_> I [free_]
s p r a 1 :t a 5+4 .. n
a 1 ia2,
.v1

sequence,

alias
.v2

name

~ is the location of the storage assigned to the variable
in the stack frame. The symbol riaQ is a ·uni~ue symbol
created by Pass 2. · •

[The instructions above,

eax7
tsxO

ali~
.v1

end up calling the procedure varst_~zero. This is a rather
expensive ~;-vay of getting precise 1 y the same effect as,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.6.02 PAGE 10

stz sp f al ias+7

which is all that ends up happening. Varst_ is a very
general routine which handles arrays and structures where
it v.Jould be a great hardship for the compiler to work
these things out. In the present case, however, it is
just s i 11 y. J

3. For an internal ~tati~ varying string, Pass 1 generates
the fo llov'!ing macro:

dfM D§.l]Jg,al ias,bits,O,var,int,stat,0,~-,0

Pass 2 assigns storage for the specifier and 11 current
information11 for the variable in the procedure's internal
static storage block located at <stat_>! [segname] (for
details see BP.4.00 and BN.5.00.) It compiles the dope
into the procedure segment, outside of any executable
code sequence. It compiles into the 11 internal static
specifiers 11 code sequence the code to build the specifier
and initialize the string at first reference.

The string will be laid GUt in the procedure's internal
static storage in the same fashion as diagrammed above
for automatic strings.

Pass 2 compiles, outside of any executable code sequence,

.dvn:
equ
zero
vfd

a 1 ia~ .. loc
o .. o
9/130,27 /Qi.t.?

And in the 11 interna1 static specifiers 11 code sequence,

eapap
eapbp
adbbp
stpbp
eapbp
stpbp
eapbp
stpbp
eapbp
stpbp
tsxO

1pl.is,'1:
ap!O
al ias+6,du
aplal ias+O
.dvn
aplal ias+2
<free_> I [free_]
ap·! a 1 ias+l.~, n
ap I a·l ia~
spl.u0+2
.V1+2

MUL TICS SYS TEM-PROGRAM1'-1ERS' MJ\NUAL SECTION BN.6.02 PAGE 11

Here loc is the location of the storage assigned to the
variable in the procedure's internal static storage~ and
.dvn is a unique symbol created by Pass 2. The symbol
.is is the linkage address of the procedure's internal
static storage 1 as is mentioned in BN.6.01. The symbols
.uo and .v1 were discussed earlier.

4.

[As was mentioned above under automatic varying strings~
the three instructions

eapbp
stpbp
tsxO

apfalias
spl.u0+2
.V1+2

could be relaced by the instruction

stz apfal ias+7

at a considerable saving in time:]

For an external ~tatic non-adjustable non-varying string
without the initial attribute~ Pass 1 generates the macro

df.2QS .D.ill!]g,a-1 ias 1 bi ts,0 1 var ,ext.,stat,0 1 level,O

See BP.4.00 for the implementation of external static
storage. Pass 2 assigns storage for the string specifier
in the procedure's internal static storage. It compiles
the dope and the "trap-before-link" initializer in the
procedure se~ment outside of any executable code sequence.
It compiles 1nto the "internal static specifiers" code
sequence the code necessary to set up the string specifier.

Pass 2 compiles., outside of any executable code sequence,

.dvn.:

• YID:

[

equ
zero
vfd
dec
dec
arg
tsx1
eapbp
eapbp
stpbp
tsxO
tra
segref
arg

alias,joc name
010
9/130 1 27/bits
2
1
~':'+ 1
.ei :
lpl.is,~:
bplal ias
.U0+2
.V1+2
.rt]
stat_,,O.?mg(datmk_(.ym))
lJ.9ll1g

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.6.02 PAGE 12

And in the 11 internal static specifiers" code sequence.,

eapap
eapbp
stpbp
eapbp
stpbp
eapbp
stpbp

lpl.is., ... "
name~n
aplalias+O
.dv.m
apIa 1 ias+2
<free_>! [free_]
aplal ias+4.,n

Loc is the location assigned to the specifier in the procedure's
internal static storage. The symbols .dvn and .ym are
unique symbols created by Pass 2. The subroutine .ei
performs an internal procedure save sequence., and is discussed
in BN.6.04. The symbol .rt is the return sequence (discussed
in BN.6.01). The symbols .uo and .v1 are discussed above.
The symbol .is is the linkage address of the procedure's
internal static storage. The library P.rocedure datmk_
is described in great detail in BP.4.02.

[A bug in EPL at this writing causes the instruction in
square brackets above to be omitted.]

[The astute reader will notice that it is never in fact
necessary to have an initializing procedure attached to
the datmk_ call for an external static item with a specifier.
The same effect can be obtained much more cheaply by putting
the initialization into the "internal static initial"
code sequence.]

[Again it is necessary to point out that the use of .v1 here
is unnecessary and dreadfully inefficient. The instructions

eapbp
eapbp
stpbp
tsxO

could be replaced by

eapbp
stz

lpl.is.,·k
bplal ias
.U0+2
.V1+2

lpl.is~-::
bp j·a l:ias+7

at a considerable saving in time.]

See BP.2.01 and BP.2.02 for the details of implementation
of arrays and structures and their dope vectors. All
non-adjustable aggregates of a given storage class are

MUL TICS SYSTEM-PROGRAr•lMERS' MANUAL SECTION BN.6.02 PAGE 13

treated very similarly except in.the form of the dope.

When Pass 1 encounters the declaration for a non-adjustable
aggregate, it generates a macro of the form,

dfxx namg,alia~,bits,offset,~,scooe,cla§s,ndim,
JeveJ.,nsub ·

which will be followed by others as described below. Here
~ is the data-type: the possibilities in this case are,

pt
bs
cs
fl
fx
lb
sx
psx

pointer
bit-string
character-string
floating
fixed
label
aligned ~tructure
packed structure

The macro fields are discussed in detail in BN.2.02.
Briefly: ~arne is the source-language name of the aggregate.
Alias is a unique name created for it by Pass 1. Bits
is the precision for arithmetics, the declared length
in bits for non-varying strings, the declared maximum
length in bits for varying strings, ''721' for pointers,

11 1441' for labels, or 11 011 for structures. Offset is either
11 011 , meaning nothing, or "esi11 , meaning "external static
initial"; see belmv for a discussion of external static
initial data.

~ is either "xxx", meaning nothing, or "var", meaning
varying (if .2ili is "bs" or 11 cs") . Scop~ and ~ are
explained in the discussions of the various storage classes
below. bldim is the number of dimensions for an array
(1'011 if it is not an array). ~-vej_ is the block level
at which the declaration was encountered. Nsub is the
number of substructures (only if u is 11 sx"--or-••psx",
meaning the aggregate is an aligned or packed structure
or array of structures).

Following the above macro, if nd:i:m ;is not zer~,. are "dimension
bounds" macros as fo 11 ows: · '

dfdb

One of these macros is generated for each dimension of
the array. Lov1-2r and uooer: are the bounds for the dimension,
and since we are discussing non-adjustable aggregates
they are just numbers, 1 ike 11 611 •.

MUL TICS SYS TEt-1-PROGRAf•ii\~ERS' fViANUAL SECTION BN.6.02 PAGE 14

If the aggregate is a structure, i.e., if 2QS. is "sx11 or
11 psx••, then follovJing the dimension bounds macros, if
any, come nsub "substructure" macros. They have precisely
the same form as the various dfxx macros discussed in
this Section and in BN.2.02, with the scooe field equal
to 11 mos11 ('llvhich means ••member o-F structure"), and the

11 class 11 field equal to the class field of the major structure
macro. If any substructure is non-elementary, i.e., is
a structure or array itself, then this entire discussion
of Pass 1's actions applies recursively to the substructure.

At this point an example is in order. In an actual compilation,
when Pass 1 encountered the follm"Jing declara.tion,

del 1 sigma(?) automatic,
2 alpha fixed,
2 beta,

3 delta float,
3 eta char(?);

it generated the following sequence of macros:

dfsx sigma,xx0032,0,D,xxx,int,auto,1,1,2
dfdb 1,7
dffx alpha,xx0033,17,0,xxx,mos,xxxx,0,1,0
dfsx beta,xx003L~,O,O,xxx,mos,xxxx,0,1,2
dffl delta,xx0035,27,0,xxx,mos,xxxx,0,2,0
dfcs eta,xx0036,63,0,xxx,mos,xxxx,0,2,0

The action of Pass 2 on this example will be discussed later.·

1. For a non-adjustab1e array .Qargrneter, the major aggregate
macro has ~'Je = 11 parn11 , where D. is the parameter
number, and .£..~ = 11 xxxx11 •

Pass 2 need do nothing with these macros, but it does
in fact generate some harmless ~qu's which it never uses
again and some wasted transfers such as

p 1. 4: tra p1.5

2. For an autom_g_ti£ non-adjustabl~ aggregate, the major
aggregate macro has the c la.$.. fie 1 d equa r 'to 11 auto11 and
the scooe field equal to 11 :tnt11 •

MULTICS SYSTEM-PROGRAfvit-lERS' MANUAL SECTION BN.6.02 PAGE 15

Pass 2 assigns space in the current block's stack frame
for the specifier and data of the aggregate. It compiles
the dope into the procedure segment outside of any executable
c~de sequence. It compiles into the prologue code sequence
the code to generate the specifier at block entry. If
the aggregate contains any varying strings Pass 2 compiles
in the prologue code sequence the code to initialize the
varying strings~ and into the epilogue code sequence the
code to clear the varying strings \i'Jhen the block is terminated.

The aggregate is laid out in the stack as follows:

To dope in
procedure
segment

_ da t~ po in te.r:_ _ -

data pointer

-- - -·--

.
I I I , _______ 1

- - ----1-·
I .
l

.

data ,.t-"
1~...-_____ _..tT·

To free area if
aggregate contains
varying strings

Pass 2 compiles a series of ,eau's associating the major
aggregate with its stack location and each substructure
with its substructure number. For the major aggregate:.

equ elias,loc

and for each subaggregate:

equ aliaslsubno name

Outside of any executable code seqoence:

.ian: (dope: see BP.2.02)

MULTICS SYSTEN-PROGRAMMERS' MANUAL SECTION BN.6.02 PAGE 16

In the prologue code sequence~ if the aggregate contains
no varying strings:

eapbp
stpbp
eapbp
stpbp

s p I a 1 i as+4 1 n
splal ias+01n
.ia.o.~n
splal ias+2 1n

In the prologue code sequence~ if the aggregate does contain
varying strings:

eapbp
stpbp
eapbp
stpbp
eapbp
stpbp
eax1
tsxO

splalias+6,n
splal ias+01n
.ian,n
splal ias+2,n
<free_>! [free_]
splal ias+4,n
alias
.v2

In the epilogue code sequence, if the aggregate contains
varying strings:

eax1
tsxO

alias
.v2

Here loc is the 1o::ation assigned to the aggregate in
the stack frame, subno is the number of substructure within
its immediate containing structure~· and • ian is a unique
symbol generated by Pass 2.

For the example aggregate shovm above~ Pass 2 generates:

.iaO:

equ
equ
equ
equ
equ
zero
zero
dec
zero
zero
zero
dec
dec
dec
dec
zero
zero

xx0032,36
xx0033 11
xx0034,2
xx0035,1
xx003612
-4,0
320-;'•51212
28 ..
0 I 1 ~

sigma
alpha
beta
delta
eta

. ia0+10-'i~,256
320;'•512, 1
28
4
1
7
11Q
256-.':512, 2

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BN.6.02 PAGE 17

··dec 3
zero 0,1
zero • i aO+ 1 5- '1>, 12 8
zero 1 .. 0
vfd 9/128,27/63

p 1 • 1 : eapbp splxx0032+4,n
stpbp splxx0032+0,n
eapbp . iaO, n
stpbp splxx0032+2,n

3. For a controlled, based non-adjustable aggregate (which by
definition cannot contain varyin~ strings,) .the major
aggregate macro has scone = 11 i nt1 and c 1 ass = 11 cont•• ~

Pass 2 allocates space in the current block~s stack frame
for a specifier for the aggregate. It compiles the dope
into the procedure segment, outside of any executable
code sequence. It compiles into the prologue code sequence
the code to fill in the 11 dope pointer•• in the specifier.
The "data pointer11 in the specifier is filled in whenever
a generation of the string is accessed: see BN.6.03.

Thus what will be in ~he stack will look like:

To dope in
procedure
segment

dope pbinter I ------,
....___ __ j

(Filled in as needed
with a pointer to
the proper generation)

Pass 2 compiles, as usual, the gQJd~S associating the alias
for the major aggregate with the stack location for its
specifier and the alias for each substructure with its
substructure nurrber. It compiles, outside of any executable
code sequence,

• i a.o.: (dope: see SP~2.02)

And in the prologue code sequence,

eapbp
stpbp

. ia.o.
s=; l.i.?.l?. +2 , n

. I

MULTICS SYSTEM-PROGRA~\MERS' MANUAL SECTION BN.6.02 PAGE 18

Here as a lvJays . ian is a unique symbo 1 generated by Pass 2.

4. For an internal static aggregate., the major aggregate
macro has scoge = 11 int11 and class = 11 stat11 • .

Pass 2 assigns storage for the spe~ifier and data of the
aggregate in the procedure's internal static storage.
It compiles the dope into the procedure segment., outside
of any executable code sequence. It compiles into the
11 external static specifiers11 code sequence the code to
build the specifier.

The aggregate will be laid ~ut as diagrammed·~ariier for
automatic non-adjustable aggregates.

Pass 2 generates the e~'s necessary to associate the
alias of the major aggregate with the storage assigned
to it in internal static storage and to associate the
alias of each substructure with its substructure number.

It compiles., outside of any executable code sequence.,

.dvn:(dope: see BP.2.02)

And in the 11 internal static specifiers11 code sequence.,
if the aggregate does not contain any varying strings,

eapap
eapap
adbbp
stpbp
eapbp
stpbp

lpl.is,*
apiO
a 1 ias·+4, du
apIa 1 ias+O
.dvn
apIa 1 ias+2

Or if the aggregate does contain varying strings,

eapap
eapbp
adbbp
stpbp
espbp
stpbp
eapbp
stpbp
eapbp
stpbp
tsxO

lpl.is"..,':
ap!O
a 1 ias+6 1 dn
aplalias+O
.dvn
ap f·a l ias+2 ,
<free_> I [free_] - ·
ap!.al.i§..§.+4,n
apIa 1 i~5-
spl.u0+2
.V1+2

The symbol .is is the linkage address.of the procedure's
internal static storage. The syr0bol .dv.o. is a unique
symbol generated by Pass 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT ION BN. 6. 02 PAGE 19

· 5. For an external static aggregate# the major aggregate macro
has scope = "ext" and class = "stat".

Pass 2 allocates storage for the specifier of the aggregate
in the procedure's internal static storage. It sets up
a trap-before-link out-reference which will cause the
procedure datmk_:. to "grow" the storage needed on first
reference. If the aggregate contains varying strings#
the call to datmk_ includes an initializer to initialize
those varying strings. It compiles the dope into the
procedure segment# outside any executable code sequence.
It compiles into the 11 internal static specifi_ers'.'· code
sequence the code to create the specifier. ·

Pass 2 cornp i les the necessary equ's to associate the a 1 ias
for the major aggregate with the location of its specifier
in the procedure's internal static storage# and to associate
the alias for each substructure with its substructure
number. If the aggregate contains no varying strings
it compiles# outside any executable code sequence#

.dv.n:

.ym:

. . .
dec
dec
seg·ref
arg

(dope: see BP.2.02)

n~.r10rds
0
stat_#name(datmk_(ym))
n.ame ·

Again if the aggregate contains no varying strings# Pass
2 compiles into the "internal static specifiers" code
sequence#

eapap
eapbp
stpbp
eapbp
stpbp

lpl.is#*
.Dilll)g, n
aplal ias+O
.dvo.
ap fa 1 ias+2

If on the other hand the aggregate contains varying strings~ Pass
2 compiles, outside of any executable code sequence#

.dV,!l:

• Y!!l: dec
dec
arg
tsx1
eapbp
eapbp
stpbp
tsxO
tra

(dope: see;BP.2.02),

n."vord~
1
*+1
.e i
lp!.is#·k
bpla'lias
spl.u0+2
.V1+2
• rt

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.6.02 PAGE 20

And in the "internal static specifiers" code sequence,

eapap
eapbp
stpbp
eapbp
stpbp
eapbp
stpbp

lpf.is,*
~ .. n
apIa 1 ias+O
.dvn
aplal ias+2
<free_>! [free_]
a p r a 1 i as +4 .. n

Note that .is is the linkage address of the procedure's
internal static storage, and .dvn and .ym are unique_
symbols created by Pass 2.

Adjustable Items

See the preceding discussions of non-adjustable strings
and aggregates for a general outline of. what the macros
for items with specifiers look like. In the parlance
of the EPL project, an ••extent" is a number which is either
an array bound or a string length. This concept is very
useful in what follows.

For each adjustable extent in an item, Pass 1 generates
the macros for a subroutine v.Jhich evaluates the expression
for the extent. Then in the dfxx macro for the item it
makes the offset field equal to-iiadj" and puts the name
of the appropriate subroutine in any place \'l!here a number
(1 ike 11 6") for the extent wou 1 d have appeared if the extent
were not adjustable.

See BN.6.03 for a discussion of expression-evaluation.
The subroutine which Pass 1 generates to evaluate an extent
has the form

use
dclb . . .
that'' s a 11
use rr,a in

contbds
, extentalias,144,0,xxx,con,xxxx,O, level,O
(macros to evaluate expression and end up
with a 17-bit integer in the "accumulator••)

.. . .
The ~macro controls code sequences; see BN.6.01 for
exactly how code sequences are handled in Pass 2. Extentalias
is a unique name generated by Pass 1 for the extent-calculating
subroutine. The macro that"s all specifies a return from
the extent subroutine.

MULT ICS SYS TEM-PROGRAt"ltv1ERS' MANUAL SECTION BN.6.02 PAGE 21

Pass 2 treats the extent subroutine half as a separate
block and half as an ordinary code sequence. The extent
subroutine will be called using the rather peculiar calling
sequences described later in the discussions of the various
storage classes. These ca 11 ing sequences invo 1 ve a ''push"
of the call stack, the creation of a display (displays
are described in BN.6.04), and a tsx2 instruction. The
extent subroutine thus operates at a block level one higher
thao the block level of ·the declaration. (The fiddling
with levels allows non-local use of a based adjustable
item.) It evaluates the extent expression and l~aves
it as an integer in the 2 ~ register. The code takes
the following form:

extenta 1 ias: nu 11" ...
tra
equ
equ
equ

(expression evaluator)
0,2
• U!J., • • •
.asn., ••.
• wn

The eau's at the end are .standard equivalences always
generated at the end of block. See BN.6.04.

It is a fortunate fact about the design of PL/1 - EPL
dope vectors in Multics that any extent goes into exa~tly
one place in the dope vector, right-adjusted in the word.
This fact is of some importance in the discussions later
of the various storage classes.

8n examole: in an actual compilation, vvhen Pass 1 encountered
the declaration,

del 1 sigma (n) automatic,
2 alpha fixed,
2 beta,

3 delta float,
3 eta char (2'"-n);

where n had been declared in an outermore block and had
alias xx0026, it generated the fo.1lp\/'Jing sequ~_n,ce of macros:

use
dclb
dffx
ldfx
stfx
ldfx
that'' s a 11

contbds
,xx0031,144~0,xxx,con,xxxx,0,2,0
,xx0032,17,0,xxx,int,auto,0,2,0
xx0026,17,0~xxx,int,auto~0,1,0
xx0032,17,0,xxx,int,auto,0,2,0
xx0032,17,0,xxx,int,auto,0,2,0

MULT ICS SYSTEM-PROGRAMMERS' f•1ANUAL SECTION BN.6.02

use
use
dclb
dcfx
dffx
ldfx
fxfx
stfx
ldfx
that11 s
use
dfsx
dfdb
dffx
dfsx
dffl
dfcs

·,·,

main
contbds
,xx0038,144,0,xxx,con,xxxx,0,2,0
2,xx0040,4,0,xxx,con,xxxx,0,1,0
·,xx0039,17,0,xxx,int,auto,0,2 10
xx0040,4,0,xxx,con,xxxx,0,110
22 101 171 01
xx0039,17,0,xxx 1int,auto,0 1210
xx0039,17,0,xxx,int~auto,OI2,0

a 11
main
s~gma,xx0029,0,adj 1 XXX, int,aut.o, 1,2,2
11xx0031 ·
alpha,xx0034,17 101XXX1mox,xxxx101110
beta 1xx0035,0 1adj,xxx,mos,xxxx,0,1,2
delta,xx0036,27,0,xxx,mos,xxxx,0,2,0
eta,xx0037,xx0038,adj,xxx,mos,xxxx,0,2,0

PAGE 22 ·

This example is taken up again below in the discussion of the
automatic storage class.

1. For an automatic adjustable item, Pass 2 allocates
sufficient space in .the current stack frame for the
specifier and dope of the item. It compiles in the
prologue code sequence the code which both creates the
dope and specifier and grows the stack frame sufficiently
to hold the data. The code to create the dope vector
copies a 11 template11 dope vector :tnto the stack frame, calls
the various extent subroutines and stores their results
into the proper places in the dope vector, and finally
calls the run-time procedure tdope_ (described in BN.7.01)
to fill in missing details (such as offsets) and return
the number of words required.

The aggregate \!'!ill end up laid out in the stack frame as follmvs:

...---+- _d9j:g_ p_g i.o tg r

_9P~ po 1nter

To''ftee area ~~- Jtem ·
-+----~' contains varying strings

' T dope . t I dopes ize

data

T T
(At end of stack frame,

grown at block entry)

MUL TICS SYS TEf\1-PROGRAMfv'iERS' MANUAL SECTION BN.6.02 PAGE 23

Pass 2 compiles the usual set of eou's associating the
item's alias with the location in the stack frame of its
specifier and each substructure's alias with its substructure
number. (These ~gu 's were described above under NQ.O.
Adjustable b~r~pates.) It compiles~ outside any executable
code sequence,

• ia.Q: (dope vector template)

and may things in the prologue sequence; first the code
to copy the template dope vector into the stack and create
the specifier:

ldx2 _9ooesj. ze-1 1 du
1da . ia.Q, 2
sta s p I a 1 i as +4 , 2 (+6 if varying strings are invo 1 ved)
sblx2 1 ,du
tpl '"''- 3 eapbp splal i~+4 (+6 if varying strings are involved)
stpbp sp I a 1 :tas+2
eapbp spl18,'''"
stpbp sp!fll ia.§.

Then the code to push'the ca 11 stack and create a display:

eax7 .mn
tsxO .sv
eapbp spl16,·k
stpbp sp I . ds
eapbp sp!.ds,'''

[ldaq bpI .ds J staq sp I .ds+2 move a short display

[eax4 nrr J tsxO .cp move a long display

(One of the two pieces of code in brackets above is chosen
depending upon the level of the declaration. See below.)

Then the code to put the address of the dope vector into a
known place in the nevJ stack frame::

eapbp
eapbp
stpbp

sp I . ds, ,.,
bpI? 1 ~-2.5.+4
sp I . "''D

(+6 if varying strings are involved)

MULTICS SYSTEM-PROGRAM~,1ERS' ti\ANUAL SECTION BN.6.02 PAGE 24

Then for each adjustable extent the code to call the extent
subroutine for that extent and store its result into the
proper word of the dope:

tsx2 ~tenta 1 ias

[1 rs 36] Needed only for
mpy 9,du the length.of a
11 s 18 character-string.

[ora idcode~'•512, du] Not needed for an array bound

eax4 dopeword.
sta spl wn -;'•4 . _,

Then the code to call an interface subroutine which calls
tdope_ and brings the call stack level back down:

eapbp
tsxO

spf wm ·k . _,
.dp1

Finally, if varying strings are involved, the code to
call varst_$zero to initialize the varying string to zero
length: '

eax7 ~ 1 ias
tsxO . v1

This ends the code generated in the prologue code sequence.

If varying strings are involved, the following code is
compiled into the epilogue code sequence to clear the
varying strings at block termination:

eax7 a 1 ias
tsxO .v1

[The notes given here on the case where varying strings
are invo 1 ved may v1e 11 turn out to be wrong. A bug in
EPL at this writing causes the case of adjustable items
containing varying strings to be_c~mpiled into nonsense.] .
In the code shmvn above, • ia.Q. is a unique syrnbo 1 created
by Pass 2. Oooesize is the size of the dope vector in
words. The syrr.bo1 .cis is the stack location of the "display"
(see BN.6.04). The syrrbols .mn and ·"'JD are special syrnbols
defined for the current block. The .mn gives the maximum
stack frame size needed by any dope-building code in the
block. The .vvn is a stack location designated as the

MULTICS SYSTEM-PROGRAMMERS' ~~NUAL SECTION BN.6.02 PAGE 25

place in a dope-building stack frame where the location
of dope is to be stored. Idcode is the id code of a string,
if it is needed in the dope word (see BP.2.02 for id codes.) •

. The subroutines .:Ll and .~were described earlier (under
Non-adjustable Varying Strinas). The nuwber DL£ is the
mer.ber of its pairs to be moved into the display. The
subroutine .cp is described in BN.6.04.

The subroutine .do1 is compiled by Pass 2 into every procedure
which needs it. It does several things: (1) calls the
1 ibrary procedure tdope_ (see BN. 7.01) to fi 11 in missing
pieces of the dope vector; (2) pops the call. stack back
where it belongs; (3) inc~eases the size of the current
stack frame sufficiently to hold the data for the item.
The code for .do1 is:

.dp1: stpbp
eapbp
stpbp
ca 11
ldq
adq
anq
eapsp
asq
tra

sp f • uO
spf .u0+2.
spf.u0+2
<tdope_>l [tdope_] (sp.f.u0-2)
spl.u0+2
7,du
-8 du
spf16,*
sp r 19
0.,0

Note that • .!.ill is a 11 utility11 space set aside in every
stack frame. It is used here and in many other places.
[The call to tdope_ is highly non-standard and is unacceptable
as it stands.]

[Again vJe have a chance of overflow in the instruction

adq

which should be replaced

eaq

and in the instruction

asq

which should be replaced

eapbp
stpbp

by

by

7,du

7..,qu

s p 118, i•qu
spl18

MULTICS SYSTEt~-PROGRArviMERS' MANUAL SECTION BN.6.02 PAGE 26

here again the sharp eyes of C. G. Garman are responsible
for the discovery of this bug.]

The Examole: see the example of an adjustable aggregate
given earlier. When Pass 2 encountered the collection
of macros which Pass 1 had generated~ it compiled:

tra s2. 1
.bO:xx0031: nu 11 II

equ xx0032~38
tra .b1

• b1 : eapbp s p I . dS+2, ~~
lda bplxx0026
eapbp sp I .ds+O~ -.·~
sta bp!xx0032
eapbp sp I. ds+O, .,~
lda bplxx0032
tra 0~2
equ .u3~42
equ .as3,56
equ .w3,42

.b2:xx0038: nu 11 II

tra .b3
xx0040: dec 2

equ xx0039,39
.b3: lda xx0040

1 rs 36
eapbp spj.ds+2,·k
mpy bplxx0026
11 s 36
eapbp sp I. ds+O, *
sta bplxx0039
eapbp spj.ds+O, .,.,
lda bplxx0039
tra 0,2
equ .u4,42
equ .as4~56
equ .w4,42
nu 11
equ xx0029,40 :sigma
equ xx0034 ~ 1 alpha
equ xx0035,2 beta
equ xx0036, 1 delta
equ xx0037~2 eta

.iaO zero -2 0 ..
zero 320;':512 .. 2
dec 0
zero 0,1
zero . iaO+ 1 o--.·, .. 25 6
zero 320-;':512,.1

MULTICS SYSTEM-PROGRA~1t4ERS' MANUAL SECTION BN.6.02 PAGE 27

dec· 0
dec 2
dec 1
dec 0
zero 1,0 xx0031
·zero 256'1-512, 2
dec 1
z~ro 0,1
z'ero • ia0+15-'1.-, 128
zero 1,0
vfd 9/128,27/

p2.1: ldx2 17-1,du
lda .ia0,2
sta splxx0029+4,2
sblx2 1,du
tpl -;'(-3
eapbp splxx0029+4
stpbp splxx0029+2
eapbp spf18,*
stpbp spfxx0029
eax7 .m2
tsxO .sv
eapbp spf16,'1 ..
stpbp · sp I .ds
eapbp spl.ds,-1.-
ldaq sp f.ds
staq sp f .ds+2
eapbp spf.ds_,-1.-
eapbp bpfxx0029+4
stpbp sp l.w2
tsx2 xx0031
eax4 9
sta s p I . w2, ., 4
tsx2 xx0038
lrs 36
mpy _9,du
lls 18
ora 12 8')"-5 12 , du
eax4 16
sta s p J • vJ2 , -1.-4
eapbp sp I. w2, -!:
tsxO d"1; • p .
tra p2.2

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.6.02 PAGE 28

2. For a controlled, based adjustable stri~g or aggregate,
the code compiled is even more inefficient than that for
an automatic adjustable item. The action which must
take place at block entry to set up the dope must here
take place instead at every reference to the item.

[Since based adjustable structures appear throughout the
Multics system, this would seem to be the area in which
optimization is most worthwhile. It is also the area
in which optimization is most difficult, however.]

Pass 2 allocates space for the item's specifier and dope
in the stack frame of the current block. It compiles
into the prologue code sequence the code to copy a template
dope vector into the stack and to create half a specifier
(the other half is filled in when a generation of the
based item is accessed). It compiles an internal procedure
to do the extent calculation and set up the dope properly. ·
This internal procedure must be called (using the standard
internal procedure call sequence, see 80.7.02) just before
every reference to the item.

The specifier and dope wi-ll be laid out in the stack as follo\JIJS:

data pointer ---· -·-- --

dope pointer
r--- --·- --

:..
~I.- , :. dope
1... _____ ___.

(To be filled in as needed with
a pointer to the proper
generation)

Pass 2 compiles the eau's which associate the various
aliases with the right numbers. (See the discussion of
these ggy_'s earlier under Non-adius:table .1\aareoates.)
It compiles, outside of any executable code sequence,

. ia.Q: (dope vector template)

MULTICS SYSTEM-PROGRAr·1MERS' MANUAL SECTION BN.6.02

And in the prologue code sequence~

ldx2
lda
sta
sblx2
tpl
eapbp
stpbp

dopesize-1~du
.ia.Q,2
spfal ias+4~2
1~du
*-3
spfaJ ias+4
spfal ias+2

PAGE 29

And outside of any executable code sequence~ the internal
procedure to call the extent subroutines and create the
dope. This procedure starts~

.ct.m: eax7
tsxO
tsxO

.mn

.sv

.cp
.

It creates a display and calls the extent subroutines
using precisely the same code as the prologue code for
automatic adjustable items. Finally it goes to a common
subroutine which calls tdope_ and does a return:

eapbp '
tra

spf wn ~'(. -~
.dpO

See the earlier discussion of automatic adjustable items
for definitions of most of the terms used above. The
subroutine .~ is part of the save sequence for an internal
procedure. It is described in BN.6.04.

The subroutine .QQ.Q is compiled by Pass 2 into every procedure
wh ich needs it. It ca 11 s the 1 ib ra ry procedure tdope_
to fill in the details of the dope vector and then does
a return. The code is always

.dpO:

Constants

stpbp
eapbp
stpbp
ca 11
tra

sp r. uo
spj.u0+2
spf.u0+2
<tdope_>f[tdope_] (spf.u0-2)
• rt .. .

'

When Pass 1 encounters a fixed~ floating, bit-string,
or character-string constant, it generates a macro of
the form~

.~.
MULTICS SYSTEM-PROGRAM!'vlERS' MANUAL SECTION BN.6.02

Here ~ is the type:

fx fixed
fl float.
bs bit-string
cs chara6ter-string

PAGE 30

The macro fields.are described in BN.2.02: briefly text
is the text of tne constant exactly as it appeared in
the source program 1 alias is Pass 1's unique name for
the constant 1 and bits is the precision of an arithmetic
constant or .the length in ~its of a string.

1. For a fixed constant with precision ~35, Pass 2 compiles,
outside of any executable code sequence,

a 1 ias: dec

and if precision >.36 1

a 1 ias:
even
dec textb7ld

2. For a floating constant of any precision, Pass 2 compiles,
outside of any executable code sequence,

a 1 ias:
even
dec .textrn

where textm is text modified by replacing the required
11 e11 in the constant with a 11 d11 •

Note that because of the way single~ and double- precision
floating-point is handled in the 645, the compiler may
assume that every floating-point number is double-precision.
[This streamlining costs 1 1/2 words per single-precision
floating constant: _cheap at half the price.J

3·. For a bit constant, Pass 2 compiles the follovJing code,·
outside of .any executable code sequence:

arg
arg
arg
zero
vfd
vfd

.. . .
"''+ 1

9/160 1 27/bits

~here the ellipsis represents a very strange variable
field for the vfg ~,,;hich ends up putting the proper bit-pattern
left-justified in a block of as many words as are needed.

MUL TICS SYS TEM-PROGRM~~~ERS' f'.'iANUAL SECTION BN.6.02 PAGE 31

The first three words, if accessed only as indirect words,
are a specifier that can live in a pure procedure. The
next two words are dope.

4. For a characte(constant, Pass 2 compiles, outside of
any executable code sequence,

arg '1'+5
arg
arg '1:+1
zero
vfd 9/160,27/bits
aci text

The aci pseudo-op is very convenient since it treats its
argument precisely as a PL/1 - EPL quotation.

~] Pref~xes

When Pass 1 encounters a label prefix, it generates the macro,

dclb ~,alias,144,0,xxx,con,xxxx,0,1,0

where name is the name in the source program and alias
is Pass 1's unique name for it.

Pass 2 compiles an eplbsa label prefix from this macro:

a 1 ias:

Other Pass 2 -generated code may then appear on the same line.

The Null Pointer

When Pass 1 encounters a reference to the built-in function
nYll, it generates the macro,

dept nul1,xx0000,72,0,xxx,con,xxxx,O,O,O

The dcot m3cro is a constant: the fields never take on
any other values.

. '
Pass 2 compiles, outside of any executable code'sequence,

xxOOOO:
even
its

MULTICS SYSTEM-PROGRAt'1~1ERS' MANUAL SECTION BN.6.02 PAGE 32

Vari9bles with the Initial Attribute

When Pass 1 encounters the declaration of a variable with
the initial attribute, it compiles into the appropr1ate
code sequence the code for an assignment of the initial
value to the variable. ltJhich code stream is "appropriate"
depends upon the storage class of the variable; this
issue is the primary concern of the discussions which
fo 11 ow. ·

Given the declaration

del a initial (b);

the macros generated by Pass 1 to do the initial assignment
are identical to those for the assignment statement

a = b;

See BN.6 .. 03 and BN.6.08 for details of expression evaluation
and the assignment statement.

The dfLQS. macro vvhich Pass 1 generates for the variable
involved has precisely the form shown in the earlier discussions
of the various kinds of variables, \'Jith one exception
noted below in the discussion of external static initial
data. Pass 2 takes the same action on seeing these macros.

1. For an automatic variable with the initial attribute,
the initializing macros generated by Pass 1 have the form

use autoinitint,alias
(initializing macros)

use main

The use macros are Pass 1's control of code sequences:
see BN.6.01 for further discussion. Pass 2 simply compiles
into the "automatic initial" code sequence the normal
code it 'lf.Jould compile for the initializing macros.

2. For a controlled, based variable vvith the initial attribute,
the initializing macros generated by Pas's·1 takethe form:

use continitint,?l~a~
(initializing macros)

use main

MULTICS SYSTEI\1-PROGRAfvlMERS' MANUAL SECTION BN.6.02 PAGE 33

[At this writing Pass 2 does not recognize the first macro
shown above~ and consequently controlled initial does
not work. Presumably what should happen is that Pass
2 compiles the sequence of initializing macros as a 'tsx'-able
subroutine called by the code for the ~llocate statement.]

3. For an internal static variable with the initial attribute~
the initializing macros generated by Pass 1 have the form~

use statinitint,alias
(initializing macros)

use main

Pass 2 compiles the usual code for the initializing macros
in the "internal static initial" code sequence. See BN.6.03
for expression evaluation and BN.6.01 for code sequences.

4. For an external ~atic variable wfth the initial attribute,
Pass 1 generates initializing macros in the following form:

use statinitext,alias
(initializing macros)

use main

And then generates the macro defining the variable precisely
as described earlier but with the offset macro field equal
to 11 esi 11 •

Pass 2 compiles code, outside of any executable code sequence~
in the following form:

init.alias:

• YQ:
tra
dec
dec
arg
.tsx1
tra
segref
link

(initializing code)
.rt
m,o,~ords

1
~~+ 1
.e i
.init.alias
stat_,name(datmk_(.y,g))
~~ .. n?cne

•• • . I '

If the variable requires a specifier the code·to create
it is compiled into the "internal static specifiers" code
sequence. If the variable is a varying string, the code
above will also include a call to~ to initialize the
string. ·

MULTICS SYSTEM-PROGRAt-1MERS' MANUAL SECTION· BN. 6. 02 PAGE 34

The subroutines ~and .ei, and~ are described elsewhere.
Nwords is the number of \'\lords v-.rh ich must be grovm by datmk_
for the variable.

-Members of Structures with the Initial Attribute

lrJhen Pass 1 encounters a mernber of a structure with the
initial attribute 1 the initializing macros it produces
take the form~

use xxxxinitmos
(initializing macros)

use main

for any storage class at all.

Unfortunately at this writing Pass 2 c~mpiles utter nonsense
for this sequence of macros.

l,..abel ArraY.§.. ~..;ith the Initial .Attribute

EPL does not in general a-llow initialized arrays; ho\r-Jever
it does allow a peculiar version of the initial attribute
for label arrays v.rhich gives a more-or-less natural way
of programming a many-~u-.ray fork on an integer variable.
See the documentation [which does not exist] of this language
feature for details of its use.

The implementation is best shown through an example.
In an actual compilation~ when Pass 1 encountered the
statements

de 1 fork (5) label initial(a 1 b;c,d,e);
a:b:c:d:e:;.

(Clearly a rather artificial example), Pass 1 generated
the following macros:

use xxxxin1tcon,xx0026
golb xx0030,144,0,xxx,con,xxxx,0,1,0
golb xx0031,144,0,xxx,con,xxxx,O,l,O
gol b x x0032, 144, o, xxx, con, xxxx, o, 1~-Q.
golb xx0033,144,0,xxx,con,xxxx,O,l,O
golb xx0034,144,0,xxx,con,xxxx,0,1,0
use main
dclb fork,xx0026,144,0,xxx,con,xxxx,l,l,O
dfdb 1,5

dclb a,xx0030,144,0,xxx,con,xxxx,n,l,n
dclb b,xx0031,144,0,xxx,con,xxxx,O,l,O
del b c, xx0032, 144, "', xxx, con, xxxx, 0, 1, 0
del b d, xx0033, 11~4, 0, xxx, con, xxxx, 0, 1, 0
dclb ·e,xx0034,144,0,xxx,con,xxxx,O,l,n

MULTICS SYSTEH-PROGRA~iMERS' r-1ANUAL SECTION BN.6.02 PAGE 35

And Pass 2 then compiled the following code:

tra sl.l
init.xx0026: t ra xx0030

tra xx0031
tra xx0032
tra xx0033
tra x x0034

.iaO: zero -1
zero 65*512,1
dec 5
dec 1
dec 1
dec 5

pl. I: tra pl. 2
xx0026: arg init.xx0026 "fork

arg
arg .iaO

II

sl.l: xx0030: nu 11 "a
xx0031: nuH "b

/"'""., xx0032: nu 11 "c
xx0033: nu 11 "d
xx0034: nu 11 "e --

.. . .

