MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.60 PAGE 1

Identification

User-process-groups, an overview

J.H. Saltzer, K.J. Martin, C. Marceau

Purpose

In Multics, a single process is only capable of serial handling of multiple
tasks. If programming of multiple tasks is to be organized in a farallel
fashion, for either programming convenience, for security, or to take ad-
vantage of the multiple processors of the system, more than one process

is required. A user-process-group is a collection of brocesses operating

for an instance of a logged-in user. This section is an overview of the organi-

zation and operation of a user process group;

The reader of this section should be familiar with the terminology presented

in Section BQ.2.00.

Process-Groups

A user-process-group is a proceés-group that does work for a particular user.
Besides user-process-groups, there are system process-groups, which serve
- the needs of the system as a whole, and act as suppo:t for user-process-groups{

What, then, is a process-group?

A process-group is a collection of one or more processeé working together
on a common job. For example, a user-process-group serves one particular
user., A process-group as such has certain distinguishing features (even

if only one process is in it):



MSPM : SECTION BQ.3.00 PAGE 2

1) Access to segments is by pfocess-group. Since all processes in
the group are cooperating to accomplish a common/pccess to procedure and data
segments.
2) Resources are allocated to process-groups. If all processes in
the group are cooperating on a commen job they may also cooperate in writing
the results on magnetic tape. On the other hand, other process=groups,
since they are working on gther jobs, should not have access to the tape
drive used‘by this process-group.
3) Interprocess communication between process-groups requires explicit
permission from the receiving process to the sending process. Within one
process-group processes are assumed willing to reféiQe messages from each
dther. rocesses wi M :
b Sitmgenngy [1R Tee S M R T A
Now the question arises: why should there ever by more than one process in
a process-group. That is, why can't one process do one job? There are several
possible reasons for having more than one process work on a common task.aﬁxﬁi

Cornumcnn aCcosa— SN aao *
Among these are: )

1) the desire to take advantage of the multiple processors of the
system;
2) the desire to break a large job down into logical components

which may execute concurrently;

3) the need to break a very large job down into smaller components
because of restrictions within one process (for example, to avoid an over-
flow of the descriptor segment);

4) a need for concurrent processing within one job, i.e., the job

itself requires concurrency of processing.

-~



MSPM ‘ SECTION BQ.3.00 PAGE 3

We therefore refrain from restricting process-groups to consist of a
single process. For the present, we define a user-process-group to be
.. a collection of one or more processes dedicated to serving one logged-in

user. We begin by exploring the path by which a user process-group comes

into existence.

When the system operator types a command signifying that certain communication
.lines should be made available for interactive users, the command procedure
creates a new process in a new process-group for each communicationv

line. It starts the process off in the User Control module (described in
BQ.2.03). The newly created process-group will become the user-process group

of the 'user who successfully logs in over the communication line.

Sometime later the user finishes his work and logs out, or is automatically
logged out. In any case, a logout entry of Usef Control is invoked and

terminates the user-process-group. It does this by creating a précess in a
new process-group and starts this process off in User Control., In this new

: end,
/
process User Control destroys the old process-group before settling down

0

-

et N “d ) A<
to read a login line from the consoleya‘/nd Qﬂ)?wj n Q& Mo (Lee




MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BQ.3.00 PAGE 4

The Absentee Monitor Process

The Absentee Monitor Process has 2 tasks:
1) To monitor al}‘equests for the running of absentee computations;

2) to initiate and termimte the running of absentegésmputations at

the direction of load control,

When a user types the login absentee command, the Absentee Monitor assumes
control of the absentee computation and enters it into the user log, The
absentee computation begins in the shelved state; that is, although it

has a process-group id reserved for it, no process-group is currently

existing to execute it., After a time, when system load permits, the

Absentee Monitor Process uﬁshelves the computation by creating a user-

process-group in which the computation can run, Thereafter, the Absentee

Monitor can cause the user-process-groupbto stop the computation in one

~ of three ways:

1) The Absentee Monitor may send an absenteesstop signal to the overseer, .
to stop the computation for example, because system load is heavy.
Later, when system load permits, the computation may;ba 5232223?#

- 2) The Absentee Monitor may send a suspend signal to the overseer, indi-

cating that the computation should be saved in its current state,

because the system is being shut down. ‘Later, when the system comes

up again, the Absentee Monitor will peewme the computation.h AL¢u4MLJ4m£#th~

3) The Absentee Monitor may send an automatic logout signal to the over-

seer, e.g., on the request of the user who has logged in interactively.

s 56

4
This causes the computation to be -smgged out.




MSPM SECTION BQ.3.00 PAGE §qa

At some dime _
wxathy, the process group mex sendsa completion signal to the Absentee

Monitor indicating that the computation is being logged out. The Absentee

Monitor then does its part in the logout, i.e., destroys the process-

group, notes the logout in the user log, and deletes the computation from

its records.

The User-Process-Group

A user-process-group consists of a user's computation and a user contré}/

L i wdnailing Groups
overseer package. The user control logging-in mechanism is necessarypfor



MSPM ' SECTION BQ.3.00 PAGE 5

validating the user's right to use Multics. g&: function of the overseer
module is to create an enviromment in which the user may type commands as

. part of his computation, interact with the command procedures, and control
his computation by being able to '"quit" it at will. Af;er quitting a
computation the user can start it again, begin a fresh computation (reset),
or hold the "quitted" computation so that it may be operated on as data.
The user control overseer pachage has responsibility to the system for the
ﬁser process-group, for example to shut down the process-group in case the

system decides to log out the user (automatic logout).

The user contro}/&verseer package executes in the same process(es) as the
user's computation, just as the procedures of the file system do. To see
how they control the user's computation, let us examine the life of a tybical
process group.

QM—W

Thedh&&nszsag-ﬁenﬂéee (or the Absentee Monitor) creates the first process of a-

B group.end—causes-tt'tU-execnte-eha-ouaxsaa:-pxeeedu*ev This occurs

WMM
as soon as the Answerdmg -Serviee is sodd to accept dialups over the typewriter
line associated with the process-group (or as soon as the Absentee Monitor
is told to allow absentee computations to run.)

W"“’M“ wieralioe ik Gitiaitive whode

e new process begins life in the -new umser_ group procedurg) ~Tf—the—proup-
-ie—interactivesfirts=procedure calls user_control to log in the user. The
user_control procedure now attempts to read a login line from the user console,
.and waits on the call until some user dials up and types a login line.

Now user_control attempts to log in the user (see BQ.2.03) and, if successful;

returns to its caller indicating a successful login. Otherwise it returns




MSPM ' . SECTION BQ.3.00 PAGE 6

with a status indicating that the user is not logged in, and new_user_group
‘calls user_control again to read another login line. 1In the event of a
successful login, new_user_group changes the group id by a cdll to the
. hard-core procedure change_grbug_id (q.v.) and then calls the overseer
procedure (see below). The call to change group id changes the group's
name from that of user control group to the name of the user. It also
causes access to all segments outside of ring 0 to be recomputed.

Lqrunxwwcuhau«w v —abeetee -grovp, ANS

If the process-group is absentee, ﬂew-eeef—gﬁeup.does not call user_control,
(%hose job is to log in the usef) because the user's identity is already

known. Instead it calls chahge_grougwid and then calls the overseer procedure.

The Overseer

The Overseer's function is to respond to signals from outside of the user
- process-group, i.e., to quit,hangup signals from the user's device, to
automatic logout signals from the systemnand possibly to susPeneion signals

from the absentee monitor (in the case of an absentee computation).

The overseer, called a; the beginning of the 1ife of the process, makes calls
in to the hard core ring reéuesting that certain conditions be signalled
whenever the process receives an 1nterprocess signale The interprocess
signalling mechanism is described elsewhere in greater detail (see BQ.3.01).
Briefly, it allows the overseer in a user process to notice the existence

of a condition of interest to it whenever the process takes a fault (e.g.,

a missing page fault or timer-runout feult). The Fault Interceptor Module

signals the condition for which the overseer has provided an appropriate handler.




MSPM SECTION BQ.3.00 PAGE 7

On hangup or automatic logout the overseer saves the current state of the
user's computation so that the user can resume it at some later time when
he logs in again. Then the overseer deallocates system resources allocated

to the process-group and-sends-a-cemp&e&ée&—ségne%—ee-ehe—efeatvr'vfﬂﬁﬁr

'erﬁﬂmmﬂ%meﬂ%wu rasn coitid
ot o LegnX o Ay, (See a/~m4~/_au %f’ SOV s of He

picen - precess - Gy )

On a suspension signal the overseer deallocates resources used by the process
group and waits for an event via the interprocess communication facility

telling it to restart the user's computation. r

The overseer's response to a quit is functionally more complex. On receiving
notice of a quit, the overseer stops all work being done in the computation.
It then provides for 3 possible actions:

1) restarting the quit computation;

2) 1ignoring the quit computation while the user starts a new
computation/ A N Abme W}'
£ ~3)—~debugging—the—quit—eomputation:

3) starting a new computation in a fresh process (because of

possible irreparable damage in the user ring of the user's process).

In addition to handling hangup, automatic logout, and quit conditions, the
overseer provides the facility for housekeeping a user's computation. That

is, if the user process's address space is cluttered, or perhaps even stuffed,

the overseer can provide the computation with a new process in which to execute.

It remains to discuss thg interface between the overseer and the user's

computation. We first describe the profile of a typical computation, thep



MSPM 'SECTION BQ.3.00 PAGE 8

discuss how the overseer interacts with it.

User Computations

A user's computation typically consists of the execution of a series of
commands, perhaps including parallel execution of some procedures. In the

Multics Command System, the order of execution is as follows:

The Listener procedure (see BX.2.02) "listens" at the typewriter for

the user to type a command sequence. When he does so the Listener calls the
Shell (see BX.2.06)‘to interpret the command sequence, The Shell calls a
command, which calls several procedures, and then eventually returns. If
there are more commands in the sequence, the Shell calls the next command.

If this is the last command in the sequence, the Shell returns to the Listener,

which "listens" for the user to type another command sequence.

A process in which a user's computation executes has certain pecuiiar features:‘
for example, its options (see BX.12.00) and working directory table (see
BX.8.12) are sef up to correspond to the user's options and working directory.
(In system processes these user-oriented features may be mere appendices. ‘

That is, their option-stacks and working directory tables may not exist, and

default values for the options and working directory may be assumed.)

The user may, in the course of a command, create other user processes to
execute in parallel with his command. These user processes do not necessarily
have the format of Listener calls Shell, etc., as above, but are programmed

entirely by the user (see BY.5.01 on créating a working process).



MSPM SECTION BQ.3,00 PAGE 9

The overseer and the user subsystem

The overseer #r=Te3s, after initializing certain process-wide data bases,

calls the login responder of the user. The login responder is usually a

program which listens for user commands: the usual login responder is the

a,,(fvv-v
Listener procedure described wedew,
%

After some time.login responder may return to its caller. When that happens

the overseer creates aunew working process and causes it to execute the login
responder again. The Listener procedure (the Multics Command System login
responder) returns in order to housekeep, that is to start a fresh computation
without old commands and procedures clogging up the address space of its

process(es). (Creating a new process is the current method of housekeeping

because it is the easiest.)

It may also happen that the user from his console sends a "quit" signal to
the Overseer. Then the Overseer halts the current computation and begins

a fresh one. It does this by calling the quit responder of the user, The

Multics Command System quit responder (that of most users) is cousin to thé
Listener. This cousin watches out for the commands "stgrt", "new_proce%s",\
and for debugging commands. This is because start, new_process and the
debugging commands actually requests concerning the user's computation, and
not '"commands'" ini:the usual sense (thus they are usually meaningless i#tbe

middle of a command sequence). wElrEITTENETS“ALICHOBORt GOt et
ommerrde.,,




MSPM , SECTION BQ.3.00 PAGE 10

Finally, at some time some working process may call the logout entry of the

overseer. When this happens, the overseer destroys the current computation

and any quit computation which is still aroun@w deallocates resources allocated

to the process-groupe aad




