
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.80 PAGE 1· 

Identification 

User-process-groups, an overview 

J.H. Saltzer, K.J. Martin, c. Marceau 

Purpose 

In Multics, a single process is only capable of setial handling of multiple 

tasks. If programming of multiple tasks is to be organized in a parallel 

fashion, for either programming convenience, for security, or to take ad-

vantag~ of the multiple processors of the system, more than one process 

is required. A user-process-group is a collection of processes operating 

for an instance of a logged-in user. This section is an overview of the organi-

zation and operation of a user process group; 

The reader of this section should be familiar with the terminology presented . 
in Section BQ.2.00. 

Process-Groups 

A user-process-group is a process-group that does work for a particular user. 

Besides user-process-groups, there are system process-groups, which serve 

the needs of the system as a whole, and act.as suppot.t for user-process-groups. 

What, then, is a process-group? 

A process-group is a collection of one or more processes working together 

on a common job. For example, a user-process-group serves one particular 

user. A process-group as such has certain distinguishing features (even 

if only one process is in it): 



MSPM SECTION BQ.3.00 PAGE 2 

1) Access to segments is by process-group. Since all processes in 
Jti-, ~ 4fl /u....(. ~ 

the group are cooperating to accomplish a common/Pccess to procedure and data 

segments. 

2) Resources are allocated to process-groups. If all processes in 

the group are cooperating on a commen job they may also cooperate in writing 

the results on magnetic tape. On the other hand, other process•groups, 

since they are working on other jobs, should ~ have access to the tape 

drive used by this process-group. 

3) Interprocess communication between process-groups requires explicit 

permission from the receiving process to the sending process. Within one 
c.,· 

process-group processes are assumed willing to re.eive messages from each 

Now the question arises: why should there ever by more than one process in 

a process-group. That is, why can't one process do one job? There are several 

p~e~~~ than one process work on a common task~ 
Among these are: · ' 

1) the desire to take advantage of the multiple processors of the 

system; 

2) the desire to break a large job down into logical components 

which may execute concurrently; 

3) the need to break a very large job down into smaller components 

because of restrictions within one process (for example, to avoid an over-

flow of the descriptor segment); 

4) a need for concurrent processing within one job, i.e., the job 

itself tequires concurrency of processing. 



MSPM SECTION BQ.3.00 PAGE 3 

we therefore refrain from restricting process-groups to consist of a 

single process. For the present, we define a user-process-group to be 

.•. a· collection of one or more processes dedicated to serving one logged-in 

user. We begin by exploring the path by which a user process-group comes 

into existence. 

When the system operator types a command signifying that certain communication 

lines should be made available for interactive users, the command procedure 

creates a new process in a new process-group fo.r each communication 

line. It starts the process off in the User Control module (described in 

BQ.2.03). The newly created process-group will become the user-process group 

of the ;.user who successfully logs in over the communication line. 

Sometime later the user finishes his work and logs out, or is automatically 

logged out. In any case, a logout entry of User Control is invoked and 

terminates the user-process-group. It does this by creating a process in a 

new process-group and starts this process off in User Control~. In this new 
. ~~~&JJ, 

process User Control des~roys the old process-grou~ before settling down . 
to read a login line from the console7 ~ . .t;?~~ ~ a. 11A.d ()A..I.-t .. 



MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BQ. 3. 00 • PAGE 4 

The Absentee Monitor Process 

The Absentee Monitor Process has 2 tasks: 

1) To monitor alyfequests for the running of absentee computations; 

2) to initiate and terminate the running of absente~omputations at 

the direction of load control. 

When a user types the login_absentee command, the Absentee Monitor assumes 

control of the absentee c_omputation and enters it into the user log. The 

absentee computation begins in the shelved state; that is, although it 

has a process-grouP id reserved for it, no process-group is currently 

existing to execute it. After a time, when system load permits, the 

Absentee Monitor Process unshelves the computation by creating a user-

process-group in Which the computation can run. Thereafter, the Absentee 

Monitor can cause the user-process-group to stop the computation in one 

of three ways: 

1) The Absentee Monitor may send an absente~stop signal to the overseer, 

to_ stop the computatiot} for example, because system load is heavy. 
re '"~'1#.41 

Later, when system load permits, the computation may ~e Pea~ed. 

2) The Absentee Monitor may send a suspend signal to the overseer, indi-

eating that the computation should be saved in its current state, 

because the system is being shut down. Later, when the system comes 

up again, the Absentee Monitor will ~the computation~ A,L.o.U-.a.. ~~ 

3) The Absentee Monitor may send an automatic logout signal to the over-

seer, e.g., on the request of the user who has logged in interactively. 

~~ This causes the computation to be ~gged out. 



. MSPM SECTION BQ.3.00 

1\t-:..,.,..e..+•~ 
·»:aT~ the process group ~ sends a completion signal to the Absentee 

Monitor indicating that the computation is being logged out. The Absentee 

Monitor then does its part in the logout, i.e., destroys the process-

giDup, notes the logout in the user log, and deletes the computation from 

its records. 

The User-Process-Group 

A user-process-group consists of a user's computation and a 

overseer package. The user control logging-in mechanism is 

user contra}( 
'~ 

ne';essaryj\for ,.........,... 

• 



MSPM SECTION BQ.3.00 PAGE 5 

~ 
validating the user's right to use Multics. ~ function of the overseer 

module is to create an envirorunent in which the useJ.· may type commands as 

part of his computation, interact with the·command procedures, and control 

his computation by being able to "quit" it at will. After quitting a 

computation the user can start it again, begin a fresh computation (reset), 

or hold the "quitted" computation so that it may be operated on as data. 

The user control overseer package has responsibility to the system for the 

user process-group, for example to shut down the process-group in case the 

system decides to log out the user (automatic logout). 

The user controy/overseer package executes in the same process(es) as the 

user's computation, just as the procedures of the file system do. To see· 

how they control the user's computation, let us examine the life of a typical 

process group. 

·o-~~~~ 
The .A.ae•a · t!!l SnTJhe (or the Absentee Monitor) creates the first process of Qr.. 

This occurs 
~~-LA 

as soon as the~nswer~~erviee is~ to accept dialups over the typewriter 

line associated with the process-group (or as soon as the Absentee Monitor 

is told to allow absentee computations to run.) 

J.{~~~ ~~) iMAt ~· 
o -nte new process begins life in the ..a:ew_~_group procedure) 

wl..ich.. 
If tl!\e g'l'e'tlp 

is intetacti.e :fhl ; u :eattl!'e calls user control to log in the user. The 

user control procedure now attempts to read a login line from the user console, 

and waits on the call until some user dials up and types a login line. 

Now user_control attempts to log in the user (see BQ.2.03) and, if successful, 

returns to its caller indicating a successful login. Otherwise it returns 



MSPM SECTION BQ.3.00 PAGE 6 

with a status indicating that the user is not logged in, and new_user_group 

·calls user_control again to read another login line. In the event of a 

successful login, new_user_group changes the group id by a call to the 

hard-core procedure chan.ge_group_id (q.v.) and then calls the overseer 

procedure (see below). The call to change_group_id changes the group's 

name from that of user control group to the name of the user. It also 

causes access to all segments outside of ring 0 to be recomputed. 

;;t~~~ ~-~-~Jv.kcA-. 
If the process-group is absentee, fi&'r-~ee~_g~eup does not call user_control, 

~hose job is to log in ~he user) because the user's identity is already 

known. Instead it calls change_group_id and then calls the overseer procedure. 

The Overseer 

The Overseer:':& function is to respond to signals from outside of the user 
~ 

process-group, i.e., to qui~hangup signals from the user's device, to 

automatic logout signals from the syste~w.and possibly to suspension signals 

from the absentee monitor (in the case of an absentee computation). 

The overseer, called at the beginning of the life of the process, makes calls 

in to the hard core ring requesting that certain conditions be.signalled 

whenever the process receives an interprocess signal. The interprocess 

signalling mechanism is described elsewhere in greater detail (see BQ.3.01). 

Briefly, it allows the overseer in a user process to notice the existence 

of a condition of interest to it whenever the process takes a fault (e.g., 

a missing page fault or ttmer-runout fault). The Fault Interceptor Module 

signals the condition for which the overseer has provided an appropriate handler. 



MSPM SECTION BQ.3.00 PAGE 7 

On hangup or automatic logout the overseer saves the current state of the 

user's computation so that· the user can resume it at some later time when 

he logs in again. Then the overseer deallocates system resources allocated 

to the prpcess-group and ·salilods a QempleUee sigMl te t'he ereator o! tlte-

·pnaess group (AnSwedng Sezvlce or kbQ:t~ee Uon~ ~e..o ...u...a.AJL. ~ 
~ c... ~,,..J ~. (.S:u ... a~--f-"~ ~ 1 ~~ VO ~ 
~-~-~.) 

On a suspension signal the overseer deallocates resources used by the process 

group and waits for an event via the interprocess communication facility 

telling it to restart the user's computation. 

The overseer's response to a quit is functionally more complex. On receiving 

notice of a quit, the overseer stops all work being done in the computation. 

It then provides for 3 possible actions: 

1) restarting the quit computation; 

2) ignoring the quit computation while the user starts a new 

computation/ ~ ~ ~ ~ J 

3) starting a new computation in a fresh process (because of 

possible irreparable damage in the user ring of the user's process). 

In addition to handling hangup, automatic logout, and quit conditions, the 

overseer provides the facility for housekeeping a user's computation. That 

is, if the user p:r:ocess' s address space is cluttered, or perhaps even stuffed, 

the overseer can provide the computation with a new process in which to execute 

It remains to discuss the interface between the overseer and the user's 

computation. We first describe the profile of a typical computation, then 



MSPM SECTION BQ.3.00 PAGE 8 

discuss how the overseer interacts with it. 

User Computations 

A user's computation typically consists of the execution of a series of 

commands, perhaps including parallel execution of some procedures. In the 

Multics Command System, the order of execution is as follows: 

The Listener procedure (see BX.2.02) "listens" at the typewriter for 

the user to type a command sequence. When he does so the Listener calls the 

Shell (see BX.2.00) 'to interpret the command sequence. The Shell calls a 

command, which calls several procedures, and then eventually returns. If 

there are more commands in the sequence, the Shell calls the next command. 

If t~is is the last command in the sequence, the Shell returns to the Listener, 

which "listens" for the user to type another.command sequence. 

A process in which a user's computation executes has certain peculiar features: 

for example, its options (see BX.l2.00) and working directory table (see 

BX.8.12) are set up to correspond to the user's options and working directory. 

(In system processes these user-oriented features may be mere appendices. 

That is, their option-stacks and working directory tables may not exist, and 

default values for the options and working direct:ory may be assumed.) 

The user may, in the course of a command, create other user processes to 

execute ~n parallel with his command. These user processes do not necessarily 

have the format of Listener calls Shell, etc., as above, but are programmed 

entirely by the user (see BY.S.ol:on creating a working process). 



MSPM SECTION BQ.3.00 PAGE 9 

The overseer and the user subsystem 

The overseer~.P~~~•£s, after initializing certain process-wide data bases, 

calls the login responder of the user. The login responder is usually a 

program which listens for user commands: the usual login responder is the 
ct..~ ,-

Listener procedure described e J IJiWI, ,,, 
I• 

After some time.login responder may return to its caller. When that happens 

the overseer creates aunew working process and causes it to execute the login 

responder again. The Listener procedure (the Multics Command System login 

responder) returns in order to housekeep, that is to start a fresh computation 

without old commands and procedures clogging up the address space of its 

process(es). (Creating a new p~ocess is the current method of housekeeping 

because it is the easiest.) 

It may also happen that the user from his console sends a "quit" signal to 
. 

the Overseer, Then the Overseer halts the current computation and begins 

a fresh one. It does this by calling the guit responder of the user. The 

Multics Comma~d System quit responder (that of most users) is cousin to the 

Listener. This cousin watches out for the commands "start11 , "new_proce'ss", 

and for debugging commands. This is because start, new_process and the 

debugging commands actually requests concerning the user's computation, and 

not "commands" in<:the usual sense (thus they are usually meaningless irjthe 

middle of a command sequence). 'J!Ilw !51SE2ifct &haa· uaeehsg h•. aee~tbbht!l 

_(.·' 



MSPM SECTION BQ.3.00 PAGE 10 

Finally, at some t~e some working process may call the logout entry of the 

overseer. When this happens, the overseer destroys the current computation 

and any quit computation which is ~ still around~ deallocates resources allocated 

to the process-group., .aali eeacts a eonylcbiuo eueo• r" 11 ru taP, 


