TAR

MULTICS SYSTEM=PROGRAMMERS® MAMUAL SECT ION ek PAGE 1

Draft for Approval
Pubiished 3/1/66

identification

EPLBSA, Bootstrap Assembler for EPL
John William Poduska

RPurpose

The EPLBSA assembler was designed and bullit to translate the
cutput of the EPL compiler (7094 and 635 version) into the
Multics standard binary format of a TEXT segment and a LINK
segment, The assembler is provided in lieu of the orlginal BSA
mainly to allow the full set of ASCI! characters and character
set conventions,

The assembler also provides the system programmer with an
alternate means of coding those programs which simply cannot be
done with EPL, Ffor such programs, the lack of restrictions on
the Input siream becomes Important so that EPLBSA offers some
advantages over BSA, The user of EPLBSA will howaver find some
annoying restrictions such as the 1lack of macros and listing
control pseudc~operations,

The primary design objectives of EPLBSA were that the
assembler be operational very quickly, and that the restrictions
of BSA be removed. Secondary objectives were that the speed of
operation be improved and that the object code (ilinkage mostiy)
be more efficient than that offered by BSA,

To this end the assembler was written in FORTRAN=IV and
operates as a standard activity on the 635, Furthermora, atll
tables (some 30 1iIn total) are arranged as 1ist structures
manlpulated by subroutines very similar to the old FLPL language
{Fortran List Processing Language =~ vintage April 1960).
Surprisingly, the use of FORTRAN-=IV and ltist structured tabie 1is
inefflcient in nelther time noyr space,

Firally, the Interim nature of the assembler and the cicse
production date imply two Important things:

1.) Advanced assembier features such as macros, multiple
location counters; and I1isting control pseudo=
operations, atc,, are not Included.

2.) The assembler must operate under compromlised sets of
input and output characteristics; e.g., ther2 are three
statement terminators on Input ‘semi~colon' (073),
*new~1ine® (012), and 'carrier-return® (015); and on
output the segment name Is Imbedded in the segment text
making the renaming and binding of segments Impossible.

9N0.3

MULTICS SYSTEM~PROGRAMMERS?! MANUAL SECTION ety PAGE 2

V.Y

Where such compromises may have bearing, a remark will be made
parenthetically.

The following portions of this section are divided iInte 5
parts as follows:

1.) Overall Specifications
Input
ldentifiers
Statement Format
Cutput
Features Al lowed and Disaliowed

2,) Segmentation Features
General
Base Register Conventions
Intersegment Addressing Modes
System Macros
Linkage Information Generated

3.) Details of Machine instructlion Statement
Internal Symbols
External Symbols
Internal Expresslions
Asterisk as a2 Symbol
Boolean Expressions
Literals

B.) Description of the Pseudo-Operations
Control Pseudo~Operations
Symbol Defining Pseudo-Operations
Data Generatineg Pseudo-Operations
Storage Allocation Pseudo=-Operations
Intersegment Communicatlion Pseudo~Operations

5.) Operation of the Assembiar
Operation of Pass 1
Operation of Pass 2
Operation of Post Processor
The Assembly Listing

1. Qverall Spegifications

1nput,

The input to the assembletr i5 a character stream without
card boundaries or line marks. Characters are 7 bit ASCiI! code,
zmbedded in 9 bit sub=fields 4 per 36 bit word. Statement

termination 1s by ‘semi-colon® (073), ‘new=line' (012), or
‘fcarrier-return® (015).

(In reality, the assembler recelves 1its input as column
binary card images with 22 usable words per card. While the

N
MULTICS SYSTEM~PROGRAMMERS® MANUAL SECTION gﬂ“— PAGE 3

normal user will never be aware of this feature, 1t does mean
that 7-=punched ASCtil format files are directly useable for card
input to the 635,)

Both the "null=idie’ (000) and ‘'null~delete' (177)
characters are completely ignored orn fInput; and the ‘relative
horizontal tab® (021) and ‘relative vertlcal tab® (023) are
recognized and create the proper number of blanks or new iines.

ldentifiers

Named identiflers in EPLBSA consist of 31 (or fewer)
characters drawn from the set:

(26 upper case letters, 26 lower case letters,
10 digits. ‘perlod', 'underiine®)

Furthermore, the {dentiflier must begin with one of the 52
alphabetic characters; and there may be no blanks nor any other
break imbedded within an identifler, {Note that ‘period®' is
chosen as an EPL substitute for ‘underliine'. Also, a later
modification may allow ‘underline' as an inlitiai character.)

A statement In EPLBSA conslists of number of fields separated
by separation characters and terminated by a 1line terminator.
The format has been termed ‘'free=field® which means 1In essence
that the blank is a spectal separator: any number of blanks 1Is
one separator only and any separator followed by any number of
blanks is usually only one separator. (Note that as a separatocr,
*tab® (011) is treated as a number of blanks; not true in
character fileids.)

The general statement format is as follows:

{Qom 1d.> :z +pop. 1d)y—>{rar. fleld +(comment)

The graphic " —p ' Is taken to imply separation of fields meaning
a separatlon character (perhaps blank, tab, etc.), followed by
any number (perhaps zero) of blanks or tabs. The flelds are
glven the following meanings:

l,) There may be any number of location field ldentifiers
each of which is Immediately foliowed by a ‘colon®
(072). These 1Iidentifiers are uniformly defined as

internal symbols having the current value of the
(current) location counter. (Note the implication for
EQU, BFS, and REM staterments.)

2.) The operation fleld identifler specifles the action to
be accomplished by the statement Involved. The names
of all instructions and pseudoc-operations happen to map
into the 6 bit GE=BCI code and this fact is used by the

BN.¥

MULTICS SYSTEM=PROGRAMMERS' MANUAL SECTION [P PAGE &

assembler, The letters involved may be any mixture of
upper and lower case with the same result. (A 1later
macro-implementation may alter this description).

3.) The varlable fileld has a meaning dependent on the
operation field. For normal instructions, the variable
field specifies the address, the modifler, bit 29, and
the base register (if any). Furthermore, the variable
fleld must be written without blanks except for some
character strings.

4.) The gomment fileld contains any arbitrary string of
characters exclusive of statement terminators, Iin the
speclal case of a statement which expects a variable
field, but the varlable fleld 1is void; the comment
field must be preceded by a ‘double-guote’ (042).

Qutput

Thke output of the assembler consists of the followlng ITtems:
1) a Text flle, 2) a Link flle, 3) a Listing file, &) an Ervor
file, and 5) an assembly listing on the 635 printer. All files
except the listing on the 635 printer are returned to the 7094 in
the normmal fashion of the MRGEDT system.

The Jext file contains the Instructions coded, literals, and
the invariant part of the linkage information (names and such).
The Text file Is a pure transcription of what one expects to see
for the text of the segment in core storage during execution.

The Link flie contains a map of itself and five reglions: 1)
1Inks and entries, 2) symbol table, 3) relocatlon information, U4)
linkage map (for unlinking), and 5} binding iInformatlion. Only
information of type 1 is currently included and all other reglons
are void. (A symbol table and binding Information may later be
Included, Also note that the Link flle !s pot a transcription of
what will later be the linkage segment.)

The Listing file and the Errgr file follow standard 6.36
format., The listing file contains a standard assembly 1listing
with all generatives and pseudo-ops expanded and printed in
"detall" mode. The error flle contains comments about the
progress of the assembly and any drastic error comments. AV Y
error comients are preceded by the identification ".EPLBSA,"

The 635 Listipz is a mere edited printed output. In
particular pages are titled, dated, and numbered. in add!tton,
tabs appearing in the input stream cause escapement of the output
to a tab point spaced every 10 blanks. Furthermore, the ASCii
set Is mapped into GE-hollerith as closely as possible with
unintelligble characters printed as *B° and hardware escapes on
the PR=-20 accounted for.

8N.3

MULTICS SYSTEM=PROGRAMMERS® MAKUAL SECT 10N %PT%TGQ‘ PAGE 5

Eeaturses Allewed and Disaliowad

A partlal list of the features specificelly offered by
EPLBSA !s as follows:

1.) A1l machine instructions for the G5, Alsc, base
register names are known to the assembler so that
‘eaph' and 'eaplb' are both allowed and mean the same
thing.

2.) Most generative and storage allocating pseudo=ops.

3.,) Most forms of VFD and 1llterals including ©OU and DL
modlfications. ‘

L,Y A1l forms (ircludlng TEMP and TEMPD) of Intersegment
communication,

Some of the Important features currently disallowed ave as
follows:

1.) Most speclal formats for tally words, vepeat instruc-
tions, character and byte manipulating Instrucilons,
and all /0 instructlons. The pseudo~ops ZERD and ARG
are allowed,

2,) All macro and macro~related operations.
3.} HMuitiple Locatlion Counters.
4.) Most Listing Control {(e.g., TTL) pseudo-operations.

{Many of the disallowad features are under coslderaticn for
eventual inclusion.,)

2, Sermentation Features

Genaral

One of the most interesting features separating the current
assembler from more conventional ones such as FAP or GMAP Is its
abillty to deal wlth intersegment communication problems of the
Muttlcs system. The assembler Is able to properly handle 211 new
instructlions and pseudo=aperations for manipuiating bsase
registers, generating external segment references, etc, in
addlition, all new types of indirect modifiers (esp !TS and {TB)
are available,

WULTICS SYSTEM-PROGRAMMERS® MAMUAL SECTION =y PAGE ©

Base Resglster Copventions

Standard base reglster palring and assignment s assumed and
will he compiled by the assembler. Standard bhase reglister
assignment is as follows:

ap=0 bp=2 1 p=y sp=0
ab=1 bb=3 1h=5 sh=7

The mnnemonic and the numeral for specifying a hase may be used
interchangably throughout the assembler,

Intersesrment Addressing Modes

The variable fleld of Instruction and some pseudo-operatons
specifies the address and modifler for the word(s) assembied,
The address may refer to Internal (within this segmentl or
external (not in this segment) locations and can take on one of
six general forms as follows:

1) op ﬁ?e@))[xsyd}xjnexp,mad
2) op seg>| Inexp,mod

3) op base|fxsyiltinexp,mod
k) op base]inexp,mod

%) op xsymiinexp,mod

6) op inexp,mod

where <seg> 1is a segment name in pointed brackets, xsym] s an
external symbol (defined In some other segment) In square
bratkets, jnexp is an interval expression composed only of
symbols and operators defined 1locally, base 1Is any absolute
symbol, and mod is any legal (or defined) modifler.

Address types 1, 2, and 3 are the full-blown external

reference types. The names <segd and Dxsyni] are defined
iocally as segment name and external symbol! respectively; these
definitions are not carried hevond the current statement. The

Inexp must be connected to any [xsyr]by a plus or minus sign but
may be vold, 'n which case the & is drepped. The god may be any
legal modifler Including the new 645 modifiers. These external
references cause the local text word to be assembled as an
indlrect reference to the 1linkage segment, and the 1inkage
segment contains an ITS palr (initialiy an FI until 1inked)
pointing to the proper place.

Address type & is similar to the Ffirst 3 except that no
further indirection is required, This is tn fact the form that
every external address eventually hecomes.

Address type 5 is a special form in which xsym has been
defined in this assembly as being external. {f xsym appears in &
Secref or Basref pseudo-op then the address will be compiled as
an Indirect 1ink through the linkage segment, However, if xsyn
appears in a Jemp or Jempd pseudo-op, then the reference 1Is to

8N.7

MULTIOS SYSTEH-PROGRANMFRS® MANUAL ~ SECTION et PAGE 7

some point In the stack.

Address type 6 s 2 normal Internal expression consisting of
Internal svmbols and constants and the operators + - # and / with
the usual meaning. Mesting of subexpressions 1is allowed using
narentheses and the depth is unlimited (except by table
overfiow).

System Macros

A macro facllity is not provided with FEPLBSA but certain
system macros are required including CALL, EMTRY, RETURN, and
SAVE., These macros are implemented as pseudo-operations 1in the
assembier and generate code as specified by section BD.7.02,
(these macros are not currently implemented for Mastermode or
Executecnly programs.,)

The EPLBSA assembler will generate a linkage file containing
information In reglons as dexcribed in BD,7.01, However, onty
region 1 containing links and entries wlll be non=void, No
relocation, symbol table, bindlng, or unlinking information wil}
be put out; i.e., those regions will be void, (Symbol table and
binding information may later be added to the ilinkage file).

Internal symbols are those identiflers given meanling only

within the current procedure. These symbols are defined in one
of two ways:

1.) Appearance in the location fleld(s) of any statement.

2.) Appearance as the first subfield of one of the pseudo~

operations egu, bool, lluok, hss, or bfs.

Every internal symbol used in a program must be defined precisely
once; the assembler will indicate an error for use of an
undefined or multiply defined symbol. (The symbols are classed
as to ahsolute, relocatable, bool, etc., in the assignhment table
but no use Is currently made of this information.)

fExterpal Symbqls

‘External symbols, i.e., symbols representing locations In
other segments, may appear In the variable field of Instructions
in one of two forms: by an identifier speclfically defined as
external, or by a special construction for a 1local definition.
The two local constructions allowed are:

RS

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SFCTION #&TrTot PAGF 8

<§e§>l[xsy@ﬂ or base)[ﬁsyﬁ]

The portion of the structure to the left of the vertical line |is
a segment name If in pointed brackets; otheruise it Is elther a
numeric base numbar, a symbolic base (e.g., sp), a symbol defined
as a base (by base), or an ordinary internal symbol. The ULxsyn]
is a symbol defined in the segment specified by <§eg7 or hase;
1f void 1t is taken as zero,

Mormal ldentifiers defined as external symbois may bhe
defined by the Segref, Basref, Iemp, or TITempd pseudo-ops, 17
such an external symbol is used 1in the varlable field of . an
instruction, 1t must be the first ldentifier, preceded by no
operator and followed only by + or ~ or one of the terminators.
The same identifier may be assigned to an external! symbol and an
internal one; the assembler determines which definition to use by
context

Intarnal Expressions

internal arlithmetic expressions are used In the assemhlier to
specify an offset or address to an instruction or pseudo~op,
These Internal expressions are formed from Internal symbels,
decimal integer constants, the operators + =~ * and / and

parentheses used as dellmiters, Evaluation 1is performed
according to the normai rul es of algebra with nested
subexpressions (del imited by parentheses) allowed. Tte

expression s calculated to 36 bits and then truncated to the
accuracy requlired. An Internal expresslion 1Is terminated by a
btank, comma, statement terminator, or a (preceded by a symboli
or number. Uhen an Internal expression is terminated as many)'s
as necessary will be appended to complete the expression.

Asterisk as a Symhol

The asterlisk (#) when placed In the position of a symbol in
an internal expression Is evaluated with the meaning of ‘the
current value of the locatlion counter®, l.e., the value at which
any location fleid symbol would be defined. There 1is no
amblguity between the use of asterisk as a symbol and asterisk as
an operator since the operator s always binary.

) The assembier also accepts expressions to be Interpreted as
Booiean Expressions where the meaning of the operators is then:

i and

»> or

- exclusive or
/ unary not

if the / is encountered as a binary coperator it is treated as the
combination */ (note difference from original BSA).

N.2

HULTICS SYSTEM-PROGRAMMERS® MAMUAL SFCTION rm—tly PAGE 9
Literals

A literal in the variable field Is 2 speciflication of a date
operand rather than the location of the data. Literals may

appear only as the first fitem in the variable field of an
instruction; the literal Is specliflied by an ‘equal slign' (=) and
the data immediately fecllows.

The assembler accepts four types of literals: decimal,
octal, ascli, and vfd. (Address palr and an Instructlion literals
are possible Improvements.} The lliterals are pooled at the end
of the program before 1llnkage information, and duplication s
avolded whereever possible, Multiple word literals always begin
on an evean word.

Literals may be modified by the DU or DL modifier, in which
case the literal Is not pooled but Is truncated to 18 bilts and
inserted In the address portion of the Instruction. I1f the
literal Is floating point, fixed point (not integer), or asclli,
the 1eftmost 18 bits of the first word are used; otherwise the
rightmost 18 bits of the first word are used.

The general forms of literals allowed Is as follows:

1.) Decimal: integer, fixed, floating, and double-
precision with the wusual GMAP conventions regarding
'point', B8, E, and D modifiers.

2.) Octal: 12 (or fewer) unsligned octal digits, 1literal
specified by ‘letter 0' following the equal sign.

3.) Ascii: two forms as folilows
ag <?our characters)
=na <n characters>

In the second case, n must be from 1,2,3, or & and the
literal is filled with nulis,

L,) Vartable Field Literal: usual form of variable field
definition with decimal, octal and ascii subfields.
Literal Is specified by the "letter V' following equal

sign, (Note that ‘'comma®' cannot terminate this
iiteral.)

5. Descriotion of the Pseudo-Operations

The following 1is a brief description of the pseudo~
operations currently avallable In EPLBSA. For the most part only
the novel features of these pseudo-ops are described, and the

~

8N.7

MULTICS SYSTEM~PROGRAMIERS® MAMUAL STCTHON Refmpmle PAGE 10

usual conventions apply to those features left undescribed.

Control Pseudo-Ops

END
EVEN
FILE
HANE
NULL
REHM

End of input stream

Force location counter even

Gives CTSS name (pecullar to 6.36 system)
Segment name of procedure

Void statement

Remark (same as HULL)

§ 8 §F 8 B !

Symbol Deflinine Pseudo-Operations

BASREF = Deflinition cof external symbols relative to a base

BOOL

register, The format Is as follows:
basref base,sl,s2,s3(call(arg)),shk,. ..

The symbol sl (or s2,...) Is then defined as external
and any reference to it as the flirst symbol 1In the
variable fleld is equivalent to base sl A trap
routine to be called before linking can be specified as
shown for s3; here the gall Is the routine to call and
areg specifies the argument list. The gall and arz can
be used to specify internal or external references.

- Define a symbol with an equivalence given by a
boolean expressicn. The format Is

bool bool syri, boolaquiv

where hoolsym Is the symhol to be defined and boclequlv
is a boolean expression giving fts equivalence. |f the
symbol cannot be defined in pass-1l, then an attempt is
made to define it in pass—2.

EQU - Define a symbol! with an equlvaience given by a normal

LINK

Internal expression. Operation Is comparable to ROOL.

- Deflne an Internal symbol as the 1ink number of an
ITS pair In the linkage section, The format is '

1Ink 1inksym,general address

where]inksym is the symbol to be defined as the 1ink
number of the generaladdress. The generaladdress 1Is

any form of external address including any modiflier,
The link pseudo-op allows the sequence

1da <§eé>,£pam§],mod

to be represented ‘as

‘BNTB

PULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION R PAGF 11
1ink 1, {seg %Lpamé],mod
tda 1p/1,=® >

and is useful when one doesn’t want the # on the latter

lda.

SEGREF « Defines an external symbol relative to an external
segment name., The format Is as follows:

segref segname,sl,s2,.. .
and use of sl (or s2,...) Is equlvalent to segname
sl . Trap pointer conventlions are ldenticali to those

for Basref.

TEMP - Defines symbols to locations In the stack relative to
sp. The format is

temp 51,52,53(Inexp),sb,. ..

The symbols are assigned to sequential locations, The
length of the block may be defined by an expression in
parentheses.

TEMPD - Defines symbols as locations of word pairs in the
stack relative to gp. The format and operatlon is the
same as temp wlith the understanding that each pair s
assigned to an even locatlion, and any block length
receives twice that many words,

Data Generating Pseudo-Operations

ACC - Generate data consisting of ascil characters quoted by
'single quote' ('), A count precedes the character
string in character position one, and a singlie quote
can be Imbedded by use of two consecutlve singlie quotes
In the string. A maximum of 3 data words {(not 8) may

be generated with agg. Any partial words are filled
with nulls (000},

ACt - Same as ACC but without character count.

DEC - HNormal decimal data generator. integer, fixed,
floating, and double precislion data may be generated
with the ‘point®, F, B8, and D characters having the

usual meanlings, The first biank terminates the
variable field.

OCT - NMormal octal generator except that no signs are
allowed, and a blank terminates the variable field,

VFD = NDeflne data words under a varlable fleld format. Same
as normal VFD except that the H modifler is repiaced by
A for asclii.

r

N.3
MULTICS SYSTEM=PROGRAMHMERS' MAMUAL SECT 10N STt PAGE 12
Storage Allocatlon Pseudo-Operations

BFS - Block followed by symbol . Stmitar to BFS iIn GPMAP
except that format is

bfs symbol, length
BSS - Block started by symbol. Similar to BSS in GMAP
except that format fis
bss symbol, length
Spe | rmat

ARG ~ Treated like an Instruction w!th zero opcode,.

ZERO - Generates one word with two specifled 18 bit filelds.
The two flelds are defined by Interval expressions or
Jiterals.

CALL - Call subroutine with argument iist. The format is

call name (arglist)

The name may be a full-blown external reference with
modifier as may the argllst. The apgllist may be void
and pname may be iInternal. Code generation 1Is as
described in 80.7.02,

ENTRY ~ Define the internal symbol in the variable field as
an entry point, This pseudo-~op causes considerable
linkage Information to be generated.

RETURN = Return.to caller, code sequence as described In
BD.7.,02.

SAVE - Save conditions, code sequence as described iIn
BD.7.02,

(Note that later inclusion of Mastermode and Executlon pseudo-
operatlions will cause these system macros to take on different
meanings In different modes.)

6. Operation of the Asgembler
Qoeration of Pass 1

The fundamental purpose of pass~-1l Is to define all Jpnternal
Symbols, 1.e.,, to enter them Into a table along with thelr value,
In addition, all literais should be accounted for, pseudo-ops and
macros expanded, and possible phase errors accounted for. To

MULTICS SYSTEHM=PROGRAMMERS' MANUAL SECTION M PAGE 13

accompi Ish these tasks, pass-l reads the input stream, analyzes
ops and pseudo-ops, and keeps track of an internal Program
Counter by which Iinternal symbols are assigned. Symbols
appearing on SFGREF, ENTRY, etc., cards requlre speclal entries
into some of the other tables, but it is not necessary in pass-1
to take account of a local external reference such as LDA <X>>{[Y]

v

Phase errors are detected and general synchronization |is
maintained hy recording (in a 1ist) the PC at the end of each
staterment. Mo collation or Intermediate ‘tape’ 1s written and
pass=2 will simply re-read the input stream. At the end of
pass~1, the literal origin Is established for pass 2 assignment,
but the linkage Information origin is not set since the length of
the literal table is not known (because of VFD literals).

Operation of Pass 2

The fundamental purpose of pass=2 Is to generate the gtext
(binary output) of the program, This 1is accomplished by
rereading the input stream, analyzing the ops and pseudo-ops, and
keeping track of the Program Counter, Pseudo-ops are handled

according to whatever action they require. Mormal operations are
assemblied by combining the results of a variable field analysls,
a modification fleld analysis, and a 1lookup of the binary
operation codes.

The variable field analysis Is by far the trickiest and may -
require table entries for exterrnal symbols and associated
linkages. In addition, l1iterals cause some probiem especlially
those with DU or DL modifiers. Literals are assigned to
focations as requlred, and link numbers are defined (in the 1ink
table) as used.

The output of pass=2 consists of an assembly 1listing and the
binary text with Jiterals., The literals are put out after the
END card Is encountered; then the origin of the 1linkage portion
of the text is defined and the post processor is called.

Operation of Post Processor
The post processor is called after pass<2 to generate the
linkage portion of the text file, and then to generate the

linkage file. The linkage portion of the text consists primarily

of symbolic names and pointers put out from table Information in
the following orders

1. Fxternal Symbol Definftions (Fntry Points and Segdefs)
2., Segment 'lames

3. External Symbols

”N .3

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION St PAGE 1l

k., Trap Vords
5. Type Pairs
6. Internal Expression VWords

The order In which the information 1Is put out Is {mportant,
because as each piece of information is ‘punched® its location is
entered Into some table. For this reason, Trap lYords are put out
bafore Type Pairs because the Type Pair points to the Trap Vord,

After the text file 1Is completed, the 1linkage file 1Is
written. This is falrly easy because all locations refer to the
text segment relative to the origin of the 1linkage information.
The assembly is completed with the writing of the linkage file.

The Assembly Listing

The listing provided by EPLBSA Is the usual type of assembly
listing as provided by FAP or GMAP. For each statement one or
more lines 1Is printed consisting of error flags, 1locatiocn,
assembled word, and input statement. After the normal text 1is
1isted the literals and linkage information, and following the
text segment is listed the 1inkage file.

The 635 printer listing s similar to the 1listing file
returned except that all characters are mapped into GE-BCI. Any
ascil characters which cannot reasonably he mapped are printed as
the graphic '#°, Tabs are Interpreted to cause escapement In
multiples of 10 positions.

There are 8 possible error flags which are defined as
follows:

U use of an undefined symbol

M use of a multiply defined symhol

phase error, something (probably BSS or BFS)

has caused the program counter to be off

error in some field of a data generator

(Including literals)

field error, variable fleld is Improperly constructed
errcr In address modifier (tag)

illegal operation code

error in defiplition of some symbol

The assembler will also complain of a fatal error i{f any of
the error flags A, M, P, or 0 appear anywhere.

no=-imn m

