
tJl.l
t1UL T! CS SYSTEH-?ROG RAMMERS 1 t·1ANUAL SF.CTION WtL7.,1H PAGE 1

Ld.ent I f.ic;_at I 0..0.

EPLBSA, Bootstrap Assembler for EPL
John William Poduska

Draft for Approval
Publfshed 3/1/66

The EPLBSA assembler was designed and built to translate the
output of the EPL compiler (7094 and 635 version) Into the
Multtcs standard binary format of a TEXT segment and a LINK
segment~ The assembler is provided In lieu of the original BSA
mafnly to allow the full set of ASCI f characters and character
set conventIons,,

The assembler also provides the system programmer with an
alternate means of coding those programs which s!mply cannot be
done wlth EPla For such programs, the lack of restrictions on
the Input s~ream becomes Important so that EPLBSA offers some
advantages over BSA" The user of EPLBSA will how.:ver find some
annoying restrictions such as the lack of macros and listing
control pseudo-operationso

Th,;; primary design objectives of EPLRSA were that the
assembler be· operational very quickly, and that the restrictions
of BSA be removed~ Secondary objectives were that the speed of
operation be Improved and that the object code (1 inkage mostly)
be more efficient than that offered by BSAv

To this end the assembler was written in FORTRAN-IV and
operates as a standard activity on the 635~ Furthermore, all
tables (some 30 In total) are arranged as list structures
manipulated by subroutines very similar to the old FLPl language
(Fortran L 1st Process lng language vintage April 1960 L
Surprisingly~ the use of FORTRAN-IV and 11st structur~d table ts
lnefflclent in neither time nor spaceo

Finally~ the interim nature of the assembler and the close
production date imply t\."'O Important things:

Advanced assembler features such as
location counters; and listing
operations~ etco, are not Included~

macros, multiple
control pseudo~

2~) The assembler must operate under compromised sets of
Input and output characteristics; e~go~ ther2 are three
statement terminators on Input 'semt-colon 1 (073),
'new-line' (012), and 'carrier-return' (015); and on
output the segment name ts imbedded in the segment text
making the renaming and binding of segments Impossible.,

r1ULTICS SYSTEt1-PROGRA~1MERS' MANUAL
~u.~

SECT I ON Rl! . 1 .· 61; PAGE 2

\~here sw:h compromises may have bearing, a remark will be made
parenthetica11y0

The following portions of this section are divided Into 5
parts as follows;

1 ..) Overall Speclftcat tons
Input
I dent 1 f i e r s
Statement Format
Output
Features Allowed and Disallowed

2,) Segment at I on Features
General
Base Register Conventions
lntersegment Addressing t.1odes
System Macros
linkage Information Generated

3_.) Details of Machine Instruct I on Statement
Internal Sy~bols
External Symbols
Internal Expressions
Asterisk as a Symbol
Boolean Expressions
Literals

4~) Description of the Pseudo•Operations
Control Pseudo-Operations
Symbol Deftntng Pseudo .. ·Operat1ons
Data Generatln~ Pseudo-Operations
Storage Allocation Pseudo-Operations
lntersegment Communication Pseudo-Operations

5e) Operation of the Assembler
Ope rat ton of Pass l
Operation of Pass 2
Operation of Post Processor
The Assembly Lfstfng

1., ~qll -~e~J .. fJ_c.aJ~J~

!!JPJ!t

The input to the assembler is a character stream without
card boundaries or 1 1ne marks. Characters are 7 bft ASCII code,
;_embedded in 9 btt sub-fields 4 per 36 bit word.. Statement
termination 1s by 'semi-colon' (073), 'new-line• (012), or
'carrler=return• (OlSL

(In reality. the assembler receives Its input
binary card images with 22 usable words per card.:-

as column
Uhlle the

t-1ULT I CS SYSTEB-PROGRAMME RS j MANUAL PAGE 3

normal user \itll never be aware of thls feature, lt does .nean
that 7~punched ASCII format ftles are directly useable for card
input to the 635,)

Roth
characters
horl zontal
recogn t zed

~ntlflers

the 'null-idle' (000) and •null•delete' (177)
are completely ignored on input; and the 'relative
tab' {021) and 'relative vertlcal tab' (023) are
and create the proper number of blanks or new i ines ..

Named Identifiers in EPLBSA consist of 31 (or fewer)
characters drawn from the set:

(26 upper case letters, 26 lower case letters,
10 digits,. 0perlod', 'underline')

Furthermore~" the Identifier must begfn wfth one of the 52
alphabetic characters; and there may be no blanks nor any other
break Imbedded within an Identifier., (Note that 1 pel"'iod 1 is
chosen as an EPL substitute for 'underline'v Also, a later
modification may allow 'underline• as an initial character,.)

A statement In EPLBSA consists of number of fields separated
by separatIon characters and terminated by a 11ne terminator ..
The format has been termed 'free-field' which means In essence
that the blank ts a special separator: any number of blanks Js
one separator only and any separator followed by any number of
blanks ts usually only one separatorc (Note that as a separator.?
•tab' (011) ts treated as a number of blanks; not true tn
character fields,)

The general statement format is as follows:

{ <.1 oc ,, t d.,) : J *-~P, I d)-+-~ar .. f tel~ -+(fomr~en9
The graphic '_,. • Is taken to Imply separation of fields mf;cmfng
a separation character (perhaps blank, tab, etcu), followed by
any number (perhaps zero) of blanks or tabs, The fields are
given the following meanings:

1,) There may be any number of ~.a.tJ..QJl iJ.ill Identifiers
each of which is Immediately followed by a 'colon•
(072L These Identifiers are !!Olfsu:ml.x. !fdtngsl as
Internal symbols havtng the current value of the
(current) location counter, (Note the impllcatton for
EQU., BFS"' and REM statertents,_)

2<>) The ~.R~r:.a.tto.o_ f..l.d.s! ldentifter specifies the action to
be accompl t shed by the statement tnvol ved ,, The names
of all instructions and pseudo-operations happen to map
Into the 6 bit GE~BCI code and thts fact Is used by the

'"·' ~1ULT I CS SYSTEt1-PROGRAMHERS 1 t-1AriUAl SECTION f+E .. 1 ., Oifs PAGE ~~

3.)

assembleru The letters Involved may be any mixture of
upper and lower case wfth the same resu1tc (A later
macro-Implementation may alter this description).

The v.sacla.b.J ~: fh:l d has a mean tng dependent on the
operation fteldv For normal instructions, the variable
field specifies the address, the modtfter, bit 29., and
the base register (If any)~ Furthermore, the variahle
fleld must be written without blanks except for some
character strings.

The 'gmmeot flelq contains any arbitrary string of
characters exclusive of statement terminators~ In the
special case of a statement whtch expects a variable
fte1d., but the variable field Is void; the comment
field must be preceded by a 'double-quote' (042)~

The output of the assembler consists of the following Items:
1) a Text file., 2) a Link ftle, 3) a Listing file, 4) an Error
file.? and 5) an assembly 1 istlng on the 635 printer~ All flies
except the listing on the 635 printer are returned to the 7094 In
the nonnal fashion of the HRGEDT system.,

The IA&t file contains the Instructions codedo literals, and
the Invariant part of the linkage Information (names and such)v
The Text file Is a pure transcription of what one expects to see
for the text of the segment In core storage during execution,.

The blnk file contains a map of Itself and ftve regions: 1)
1 Inks and entries, 2) symbol table, 3} relocation lnformation1 4)
1 lnkage map (for unl tnklng), and 5) binding information., Only
Information of type 1 is currently included and all other regtons
are void., (A symb()l table and binding tnformat ton may later be
lncludedo Also note that the Link Lllc.. Is~ a transcription of
what will later be the linkage ~e&m~~p)

The J..I_UJJl& file and the .~.rxw.: flle follow standard 6".36
formata The listing file contains a standard assembly listing
with all generativ~s and pseudo•ops expanded and printed in
"detal1 11 mode" The error file contains corrrnents a~out the
progress of the assembly and any drastic error commentsc All
error comnents are preceded by the tdentlflcatton 11 "F.PlBSAo"

The 635 L,la.tJ_OJ:. Is a more edited printed output,, In
particular pages are titled# dated, and numberedo In addftlon,
tabs appearing in the input stream cause escapement of the output
to a tab point spaced every 10 blanks~ Furthermore, the ASCII
set Is mapped Into GE-hollerlth as closely as possible with
unintelllgble characters printed as ·~· and hardware escapes on
the PR-20 accounted foro

Ml!LTICS SYSTEM-PROGRAMMERSw ~1ANUAL
8AI.7

SF. CT tON M!, 1 ~ er PAGE 5

fe.atYt:~.:t ~~~ il.Wlll.f..~.«ll~U

A partial 1 ist. of the features spectftcally offet~ed by
F.PLBSA ts as follows:

1 ..) All machine instructions for the
register names are known to the
1eap5' and 'eaplb' are both allowed
thlng.,

645 ~ Also,
assembler so
and mean the

2~> Most generative and storage allocating pseudo-opsn

base
that
same

3~> Most forms of VFO and literals Including OU and DL
modi fi cat tons"

4,,) All forms (ir.cl udlng TEMP and TH1PO) of fntersegment
communtcatfon.,

Some of the important features currently dt sa11 owed are as
follows:

lu) Most special formats for tally words, repeat instruc­
tions~ character and byte manipulating Instructions,
and all 1/0 instructions" The pseudo~ops ZERO and ARG
are all owed"

2,) All macro and macro-related operations,,

3.,) f-1utttple Location Counters,

4~) Most Listtng Control (eftg~, TTL) pseudo-operations~

(Many of the disallowed features are under costderation for
eventual inc'! us I on,,)

One of the most Interest 1ng features separating the current
assembler from more conventional ones such as FAP or GMAP !s its
abil tty to deal wtth intersegmer1t comlluntcation problems ,>f the
Multlcs systemo The assembler ls able to properly handle all new
instructions and pseudo-operations for manipulating base
reg J sters, gene rat tng exter·nal segment references, etc" In
addition, all new types of fndfrect modifiers (esp !TS and fTB)
are ava i 1 able.,

...J

[1UL TICS SYSTEf•1··P ROGRJU4t1E RS c f'lf.Jit.:AL SF:CT I ON '~;' ~z. P/\GF. G

Ji~ .Bfll",..U....te,r. .G.wll!A.nti.w....li.

Standard hRse rep,tster patrinr. and asst?,nment ts assumed and
will he compiled by the assembler, StRndard base register
assi~nment Is as fo11ows:

bpu2
bb=3

1 p=4
1 h=5

sp=6
sh=7

The mnemonlc and the numeral for specifying a hase rnay be useri
interchangablY throughout the assembler.

The vart able fle1 ct of Jnst. ruct ton and some pseudo-operator.s
specifies the address and modifier for the word(s) asseMbied.,
The address may refer to internal Cwtthtn this segnent) or
external (not in this segment) locations and can take on one of
six general forMs as follows:

1) op '$:e,P/ (xsyruJ~t nexp,r•10d
2) op se~llnexp,morl
3) op base\ QtsYtli]J:.f nexp ,moti
4) op base 1 i nexp,mod
5) op .xs ym:t.1 nexp, mod
6) op tnexp,morl

where ~elV is a segment name in pointed brackets, {!.syrUJ is an
external symbol (defined tn some other segment) ln squan:
brackets, Joe...~ is an interval P.XJ>ression composed only of
symbols and operators defined 1oca11y, ~ ts any absolute
symbol, anti m.ru1 is any l~gal (or defined) modifier,.

1\rirlress types 1, 2, and 3 are the fu11-b1 own external
i·efP.rence types.: The names (se.r> anti {jtsyn.D are defined
locally as segment name and e)tternal symbol respectively; these
definitions are not carried beyond the current statement., The
Jni:~l2. lilUst be connected to any [xsyrj) by a p 1 us or rr1l nus s h;n but
111ay be void, ln which case the .t.. is dropped.. The JJ.W1 may he any
legal r:1odifler Including the new 645 modifiers., These extern~l
references cause the 1 ocal tt~xt worrl to be assemhl e(j as an
indirect reference to the 1 inkage se~Ment, and the 1 inka~e
segment contains an ITS pair <tnittallY an Ff until 1 inked)
potntfng to the proper placec

Address type 4 1s similar to the first 3 except that no
further indirection is required., This is ln fact the form that
P.Very external arfdress eventua11 y becomes •.

Address type 5 Is a special form In v .. hlch ~ has been
deflned in this ;;ssembly as being extP.rnai c If uxm. appears tn a
~L.ef. or fuuiraf pseudo-op then the atidress will he compilerf as
an fndfrect 1 Ink through the 1 lnkaF.e seY,ment~ However, ff ~
appears tn a ~or ~ pseudo-op, then the reference ts to

nUL T 1\'~S SYSTEfi-PROG RJ\f!f·1F RS ~ f1NIU/\L PN'iE 7

some potnt In the stacko

Address type 6 ts a normal tnternr1l expression consisting of
Internal synbols and constants and the operators + - * and I with
the usual meaning. ~lest tng of subexp ress tons f s a11 m·1ed us l ng
parentheses and the depth is unlimited (except hy table
overflow)"'

.sYstem !m.LQ,j,

A Macro facillty Is not provided with FPLBSA hut certain
system macros are requireo lnclurfing C/\ll, PJTRY, Rf.TIJR~J, and
SAVEu These macros are Implemented as pseudo-operations in the
assembler and generate code as specified by section 80.7.,02"
(these macros are not currently impl eJ'!lP.nted for ~1astermode or
Executeon1y programs")

J..Inkage lpfornattan Gene.r.~ts:~

The EPLRSA assembler wl11 generate a linkage file containing
Information tn rep;lons as dexcribed In B0.,7,,01., However, only
region 1 contalnlng links and entries will be non~void., No
relocation, symbol table, binding, or unlInking information wtll
be put out; I ,e,,, those regions wtll be void.., (Synbol table and
binding information may later be adrle~ to the llnkap;e file).

~.. !leJ.5'11 s qf t·1.ac.h lruL-lnst r"""t IQJJ Statepmnt:i

lnte r.na.t 5YC)bo] s.,

Internal symbols are those Identifiers given meaning only
within the current procedure ... These SYMbols are rteflned tn one
of two uays:

l~) Appearance in the location fteld(s) of any stateMent_

2~) Appearance as the first subfield of one of the pseudo-
opera t i on s .esu,, h.goJ , ..LJ..o.k., .b.u., or .!2f.i..,

Every internal symbol used In a program must be defined precisely
once; the assembler 111ilt indicate an error for use of an
undefined or multiply cieftned symbol" (The symbols are cl asser:f
as to absolute, relocatable, bool, etco, 1n the assignment table
but no use Is currently MadP. of this information.)

.External symbols, t~e", symbols representing
other segments, may appear In the variable field of
1n one of bto forms~ by an identifier specifically
external, or by a special construction for a local
The tuo local constructions allowerl are:

1 oc at I on s I n
l n s t r uc t I on s
defined as
de f J n it r on 0

6fl.t
~1ULT1CS SVSTF.~1-P!10GRAM~'IERS' t1MWAL SFCT iON M: , 1., er; P/\ClF 8

(seo/J (xsyf!i\ or base)CxsyniJ

The portlon of the structure to the l~ft of the VPrtlcal line is
a segnent name tf in pointed brackets; othenlise it ls either· a
nufllerfc base number, a symbolic base (e.g,, sp), a symbol defined
as a base (by~), or an ordinary tnt~rnal sy~bo1~ The (xsyr.u
is a symbol defined tn the segMent specified by ~eg) or has.st;
If void It ts taken as zero~

Normal tdent1flers defined as external symbols m<=JY be
rlefined by the fu:.&._r.c.f, .Bas ref, JJ:u:m., or Temgd pseucio-opso J f
such an external symbol is used In the vartable field of .an
Instruction, It must be the first identtfter, precerled by no
operator and followed only by +or -or one of the termtnatorsv
The same identifier may be assignerl to an external symbol and an
1nterna1 one; the assembler determines which definition to use by
context.

Internal artthmettc expressions are used In the assemhler to
specify an offset or address to an instruction or pseudo-opu
These Internal express tons are formed from Internal symbols,
decimal integer constants, the operators + * and I and
parentheses used as del tmiters. F.valuat ton is performerf
according to the normal rulP.s of algebra with nested
subexpressions (del tmiterl by parentheses) allowed. The
expression Is calculated to 36 blts and then truncated to the
accuracy requtredv An Internal expressfon is terminated by a
blank, comma, statem9nt terminator, or a (precederl by a symbol
or number .. \lhen an Internal expression ts terminated as many >'s
as necessary will be appended to complete the expressionc

The asterisk <•> when placer! In the position of a symbol tn
an tnternal expression Is evaluated with the meaning of 'the
current value of the location counter•, f .. e .. , the value at whlch
any location fte?d symbol would be defined, There is no
ambtp,ulty between the use of asterisk as a symbol and asterisk as
an operator since the operator ts always blnaryo

The assembier also accP-pts expressions to be Interpreted as
Boo\ean F.xpresstons where the Meaning of the operators ts then:

• and
+

I

or
excl usfve or
unary not

If the I is encountered as a binary opP.rator it is treaterl as the
combination •I (note difference from Oi"'lgfnal RSAL

-

1·1ULT l C ~ SYSTF.f4-PROGRMU1F. RS ~ M/\NUAL PJ\GE 9

r t 1 J:enu s

- _....,.

A literal in the variable field ts a spectflcatton of a data
operand rather than the location of the data" Literals may
appear only as the first item In the variable fleld of an
Instruction; the literal Is specffted by an 'equal st~n' (==) and
the data Immediately follows.

The assembler accepts four types of 1 iterals: decfmal,
octal, ascI f, and vfd ·' (Adrfress pat r and an t nst ructIon 1 tte ral s
are possible Improvements ..) The literals are pooled at the end
of the program before linkage information, and duplic~tton ts
avotded 1r1hereever possible .. t.1u1t1ple \'lOrd literals always begin
on an even word ..

Literals may be modified by the DU or Ol modtfter, ln which
case the literal fs not pooled but Is truncated to 18 btts and
inserted In the address portion of the Instruction.. If the
1 iteral Is floating point, fixed point (not integer), or ascii,
the leftmost 18 bits of the flrst word are used; otherwise the
rightmost 18 bits of the first word are used,.

The general forms of 1 iterals allowed ts as follows:

Oec lmal: integer, ftxed.,
prec f s I on wl th the usual f'H~AP
'point'., a, E, and 0 modifiers~

floating, and double­
conventions re~ardlng

2 .) Octal: 12 (or fewer) unsl,;nerl octal digits, literal
specified by 'letter 0 1 follm'ling the equal sign"

3 ,,) AscI t: two forms as follows

aa <four characters)

==na (n characters)

In the second case, n must be from 1,2,3, or 4 and the
literal is filled with nulls.

4b) Variable Field Literal: usual form of variable field
definition with decimal, octal and ascti subffelds<
Literal Is specified by the 'letter V' following equal
s 1 gn... (Note that 'comma' cannot termt nate t h t s
lfteral~)

The following is a brtef description of the pseudo­
operations currently available In EPLBSAe For the most part only
the novel features of these pseudo-ops are described, and the

&N.Y
f·lULTiCS SYSTEf1-PROt.RAt1f1F.~S; f1A~·IUAL S r.CT l OiJ ..V. .. 7 . 8" P/\GE 10 ·

~ usual convent 1 ons apply to those features 1 eft unciescrt berlr..

EMO - End of input stream
EVffl - Force 1 ocat ion counter even
FllF. ... Gives r.TSS name (pecul far to 6,36 system)
~lAf1E - Segment name of procedure
NULL ¢' Vol d statP.ment
REf-1 - Remark (same as NULL)

SymhQ! Qe!Jnjng, ~seud2-~era,~n~

BASREF - Oeftnltion of external symbols relative to a base
rP.Y. i ster ,, The forr1at Is as follows:

bas ref base,sl,s2,s3(ca11(arg)),s4,L~·

The symbol sl (or s2, •. , ...) Is then d~fined as external
anrl any refet·ence to lt as the fl rst symbol In the
variable field Is equivalent to base sl v A trap
routine to be called before linking can be specified as
shown for s3; here the uLL f s the rout 1ne to call and
AaL speclftes the argument list" The~ and SL~ can
be used to specify internal or external referencesu

BOOL - Define a symbol with an equivalence given by a
boolean 'expression.. The forr1at t s

bool boo1syn,boolequ1v

where bqQ]&Xm Is the symhol to be defined and boolequlv
is a boolean expression ,.ivlng tts equivalence< If the
symbol cannot be deftneci fn pass-1, then an attempt is
made to rleftne It in pass-2.

EQU - neflne a symbol ·with an equlva1P.nce given by a normal
Internal expression. OpP.ratfon 1s comparable to ROOLo

LINK- Oeffne an Internal sy~bol as the link numher of an
ITS patr In the linkage SP.ctiono The format is

ltnk linksym,generaladdress

where l.ID~:i.XDJ Is the symbol to be cieflned as the link
number of the g~neraladdreis~ The Reneraladdr~~s Is
any form of external a~dress Including any modlftero
The .l.ln.!s. pseudo-op allows the sequence

1 da ~eyJ[nameJ ,nod

to be represented ·as

~N·8
t~ULT i CS SYSTEr1-PROGRAW1F. ~S' ~11\tiUAl SF C T 1 ON ~ _ 7 , ~

ltnk
lda

1, (seg)'\ Lnamti} ,mort
lp/1,*

PN'lF 11

and is useful when one doesn't want the * on the latter
.Lda.·

SF.GREF - Oeflnes an external syMbol relative to an external
sey,Ment name .. The forMat ls as follo\to~s:

ser;ref segname,sl,s2,w~~

and use of s 1 (or s2, "Q.,) 1 s equ f valent to s~gname
sl u Trap pointer conventions are Identical to those
for Aasref ..

TH1P - Defines symbols to 1 ocat ions tn the stack rel at tve to
~- The format ts

temp sl,s2,s3(tnexp),s4,~v•

The symbols are assigned to sequenttal locationso The
leny,th of the block may be defined by an expression in
parentheses ..

TEt1PD- Defines symbols as locations of word pairs in the
stack relative to i2~ The format and operation ts the
same as~ w1th the understanding that each pair ts
assfgned to an even location, and any block length
receives twice that many words~

ACC- Generate data consisting of asclt ch~racters quoted by
'single quote• (')~ A count precedes the character
string in character posltton one, and a single quote
can be Imbedded by use of two consecutive single quotes
In the string~ A maximum of 9 data words (not 8) may
be ,p;eneraterf with~·· Any partial words are filled
with nulls (000).

ACt - Same as ACC but without character count,.

OEC - Normal decimal data generator~ lnteY,er, fixed,
floating, and double precision data may be generated
with the 'point', F., R1 and 0 characters having the
usual meanlnY,s,, The ft rst blank terminates the
variable field ..

OCT • Normal octal generator except that no signs are
allowed, and a blank terminates the variable fieldo

VFO - neftne data words under a variable field format~ Same
as normal VFO except that the H modifier Is repiaced by
A for ascI i ,

-

t1UlTICS SYSTEr1-PROf'1RJ\Hf1ERS 1 HMlUAt '"'·' SF.CT I ON M .. 7 , &It P l\f'1F 12

BFS - Rl ock followed by symhol Similar to RF.S In rH~AP

except that format Is

bfs symbol, 1 ength

RSS ... Rl ock started by symbola Similar to RSS in CH·1AP
except that format 's
bss symbol, length

Soe~ I al \lor_<l,~

ARG - Treated 1 Ike an Instruction w!th zero opcode,

ZERO -Generates one word wtth two specified 18 bit fields~
The two fields are defined by Interval expressions or
literals.,

We r.agroe.at. C.sunmun I c;.,at I on P5$:.!cl4Q;-Q.cuu:..a~.J.QD!i

CAll -Call subroutine with argument list.. The format ts

call name (argl I st)

The n..a!Jit may be a f u 11 •• b 1 0\'ln
modi f 1 e r as may the ar.&ll.:i.t ..
and~ may be Internal~
de sc r I bed t n R 0 .• 7 ; 0 2 .,

external reference with
The arglltt may be void

Code generation fs as

E'JTRY - Oeflne the tnter11al symhol In the variable fielrl as
an entry point~ This pseurlo-on causes consl~erable
1 tnkage In format Jon to be generatPd ..

RF.TURN- Return.to caller, code sequence as described In
R0..,7 .. 02,.

SAVE - Save conditions~ code sequence as descrtherl fn
ROo7.02 ..

(Note that later Inclusion of Ma~tecm~d~ and ~!~utfqa pseudo­
operations will cause these system macros to take on dt fferent
meanings In different modesu>

6., ~r:at I oo. .Q,f lJle. As...iembl .. e_.r

0.0.U.All.sm. .Qf !!AU .l

The fundamental purpose of pass-1 ts to define all !nt~rnal
Symbols, l~e~, to enter theM Into a table along wtth their valuen
In additton~ all 1 fterals should be accounted for, pseudo-ops and
macros expanderl, and possible phase errors accounte~ fore To

t1ULTICS SYSTEt1-PHOGRAMP1ERS' t1J\NUAL SF.CT I Ot4 PAGF. 13

accomp1tsh these tasks, pass-1 reads the Input stream, analyzes
ops and pseudo·ops, and keeps track of an Internal f.rogram
,C..ounter by ~1hich internal symbols ar·e asstr.ned_ Symbols
appeartn~ on SF.AREF, ENTRY, etcQ car~s require special entrtes
Into some of the other tables~ but it fs not necessary fn p~ss~l
to take account of a 1 ocal external reference sue~ as LOA (X) J (Y]

Phase errors are detected and general synchronization fs
maintained hy recordfne (In a list) the PC at the end of each
statenent. No collation or tnterne11ate 'tape' Js written and
pass-2 will siMPlY re-read the Input streamo At the end of
pass-1, the literal origin Is estahl lshed for pass 2 assignment,
but the linkage Information ortgtn ts not set since the length of
the 11 teral table is not known (because of VFO 1 i teral s) ..

The fundamental purpose of pass-2 Is to generatP the ~
(binary output} of the progra~v This Is accompl lshed by
rerearlinY. the Input stream, analyzing the ops and pseudo•ops, and
keep1nP. track of the ~roeram ~ountero Pseudo-ops are handled
according to whatever action they require. ~ormal operations are
assembled by comblnlnr. the- results of a variable fielrl analysts,
a modification field analysis, and a lookup of the binary
operation codes~

The variable field analysis ts by far the trickiest and may
require table entries for external symbols and associated
1 lnkages._, In addition# 1 ltera1s cause some problem especially
those with OU or Ol modifiers.. Literals are assigned to
locations as required, and link numhers are defined (in the link
table) as used,.

The output of pass-2 consists of an assenbly llstlny, and the
hlnary text with literals .. , The literals are put out after the
E~D card Is encountererl; then the origin of the linkage portion
of the text is define~ and the post processor Is called.

The post processor is called after pass-2 to generate the
1 inkage portion of the text file, and then to gP.nerate the
linkage flleo The 1 inkage portion of the text consists primarily
of synboltc names and pointers put out from tablP. Information in
the following order:

L F.xternal Symbol Definitions (Fntry Potnts and SE>~r,defs)

2 ,. SegMent ~~ames

3c External Symbols

,...

,..

~.~
t~ULTICS SYSTEt1=PROG RA~U1EP.S' t1ANUAL SF. C T I ON a€ ., f .: 8"' PAGE 14

4,, Trap \Jorrls

5,. Type Pairs

6 ... Internal Expression \Jords

The order tn uhich the Information Is put out ls Important,
because as each piece of Information is ~punched' Its location Is
entered In to some table, For thIs reason, Trap ~lorcis are put out
before Type Pat rs necause the Type Pal r points to the Trap \Jorrl,.

After the text flle Is completed, the linkage file ts
written., This Is fairly easy because all locations refer to the
text segment relative to the origin of the linkage Information.
The assembly is completed wlth the writ In~ of the 1 tnkage ftl e.,

The lfsttng provided by EPLBSA Is the usual type of assembly
1 i sting as provt ded by FAP or m~AP ., For each statement one or
more lines Is printed consisting of error flags, location,
assembled word, and Input statement" After the normal text ts
ltsted the literals anrl linkage Information, and following the
text segment is listed the linkage file ..

The 635 printer listing Js slmtlar to the 1 tsttng file
returned except that all characters are Mapped Into r,E-RCI" Any
ascii characters which cannot reasonably he Mapped are printed as
the graphic ·~· .. Tabs are lnterpreterl to cause escapement tn
multiples of 10 positions~

There are 8 possible error flags which are cieftned as
follows:

U ~ of an undefined symhol
H .ua of a multiply defined symhol
P phase error, something (probably BSS or RFS)

has caused the proF,ram counter to be off
F. error tn some field of a data generator

(Including literals)
F field error 1 variable fleld is Improperly constructed
T error tn address modifier (tag)
0 illegal operation code
S error In ®flnltlon of some symbol

The assembler will also complain of a fatal error lf any of
the error flags A, M, P, or 0 appear anywherea

