
MULTICS SYSTEM-PROGRAfuiMERS 1 MANUAL

Identification

The Begin,Procedure,and Entry Statements

B. P. Goldberg

Introduction

SECI ION BN.6.U4 PAGE 1

Published: May 8, 1967

This MSPM section is written in the format established for G.E. pub

lications, since it will also be used as part of the G.E. 6L..5 EPL

Implementation Manual. According to present plans, this manual will

follow the outline for the BN section of the MSPM manual. Section

BN.6.04 begins at Paragraph IV of the chapter on Local Strategies.

IV. BEGIN, PROCEDURf, AND ENTRY STATEMENTS

A. Purpose

This section describes the Pass 1 and Pass 2 coding for internal and

external procedures, entries to these two types of procedures, and the

begin statement.

B. Simulation of Location Counters

An EPL object program consists of several independent section~;; for example,

the prologue, the epilogue, the main program, etc. Coding from several

of these sections is illustrated in the examples in this writeup. Note

that each section consists of disconnected pieces of coding. Since

MULTI CS SYS~;::;,·: PROGRAMM ~3' MANUAL SECTION BN.6.04 PAGE 2

EPLBSA only provides one location counter, EPL must generate transfer

instructions to connect the pieces, e.g., tra p1.5. This method

simulates the use of multiple location counters, but it is not as

efficient.

In the future, EPLBSA will provide multiple location counters, and EPL

will generate use pseudo-instructions at the beginning of each disjoint

piece. This will enable EPLBSA to link the pieces of each section more

efficiently. (See BN.6.01 for a discussion of the usage and imple

mentation of multiple location counters.)

C. Procedure Statement

1. External Procedures

Pass 1 generates the followi~g code for the initial procedure statement

In a program:

df~~ ~,xx0024,bits,O,xxx,ext,entr,O,O,O
begin
entry name,xx0024Jbits,O,xxx,ext,entr,O,O,O

The df~ macro is the symbol definition for the procedure name. The begin

macro signifies the beginning,of the first block of the pro~edure. The

entry macro marks the procedure name as an entry point to the procedure.

In the df~ macro, the~ is the data type: fixed (fx), floating (fl),

bit string (bs), character string (cs) or pointer (pt). · EPL creates a

,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTIO~ BN.6.04 PAGE 3

dffl macro, unless the procedure is a function whose value is not

floating point.

The parameters in the dfxx and entry macros have identical functions.

Name denotes the source program name for the procedure. Alias is

xx0024, since EPL built-in functions are assigned to the first 23

internal names in the compiler. The third parameter is the number of

bits in the procedure value. If this is not specified by the programmer,

it is the default precision for the data type.

Pass 2 then produces the following coding:

link xx0024,<procedure name>\ [entry name]
p1. 0: tra p1.1
s1. 0: tra • y1

name 12rocedure name
entry entry name

~ntry name: eax7 .as1
tsxO • sv
tsx1 pl.O

• y1 : null
II

Here lplxx0024 IS defined as the location of the linkage to entry name 1n

the linkage segment. The symbol .as1 denotes the number of words in the

stack frame. All pointers, registers, etc. are saved by the .sv routine

described in BN.5.02. Execution of th8 prologue is initiated by the tsx1

p1.0 instruction. The second statement in the program is generated follow

ing the null statement .y1.

2. Internal Procedures

Pass 1 generates the following macros for internal procedures:

.-

MULTICS SYSTEM-PROGRAMMERS' MANUAL

df~ ~,alias,bits,O,xxx,int,entr,O,level,O
begin
entry ~,alias,bits,O,xxx,int,entr,O,level,O

PAGE 4

The functions of these macros are the same as those described for external

procedures.

Pass 2 then generates the following code for a procedure at level 1 (assum

ing the current block in the prologue is p5):

p5.0: tsxO .cp
tra p5. 1

s5.0: tra .ye:_
alias: eax? .as5

tsxO • SV

tsxl p5.0
.y.o,: null

II

In this case, the procedure name is not located in the linkage section,

since the procedure will never be invoked from the outside. The remaining

code is the same as that for an external procedure, except for the transfer

to .cp. The .cp routine copies the display (stack level) of the internal

procedure's statically embracing block; i.e., if the internal procedure is

at level 1, the .cp routine copies the display for the external procedure.

(See BN.5.02 for an explanation of this concept.)

The following coding is generated for the .cp routine:

.cp: eapbp spl26,* Recovers arg list pointer
ldx4 apiO Loads 0 into index register 4
eapbp apl2,4~~ Picks up copy of stack pointer, for procedure's

spl • ds
statically embracing block

stpbp Stores copied stack pointer in the display
lbrlp bpl4} Redefines the linkage pointer relative to the

copied stack pointer
lbrlb bpi 5
stb spiO Stores redefined values of the bases
t ... a o,o Returns to the prologue

MULTI CS SYSTEM-PROGRAIVl!VlER~ 1 MANUAL SECTION BN.6.04

External Procedure ~~ ~

Level 1 Procedure

.ds i--

Level 2 Procedure

1..--
.ds

- • ds + 2

Figure 1. Creation of Display for Level 2

Procedure

PAGE 5

MULTICS SYSTEM-~KOGRAMMER~· MANUAL · SECTION BN.6.04 PAGE 6

Pass 2 produces the following instructions below the tsxO .cp for a pro-

cedure at level 2:

eapbp spl.ds,*
ldaq bpI· ds
staq sp 1· ds+2

The_first instruction picks up the stack pointer for the level 1 procedure.

(This duplicates the .cp instruction eapbp apl2,4*.) The two-word display

from the level 1 procedure is then stored immediately below the two words

at .ds at level 2. This is illustrated in Figure 1.

For all procedures below level 2, the tsxO .cp instruction is followed by

the coding shown below:

eax4 2
tsxO • cp1

cp1: eapbp spl.ds,*
ldaq bpl.ds,4
staq sp I· ds+2,4

sblx4 2,du
tpl *-3
tra o,o

Assume the procedure is at level J. In this case, the first instruction in

the .cp1 routine picks up the stack pointer for the level 2 procedure. The

four-word display from the level 2 procedure IS then stored immediately be

low the two words at .ds at level J.

D. Beain-Statement

The begin statement is interpreted as an internal procedure preceded by a

dummy call to the procedure. Pass 1 generates the following macros for

:~' . ' .

,.

MULTI CS SYSTEM~;'F:·_JRA!v1MERS. ~,~ANUAL SECTION BN.6.04

this statement:

df~
callxx
begin
entry

,alias,bits,O,xxx,int,entr,O,level,O
alias,bits,O,xxx,int,entr,O,level,O

,alias,bits,O,xxx,int,entr,O,level,O

PAGE 7

If the begin statement has a label, the above coding is preceded by a

dclb macro.

The following Pass 2 coding is generated for a begin statement at level 1:

tra s1.2
s1. 2: eapbp spl 0

stpbp spj .a1+2
ldaq =v18/0,18/2,J6/0
staq spl • a 1
call alias (spl.a1)
tra s1. 3

p2.0: tsxO .cp
tra p2.1

s2.0: tra • yJ
alias: eax? .as2

tsxO • sv
tsx1 p2.0

.yJ: null
II

Here the first six instructions set up the call. The stack pointer is trans-

ferred in place of an argument. The remaining coding constitutes the procedure

and thus is identical with that for an internal procedure. The changes in

this coding for lower level statements are also the same as those shown for

internal procedures (See Paragraph C.2.).

E. Entry Statement

1. External Entries

Pass 1 processes the external entry statement as follows:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.6,04

df,?2$.
entry

~,alias,bits,O,xxx,ext,entr,O,O,O
~,alias,bits,O,xxx,ext,entr,O,O,O

PAGE 8

Note that this coding is the same as that for an external procedure, except

that, in this case, there is no begin macro.

Pass 2 translates this code as follows (assuming this is the second state-

ment):

s1. 2:

entry name:

• Y!$.:

tra
1 ink
tra
entry
eax?
tsxO
tsxl
null
"

s1.2
alias,<name>l[entry name]
·Y!$.
entry name
.as1
• sv
F 1.0

This coding is described in Paragraph C.1.

2. Internal Entries

Pass 1 produces the following macros for an internal entry:

dfxx
entry

name ,alias, b i ts,O, xxx, i nt, entr ,0, 1 evel ,0
name ,ali as, bits, 0, xxx, i nt, en tr, 0, 1 evel ,0

The following example. illustrates the ?oding produced by Pass 2:

Example:

tra s5.2
s5.2: tra • y8

xx0056: eax? .as5
tsxO • sv
tsx1 p5.0

.y8: null
II

MULT!CS SYSTEM-PROGRAMMERS' MANUAL SEr'-:-'()N i3N.6.C' PAGE 9

Here xx0056 is the alias for the entry name. This name IS not located

in the linkage section, since the entry will never be invoked from the

outside. The remaining code is the same as that for an external entry.

F. End

All procedure blocks and begin blocks are terminated by bend macros. The

following example illustrates the Pass 2 translation of the bend macro:

Example:

tra e6.0
e6.0: tra .rt
p6.J: tra 0 '1

equ .a6,50
equ .u6,56
equ .as6,64
equ .w6,42
equ .m6,48

The equ pseudo-instructions define locations 1n the current stack frame.

The symbols used are defined in BN.J.02.

