
,.. TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
c. Marceau
Logging in and logging out
07/07/67

Sections BQ.2.03 (Loggin~ in) and BQ.2.03A (Logging out)
should be discarded. Th1s section (BQ.2.03) replaces both.
The differences are numerous. Major changes are:

1) Logging in and logging out now occur in
a separate process, the User Control Process.

2) They do not use the standard error handling
technique.

3) The listener (BX.2.02) is no longer involved
in a user-initiated logout.

4) BQ.2.03 does not describe logging in and
logging out from the user~s point of view.
The user~s view of login and logout can be
found in BX.3.01 and BX.3.04 respe~tively.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.03 PAGE 1

Published: 07/07/67
(Supersedes: BQ.2.03, 01/16/671

BQ.2.03A, 01/16/67)

Identification

User Control Processes
c. Marceau

Purpose

When a user dials up from a remote console the system
must take action to enable him to use the computer, and
at the same time must verify his right to use the computer
(is he a bonafide user, is he solvent?). Similarly, when
a user leaves the system, some module must 'inform other
system modules that the user's process-group is gone,
and in general, clean up after the user. The first action
is called lolling in the user's process-group, and the
second is ca ed logging £Y1 the ~ser's process-group.
Both actions are handled by what 1s called a User Control
Process (which controls not the user himself,-suf logging
in and logging out the user's process-group). Note:
This section discusses logging in from the point of view
of the system rather than of the user. If you want to
log in, see section BX.3.01.

The Login Command

Readers of this section should know the format of a login
cummand line:

login name -project_id- -account_id- -wdir-

where name is the user's name and project-id his project
id. Account-id specifies the account to which he wants
to charge this console sessiono Wdir is the path name
of the directory he wishes to use-as-working directory.
If any of the arguments which are surrounded by dashes
are not given, the user's standard default is found.

An alternative login input line allows user A to log in
for user B as a proxy, i.e., after lo~in he seems to be
user B. At login, however, he must g1ve his own password,
and the User Log shows that A logged in for B rather than
B for himself. To log in as a proxy for B, A types:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.03 PAGE 2

proxy A for B -project_id- -account_id- -wdir-

The last 3 arguments are the same as for the login command.
The arguments A and B and the word "for" may not be omitted.

Discussion

For the purposes of this section, we wi 11 speak of ''logging
in the user" as synonymous with "logging in the user's
process-group". Both phrases apply, since at login it
is essential to find out who the user is and to add a
new process-group to the system to work for the user.
For symmetry, we speak of "1 ogg i ng out the user" as we 11
as of "logging out the user's process-group", even though
at logout the system is concerned less with the identity
of the user than with deleting his process-group from
the system. We also say that ''the user logs in'' to mean
that the user issues a login command or in some other
way causes the system to log him in.

To log a user in it is necessary to:

1) identify the user- the dialup might be caused
by a chimpanzee or an imposter;

2) find out whether the user may use the system - he
might be broke, the system might be operating at
capacity;

3) set up a process-group for the user so that he
can do work.

The user, after logging in, works in the process-group
which was created for him. (User-process-groups are discussed
in BQ.3.00.) After a time he finishes his work. Alternatively,
the system may decide that it can accommodate him no longer,
for example, because the entire system is being shut down
for a few minutes for replacement of a hard-core ring
module. It may even happen that some blackguard cuts
the wire leading from the user's console to the computer.
In any of these cases, the User Control Process logs the
user out:

1) destroys the user's process-group;

2) informs interested system modules that the
process-group is gone.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.03 PAGE 3

Logging in and logging out are discussed in greater detail
below.

Tbe User Control Process

As stated in the purpose of this section. the User Control
Process is responsible for logging the user in and logging
the user out. It is active. therefore. only at the two
extremes of the user's console session. When the user
dials up the computer from a remote console. the Answering
Service (see BQ.2.01) receives the dialup and creates
a User Control Process to respond to it. There is one
User Control Process for each attempt to log in. The
Answering Service calls the user_control procedure in
the User Control Process. giving it one piece of information
-the registry file name of the user's console. (Registry
file names permit unique identification of consoles and
other system resources- see BF.3.00.)

The User Control Process has a modular design. In particular.
four activities of the User Control Process are in distinct
modules. called by the user_control procedure.

User control calls the user who procedure (see below)
to determine the identity of the user. User_who reads
the user's login command. checks his password. and makes
sure he is a user known to the system. User who is familiar
with the organization of the User Identification Data
Bases described in BQ.4.00; changes to that organization
are reflected in user_who. but in no other module of the
User Control Process.

User control calls the user in procedure to determine
whether the user is allowed-to add a process-group to
the system at this time. User in calls the relevant system
modules. which are Accounting Tsee BO.O) and the Process-group
Ranker (see BQ.S.OO). (If some other module should become
relevant or cease to be relevant to adding a user-process-group
to the system. user_in should be modified to include a
call to that module.)

User_control calls the create_overseer procedure to create
an Overseer Process for the user-process-group. Create_overseer
and user_in are also used by the Absentee Monitor (see
80.2.04) when it creates an absentee process-group (i.e ••
a process-group that does not interact with a user at
a console).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.2.03 PAGE 4

After create overseer has created an Overseer Process
and returned; user_control causes the Overseer Process
to begin execution in the overseer procedure. The overseer
procedure is described in more detail in BQ.3.01. Briefly~
it enables the user to ''quit11 his work (by depressing
the 11 quit button11 at his console) and it initializes a
subsystem for the user. The subsystem which it initializes
is determined by the overseer procedure. The term 11 SUbsystem''
in this section simply refers to the user's interface
with the Multics after he has logged in. Users will normally
use the Multics Command Subsystem - see BX.O.OO - as their
subsystem. While a user is logging in~ he may be considered
to be in the 11 User Control Subsystem11 ~ to which he returns
at logout time. Section BQ.3.01~ on the overseer procedure~
discusses how the user passes from the User Control Subsystem
to some other subsystem, such as the Multics Command Subsystem.

After starting up the Overseer Process, the User Control
Process goes blocked, waiting for a completion event from
the Overseer Process signifying that the Overseer is 11 returning••
and that the user is to be logged out. The overseer procedure
sends such an event in response to one of four situations:

1) the user desires to log out;

2) the user hangs up his remote console (or the
connection from his console is broken);

3) the user runs out of funds;

4) the system can no longer support the user's process-
group (viz., because system load is too heavy).

When the overseer sends the completion event to the User
Control Process, user control calls the user out procedure
User_out's job is to Tog out the user. - •

Descriptions of the individual modules in the User Control
Process make up the remainder of this section. Figures
1 and 2 illustrate the order of calls in the User Control
Process, and its relationship to other processes.

User control (procedure)

U~er_control is called with a single argument, the registry
f1le name of the console on which the user dialed up.
User control consists largely of subroutine calls but
does-a few things itself:

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.2.03 PAGE 5

1 •

2.

3.

4.

Call user_who to identify the user.

Call user in to determine whether the user may
log in at-this time.

Call the reserver to hold the console for the
user so that only he may attach it (see reserve$hold,
BT.3.01).

Call create overseer to create the Overseer Process
of a process-group for the user, and to cause the
Overseer Process to begin executing the overseer
procedure.

s. Walt, through a call to the Walt Coordinator (BQ.6.06)
for an automatic logout event or a return (completion)
from the interprocess call, i.e., a completion event
signifies that the overseer is returning to its
caller. The overseer does this only when it wants
the process group to be logged out.

6. When an automatic logout event occurs, reflect the
event to the Overseer Process and walt for a
completion event from the Overseer. When a completion
event from the overseer occurs, call user_out to
log out the user.

7. On return from user_out, user_control returns. This
return causes a completion event to be sent to

User who

the Answering Service, which had issued an lnterprocess
call to the user_control procedure. The Answering
Service interprets a completion event from user_control
to mean that the user has been logged out. The
Answering Service now destroys the User Control Process
and awaits further dlalups from the console on which
the user had been logged in.

User_who~s function is to identify the user who is attempting
to log ln. User who is closely tied to the user identification
data bases descrTbed in BQ.4.00. To understand user who ,
the reader should be familiar with section BQ.4.00. -user_who
takes the following steps to identify the user:

1. User_who receives as an argument the registry
file name of the console from which the user dialed
up. It first checks this name against the names
on the dedicated console 1111 (see BQ.4.01). If

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.2.03 PAGE 6

the console name appears on the list, that is
sufficient to identify the user (i.e., that user
is the only one who dials up on that console) and
user_who returns with the name and project id of
the user.

2. If the registry file name of the user's console does
not appear on the dedicated console list, the user
is expected to write a line at his console. User_who
calls the read login line procedure to read this
line and to interpret it. A login line has one of
two forms as described above. Read login line
announces its presence, waits a short time (2 minutes)
for the user to input a line, checks the line for
first word ''login" or "proxy", and then reads the
line to get the following items:

a) name of a proxy (if any) logging in for the user,
b) name of the user,
c) project id of the user (optional),
d) account id of the user (optional),
e) working file directory path name (optional).

Read_login_line returns these items to user_who.

3. If the user omitted any optional arguments, user_who
looks up the defaults for that user. (This is not
done as a single step, but each default is looked
up as it becomes necessary.)

4. User_who calls ask_password to ask for the password
of the user, or, in the case of a proxy login,
the password of the proxy. User who checks the typed
password against that recorded in the user's (or
proxy's) personal identification file (see 80.4.02).

5. User_who checks the personal file (see 80.4.02)
of the user to be sure that the proxy (if any) is
allowed to act as the user's proxy.

6. User_who checks the project directory directory
(see 80.4.00) to make sure that the project specified
by the login line is a known project and that the
user works on it.

7. If the user has successfully run this gauntlet,
user who returns to user control each of the
items in the login input-line.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.2.03 P.AGE 7

User in

The user_in procedure accepts as arguments the name, project
id, and account id of the user trying to log in. The
account id specifies the account to which the user wishes
to charge this console session, and is one of the optional
arguments in the login input line. User_in ascertains
whether the identified user can be allowed to use the
system at this time.

1. Check the permission files (which associate with
each device the user access to the device - see
8T.1.01) to be sure that this user is allowed to
use this console.

2. Call the signon entry in accounting (see 80.3.02)
to charge the activities of this process to the
identified user. Signon returns, possibly with a
status indicator that the user is insolvent.

3. Call the process-group Ranker (see 80.5.00) to
determine whether system load will allow another
process-group to be logged in. The Process-group
Ranker returns a yes or no answer. In the case
of a "yes" answer, it also indicates the rank of
the process-group, i.e., its liability to be
automatically logged out and an instance 1sg for
the process-group. The Instance tag of the process
group distinguishes it from other process groups
of the same user which are running concurrently.)

4. Call the log keeper to enter in the User Log that
this user has logged in. Information recorded in
the User Log entry includes the user's name and project
id, the instance tag of this process-group, the
console name, and the date and time.

5. Return the instance tag of the process-group-to-be
to user _centro 1.

Create overseer

The create_overseer procedure calls the Process Control
module (see 8J.1) to create an Overseer Process for a
user-process-group. User_control calls create_overseer
with two arguments: the process-group id of the new process-group
(user name, project id, and instance tag) and the account
id of the process-group (as specified by the user).

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BO .2. 03 PAGE 8

1. Call Process Control to create an Overseer Process,
specifying process-group id and account id.

2. Return the process_id of the Overseer to user_control.
After create_overseer returns, user_control sends
an interprocess call causing the Overseer Process
to begin executing the overseer procedure.

User out

User_control calls user_out after receiving a completion
event from the Overseer. The user out procedure has the
function of getting the user's process-group out of the
system. It assumes that the Overseer of the process-group
has deallocated all resources of the process-group and
done all other necessary cleanup before signalling a completion
event to the User Control Process. That is, its sole
responsibility is to destroy the Overseer Process of the
group, and to notify other system modules (notably the
Process-Group Ranker and the User Log) that the process-group
is logged out. See BQ.3.01 for a description of the
Overseer's activities at logout time.

1. Call the Log Keeper to record in the User Log
that the process-group is logged out, specifying
the process-group id, and the date and time of
the logout.

2. Call the Process-group Ranker to inform it that
the process-group is no longer logged ln.

3. Call Process Control to destroy the Overseer
Process of the user-process-group.

4. Return to user_control.

Ring and Directory Residence

This section has introduced 7 procedures:

user control
user-who
read:l og i n_ll ne
ask_password
user in
create overseer
user_out

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.03 PAGE 9

These procedures (with the exception of ask_password)
should be executed only in a User Control Process. They
should be written by very responsible programmers, and
it must be possible to verify quickly the authorship of
one of these modules. (Ask_password is also called by
the password command- see gx.3.03.)

Certain of the above procedures access sensitive data
bases or issue calls to hardcore or administrative ring
modules which may not be issued by user ring proceduresa
For example, create_overseer and user_out call Process
Control to create or destroy a new process-group (i.e.,
by creating or destroying its Overseer Process). User_in
calls the Process-Group Ranker to make known a new process-group.
User who accesses passwords. User control calls the
interprocess communication module.- These procedures reside
in the administrative ring. The other procedures of this
section may reside in the user ring.

Interaction with the User

Reading from the user's console is confined to the procedures
read_login_line and ask_password. These can be reprogrammed,
for example, to recognize the word "substitute" for "proxy"
or 11 1 ogon" for 11 1 og in" •

Before issuing an interprocess call to the Overseer, user_control
arranges for reallocation of the console to the newly-created
process-group. This it does by calling the hold entry
in the Reserver (see BT.O).

This section has not discussed error comments, instruction
of the ignorant, and the like. It Is necessary to Inform
the user of his success or failure In logging in and,
without divulging unnecessary information, to indicate
the causes of failure (e.g., "password incorrect"). An
indexed table contains all messages which user control
modules might print. For example, message #10 might be
"incorrect password". A German Multics installation would
use a different table, which contained as message #10
"falsches Losungswort". The actual printing (i.e., the
calls to the I/0 procedure~- see BF.1.12) is done
by the procedure login_print~ the user ring) which
reads the indexed table of messages and calls write.

11'1uL llC!> ~ L;,l t.M- PROGKA1•1ME.t(S' MANUAL

~nswering Service
r- 7ocess

,1/system)

Q)
$.1
::s
'0

'
Q)
u
0
$.1 .u p..,

•...!
Q) Ill

~ u
•..I

~e
Q)
Ul

bO c::
•...! ,..
Q)

~
(/)

~

.

go
.-I
Ill

•..I
'0

User Control Process

(1/attempt to log in)

Q)
$.1
::s
'0
Q)

Process u
0 user

Control $.1
p.

who
.-I
0
$.1
.u
c::
0
u
$-II
Q)
(/)

::s

user

in

rea
login
line-

as
pass-
word

ignon

ranker

create_~~~~

over
seer

wait

Figure· ,1 :-' ·History of a Login

SECTION 80.2.03 PAGE 10

System Control

Process-Group

User

Process-

Group

Overseer Process
(1/user process-group)

seer

This figure shows the three processes involved in logging in a user process-group. The diagonal
line is a boundary between process groups. The flow of control within each process is shown by a
process portrait - a "building-block" picture of calls and returns which occur in the process. A
horizontal line at the top of a "building-block" represents a call from the procedure represented
by the "building-block" immediately to the left. A horizontal line at the bottom represents a
r~ur~: A block without a bottom (return) line represents a procedure which has not returned by
~ t~me a login is completed. A zap (~) from process control in one process to another
ptvcess signifies that the sending process has created the receiving process and is causing a
procedure to be executed by the receiving process, e.g., process creation in the Answering Servic'
Process causes the user_control procedure to be executed in the User Control Process. In the
login illustrated here, the User Control Process has created the Overseer Process and caused the
overseer procedure to begin execution. The User Control Process is now waiting until it has
to log out the process-group. The overseer will now create other processes in the process-group.

MULTICS SYSTEM-PROGRAMMERS' t"ANUAL

Answering Service
Process
(1/system)

User Control Process

(1/attempt to log in)

(II
1-1 ::s

'1:1
(II
u
0
1-1
p..

'6 who
1-1
~
l:l
0
UJI---..J
1-1
(II 1---,
Ul
::s

user

signo.

-~----.... in ranke

out

Figure 2: History of a Logout

SECTION BQ.Z.U.5 t'Abt. I I

System
Control
ProcessGroup

User
Process
Group

Overseer Process
(1/process-group)

)

1-1
(II
(II
Ul
1-1
(II

>
0

This figure shows the three processes involved in logging out a user process-group. The diagonal
double line is a boundary between process-groups. The flow of control within each process is ~
shown by a process portrait - a "building-block" picture of calls and returns which occur in the
process. A horizontal line at the top of a "building-block" represents a call from the procedure
represented by the "building-block" immediately to the left. A horizontal line at the bottom
represents a return. A block without a bottom (return) line represents a procedure which has not
returned. A zap (~ from process control in one process to another process signifies that the
sending process has created the receiving process and is causing a procedure to be executed by the
~iving process, e.g., process control in the Answering Service Process causes the user control
, edure to be executed in the User Control Process. ~~zap from a created process to its creator
signifies the completion of the created process. In the logout illustrated here, the overseer
procedure has returned, causing a completion event to bEf sent to the User Control Process. The
User Control Process is now executing user_out, which wfll destroy the Overseer before returning.
Tht.· Overseer Process has already destroyed the other pro[~esses in its process-group and entered

